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ABSTRACT 

K-Ras is the most frequently mutated protein in human tumors. Activating K-Ras mutations 

drive cancer initiation, progression and drug resistance, directly leading to nearly a million 

deaths per year. To understand the mechanisms by which mutations alter K-Ras function, we 

need to understand their effects on protein dynamics. However, despite decades of research, 

how oncogenic mutations in K-Ras alter its conformation and dynamics remain to be 

understood. Here, we present how the most recurrent K-Ras oncogenic mutation, G12D, 

leads to structural, conformational and dynamical changes that lead to constitutively active K-

Ras. We have developed a new integrated MD simulation data analysis approach to quantify 

such changes in a protein and applied it to K-Ras. Our results show that G12D mutation 

induces strong negative correlations between the fluctuations of SII and those of the P-loop, 

Switch I (SI) and α3 regions in K-RasG12D. Furthermore, characteristic decay times of SII 

fluctuations significantly increase after G12D mutation. We have further identified causal 

relationships between correlated residue pairs in K-RasG12D and show that the correlated 

motions in K-Ras dynamics are driven by SII fluctuations, which have the strongest negative 

correlations with other protein parts and the longest characteristic decay times in mutant K-

Ras. Ours is arguably the first study that shows the causal relationships between residue 

pairs in K-RasG12D, relates them to the decay times and correlates their fluctuations. 
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INTRODUCTION 

K-Ras is the most frequently mutated oncoprotein in human cancers1-3. Patients with 

oncogenic K-Ras mutations have very poor response to standard therapies. Unfortunately, 

K-Ras mutations eventually emerge during the course of their treatment and drive acquired 

resistance4-6. K-Ras functions as a small GTPase and is critical in the regulation of 

intracellular signaling networks in cellular growth, proliferation and differentiation7. To perform 

its cellular roles, it switches between its inactive GDP-bound and active GTP-bound states8,9. 

Only active K-Ras (K-Ras-GTP) can bind and activate its downstream effector proteins10. 

Active K-Ras catalyzes GTP hydrolysis to become inactive (K-Ras-GDP). Intrinsic GTPase 

function of active K-Ras can be accelerated by the binding of GTPase-activating proteins 

(GAPs)11,12. However, certain mutations in K-Ras impair its intrinsic GTPase function and 

GAP binding and thereby GTP hydrolysis. Unable to switch to its GDP-bound inactive state, 

mutant K-Ras remains continuously active, causing prolonged activation of downstream 

pathways associated with oncogenic cell growth10,13-15.  

In cancer patients, oncogenic K-Ras mutations are recurrently observed at positions 12, 13 

and 61. G12 is the most frequently mutated residue (89%), which most prevalently mutates 

to aspartate (G12D, 36%) followed by valine (G12V, 23%) and cysteine (G12C, 14%)3,10. 

This residue is located at the protein active site, which consists of a phosphate binding loop 

(P-loop, residues 10-17) and switch I (SI, residues 25-40) and II (SII, residues 60-74) 

regions. The active site residues are bound to the phosphate groups of GTP and are 

responsible for the GTPase function of K-Ras. In its side-chain, G12 has only a single 

hydrogen. However, the mutation to aspartate (G12D) leads to the projection of a bulkier side 

group into the active site, which causes a steric hindrance in GTP hydrolysis16, impairs the 

GTPase function and locks K-Ras in its active GTP-bound state12. There is strong evidence 

that blocking mutant K-Ras activity can be very effective in the treatment of cancer 

patients17,18. Yet, despite decades of research, there are still no drugs in the clinic today that 

can directly target mutant K-Ras19,20. Although the effects of G12D mutation on the structure, 

conformation and flexibility of K-Ras have been studied21-24, the relationship between its 

conformational and dynamical changes still remains to be understood. At the same time, 

there is increasing evidence that suggests that crystal structure studies alone may miss drug-

binding pockets on mutant K-Ras surface18,25-33. Studies that include dynamics information 

have recently achieved promising results, however, these are limited to K-RasG12C mutant, 

and the mechanisms that regulate its dynamics remain unknown. Understanding the 

mechanisms of dynamic regulation of mutant K-Ras can present novel opportunities for 

identifying clinically actionable regulatory sites on its surface, making a profound impact in 

the treatment of millions of patients.  

Here, we present an in-depth study of how the most prevalent oncogenic K-Ras mutation, 

G12D, triggers structural, conformational and dynamic changes in the protein that result in its 

constitutive activation. Recent studies suggest that utilizing protein dynamics data is a 

successful approach for understanding the effects of mutations on the structure, dynamics 

and function of proteins34-36. Particularly in drug discovery, dynamics data from oncogenic 

proteins22,37-40 have helped identify cryptic or allosteric binding sites41-44. We hypothesized 

that dynamic regulatory mechanisms can best be explored by detailed analyses of their 

molecular dynamics (MD) simulation data, from which we can predict the regulatory 

relationships between residue pairs. For this purpose, we developed an integrated MD 

simulation data analysis approach that uses several computational metrics to quantify 
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mutation-based changes in protein structure and its consequences. Our approach is based 

on the conditional time-delayed correlations (CTC) method we have recently developed, 

which uses time delayed correlation functions from MD datasets to provide information on 

the correlation of two events, one taking place at time t and the other at a later time, t+. This 

approach has been remarkably accurate in predicting sites that control a protein’s motions45, 

and has shown excellent agreement with experimental data when tested on wild-type K-Ras 

(K-RasWT). 

We first performed MD-simulations of GTP-bound active forms of both wild type and G12D 

mutant K-Ras (hereafter K-RasWT and K-RasG12D) and applied our CTC method to predict 

sites on mutant K-RasG12D surface that control its activity. From the CTC results, we first 

studied the structural changes in both GTP and GDP-bound K-Ras upon G12D mutation, 

and discovered salt bridges that are either formed or destroyed upon mutation. Second, we 

evaluated the changes in the pair-wise distances between residues and quantified the local 

volume changes to identify changes in protein conformation. Third, we identified changes in 

protein dynamics through a multi-step process where we (i) quantified the residue 

fluctuations; (ii) evaluated correlation of residue fluctuations and identified lost or newly 

formed correlations upon mutation; (iii) calculated the characteristic decay times of residue 

fluctuations; and (iv) identified residue pairs that are causally related (i.e., residue pairs that 

show driver-responder behavior). Finally, we related the observed structural changes to the 

conformational and dynamical alterations, which enabled us to identify the important changes 

that affect protein function. Overall, our study identifies regulatory sites on K-RasG12D, which 

enhance our understanding of its dynamics and can assist in the development of direct 

inhibitors.  

METHODS 

MD SIMULATIONS 

We performed all-atom MD simulations for both Mg+2GTP-bound K-RasWT and K-RasG12D. 

We obtained the K-Ras-GTPWT structure from the final frame of the 300ns simulation of 

active state protein by Vatansever et al45. For constructing K-RasG12D structure, we mutated 

glycine to aspartate at position 12 in K-Ras-GTPWT structure using Discovery Studio 4.5 

software, (DS)46. To optimize the K-RasG12D-GTP complex, we used Clean Geometry tool of 

DS. For MD simulations, we used NAMD 2.1047 with AMBER ff99SB48 and general amber 

force fields (GAFF)49. Briefly, we performed energy minimization of the initial model after we 

introduced the G12D mutation in K-Ras, and then ran MD simulations of each complex 

following the protocols from our previous study45, the details of which we provide in 

Supplementary Methods. During the simulations, we applied minimization for 10,000 steps 

and equilibration for 500,000 steps, after which we performed 1 microsecond MD 

simulations, and saved atomic coordinates �̂� of all atoms every 10ps. we used the last 900ns 

of the simulation trajectories in all computations described in this study. To eliminate all 

rotational and translational motions, we aligned the trajectories to the first frame using VMD 

software 1.9.250. We visualized the trajectories with VMD. To identify salt bridges formed in 

the protein during the MD simulations, we used Salt Bridges Plugin, Version 1.1, of VMD. 

PAIRWISE DISTANCE CALCULATIONS 
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To quantify the effect of the G12D mutation on the distances between K-Ras residue pairs, 

we developed a new computational algorithm detailed in Figure S1. Briefly, we first assumed 

K-RasWT as the initial state and K-RasG12D as the final state. Then, we calculated the 

distances between Cα atoms of two residues (i, j) as we previously described45. A widely 

used model to analyze protein dynamics is Gaussian network model (GNM). Studies that use 

GNM typically assume the maximum Cα-Cα distance for the separation between two 

contacting residues at ~7.2Å51,52, and label it the ‘first coordination shell’53,54. We followed this 

same protocol and determined the first coordination shell around a selected residue by 

choosing its Cα as the center of a volume V with a radius of r1 ~7.2 Å52. However, because 

the contribution of non-bonded pairs to higher-order coordination shells may also be 

significant54,55, we also studied residue pairs that are within their ‘second coordination shell’ 

in K-RasWT structure. We defined this second coordination shell at twice the volume of the 

first, with a radius of ~9.1 Å54. 

For every residue pair (i, j) where j is in the second coordination shell of i, we first calculated 

its time-averaged distance in K-RasWT (�̅�ij WT) and in K-RasG12D (�̅�ij G12D). We then calculated 

the difference (∆�̅�𝑖𝑗) between �̅�ij WT and �̅�ij G12D, where ∆�̅�𝑖𝑗 = �̅�ij G12D - �̅�ij WT. The magnitude of 

the difference is the degree of distortion resulting from the G12D mutation. We present ∆�̅�𝑖𝑗 

values in the pairwise distances map (Figure 1) where a positive value indicates that a 

residue pair moves apart upon G12D mutation, while a negative value indicates that the pair 

gets closer. Then, we identified the residue pairs (ij) significantly distorted by the G12D 

mutation. For this purpose, we selected the residue pairs that have the greatest (positive and 

negative) ∆�̅�𝑖𝑗 values. We assumed that the residue pairs whose ∆�̅�𝑖𝑗 values are greater 

than 2.75 or smaller than -1.35 showed the most significant distance changes. For those 

identified residue pairs, we drew the distribution graphs W(Rij) of their distances (Rij) during 

the simulations of K-RasWT and K-RasG12D (For details see Supplementary). 

Then, to quantify the changes in local volumes upon G12D mutation, for each residue i we 

calculated the average of all ∆�̅�ij values based on the formula 〈∆�̅�𝑖〉 = ∑ ∆�̅�𝑖𝑗𝑗 𝑁𝑛⁄  , where Nn 

is the number of residues j in the second coordination shell of residue i. In detail, for a 

residue i, at the center of a volume V with a radius of 9.1 Å (the second coordination shell) 

and we defined the residues j within this volume V as the neighbors of residue i. Then, we 

calculated the total change in the distance between residue i and its neighbors,∑ ∆�̅�𝑖𝑗𝑗 , and 

divided it by the number of neighbors ∑ ∆�̅�𝑖𝑗𝑗 𝑁𝑛⁄ . The resulting 〈∆�̅�𝑖〉 value is a measure of 

the change in volume around residue i due to G12D mutation. 

PAIRWISE CORRELATION, TIME DELAYED CORRELATION AND CHARACTERISTIC 

DECAY TIME CALCULATIONS 

To show coupled motions in protein dynamics, we calculated the correlation coefficients 

between the fluctuations of residue pairs (Cij). A correlation coefficient value of a residue pair 

ranges from -1 to 1, where for residue pair fluctuations that are not coupled Cij= 0; perfectly 

positively correlated Cij=1, and perfectly negatively correlated Cij=-1. Additionally, to identify 

the directionality (causality) in the correlated motions of residue pairs, we calculated the time-

delayed correlations between them (Cij(τ)), where τ is the time-delay. Cij(τ) value represents 

the degree and manne in which the past fluctuations of residue i and the present fluctuations 

of residue j are coupled. 
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We further calculated autocorrelations Cij(τ) of each protein residue, which is the coupling of 

its past and present fluctuations. A slow decay of Cii(τ) function indicates that the present 

fluctuations of residue i tend to be strongly coupled with its own past fluctuations and thereby 

that residue i has a strong memory of its past fluctuations. To measure the memory length for 

a residue i, we calculated the time-delay value (τ) where the autocorrelation decay curve of 

the residue i reaches to 0.5 and we accepted it as the characteristic decay time of the 

residue i. We adopted the 0.5 criterion instead of the commonly used 1/e decay criterion 

because it was a better indicator of short time relaxation differences while the latter led to 

values too close to each other. 

The the calculations of correlation coefficients, time-delayed correlations and 

autocorrelations were as described in our previous study45 and are summarized in detail in 

Supplementary. 

RESULTS 

1.Structural Changes 

New close-range electrostatic interactions (salt bridges) are formed in K-RasG12D., 

which are not present in K-RasWT. Substitution of a non-polar, non-charged amino acid 

(glycine) with a negatively-charged amino acid (aspartate) triggers several conformational 

and dynamical changes in K-RasG12D. With the plausible assumption that the negatively 

charged residue D12 may cause new electrostatic interactions within the protein and that 

those interactions can be the sources of conformational changes upon G12D mutation, we 

compared the close-range electrostatic interactions (i.e. salt bridges) in K-RASWT vs. K-

RASG12D. In the mutated structure, D12 forms salt bridges with K16 (P-loop) and K88, and 

K16 forms a salt bridge with D57. However, none of these interactions are present in K-

RASWT. To identify the effects of the new electrostatic interactions caused by G12D mutation, 

we then investigated the conformational changes in K-Ras. 

2.Conformational Changes 

 

Pairwise Distance Calculations show conformational changes in K-RasG12D vs. K-

RasWT. We compared the distances between residue pairs within their second coordination 

shell in K-RasWT vs. K-RasG12D, where the first coordination shell is the maximum Cα-Cα 

distance of the separation between two contacting residues ~7.2Å51-54 and the second 

coordination shell is twice the volume of the first, at a radius of ~9.1Å54.  In Figure 1A, we 

show the ∆�̅�ij values for all residue pairs where K-RasWT is the reference and K-RasG12D is the 

final structure. As seen from the abundance of positive ∆�̅�ij values, the dominant distortion of 

the protein upon mutation is expansion, where SII region (T58-T74) moves away from the 

phosphate binding loop (P-loop, G10-S17), SI (Q25-Y40), α3 (T87-K104) in K-RasG12D. The 

SI region also moves away from the P-loop. In detail, all the P-loop residues move away from 

T58-R68 (SII) residues as a block. Second, the residues in the segment P34-Y40 of SI move 

away from N-terminal residues of SII (D57-Q61). Third, the α2 helix of SII moves away from 

α3, D92-R102. Fourth, SI residues move away from the P-loop residues. On the other hand, 

SI residues (F28-Y32, Y32-I36) assume a closer conformation where an H-bond between 

D33 and I36 is established. This causes the T35-E37 part of SI to move away from the P-

loop residues, G13-K16.  
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We observed the most significant changes in the distances between residue pairs Q61 (SII)-

A11 (P-loop), Q61 (SII)-G12D (P-loop), Q61 (SII)-G13 (P-loop), E37(SI)-D57 (SII) and S65 

(SII)-H95(α3) (Figure 1B). Residues R68, M72 and Y96 were also further apart in K-RasG12D. 

On the other hand, we observed that some residue pairs got significantly closer in K-RasG12D, 

including E63-R68, M72-G75 and R73-K104, demonstrated by their negative ∆�̅�ij values in 

Figure 1A. 

 

Figure 1. Conformational changes in K-Ras upon G12D mutation. (A) Difference of the 

average pairwise distances (∆�̅�ij) where K-RasWT is the initial and K-RasG12D is the final state. 

Red dots (positive ∆�̅�ij values) show that pairs move further apart and blue dots (negative 

∆�̅�𝑖𝑗  values) show that pairs move closer in K-RasG12D. (B) Scheme for the residue pairs that 

show the most significant distance changes. Spheres represent the residues; the widths of 

edges that connect the residue pairs represent the magnitude of the ∆�̅�𝑖𝑗  values. (C) The 

average of all ∆�̅�ij values for each residue, 〈∆�̅�𝑖〉. The initial state is K-RasWT and the final 

state is K-RasG12D. The residues which move away from their neighbors have positive values 

and dominate the mutant protein; residues that move close to their neighbors have negative 

values. 

K-RasG12D has broader distance distributions than K-RasWT. To uncover the 

conformational differences between wild type and mutant K-Ras and to thereby better 

understand the effects of the G12D mutation, we calculated the probability distributions of the 

distances between pairs of residues that exhibited the largest changes in the distance 

calculations. Distance distributions of the residue pairs which underwent the largest changes 

due to G12D mutation are shown in Figure 2. These are between the alpha carbons of 

residue pairs A11-Q61, G12D-Q61 and G13-Q61, respectively, as shown in Fig. 2A-C. Their 

distribution patterns exhibit marked differences between WT and mutant K-Ras. In WT K-

Ras, they exhibit a narrow distance distribution with smaller peaks compared to the mutant 

form. Residues A11, G12 and G13 are located at the P-loop. The P-loop has an omega 

shape and forms a turn at the C-terminal neighborhood of G12. As shown in Figure 2A-B, 

A11 and G12 are located within H-bond distance from Q61, while the distance between G13 

and Q61 is increased. Furthermore, we observed that in K-RasWT, G12 (side chain H atom) 

forms an H-bond with G60 (backbone O atom), the neighbor of G60. However, in K-RasG12D, 

this H-bond disappears because of the bulkier side chain of D12. In the absence of this H-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 19, 2017. ; https://doi.org/10.1101/178483doi: bioRxiv preprint 

https://doi.org/10.1101/178483


bond, D12 and its neighbors move away from Q61. The broadened distance distribution 

values of the mutant protein are indicators of lost hydrogen bonds. 

In K-RasWT simulations, we observed an H-bond between D38 (SI) and D57 (SII). However, 

this H-bond dissappers in K-RasG12D simulations, leading D57 to move away from D38 and 

more remarkably from E37. The absence of this H-bond in K-RasG12D is shown in Figure 2D 

where the peak distance value is greater in the K-RasG12D.  

Among all residue-residue pairs, S65-H95 undergoes the largest conformational change 

upon mutation. S65 is on α2 and moves away from H95, which is on α3 in K-RasG12D (Figure 

2E). The simulations show that this significant change due to the brakeage of the salt bridge 

between α2 and α3 helices. In K-RasWT, these two helices interact through the salt bridge 

between R68 and D92. However, the G12D mutation breaks the R68-D92 salt bridge and 

causes the α2 and α3 helices to move away from each other. This conformation of α2 and α3 

in K-RasG12D can be deduced from Figure 2E, which shows that the distance distribution 

curve of S65 (α2)-H95 (α3) has a higher peak. Finally, the distances between the residues 

R68, M72 and Y96 are also more stable in K-RasWT as shown in Figure 2F-H. 

Overall, we observed that distance distribution curves for K-RasWT are characterized by 

Gaussian-shaped, narrow dispersion curves. We use the term 'stable' in the sense that the 

distribution has a sharp peak, with a small dispersion around it. However, mutant K-Ras 

showed significant deviations from the Gaussian, except for the residue pair E37(SI)-D57 

(SII). 

We show the distance distributions of the residue pairs which became significantly closer 

upon mutation in Figure S2. During the MD simulations, E63-R68 pair is in a closer 

conformation in K-RasG12D (Figure S2A). This conformation may have resulted from the 

residues adjacent to E63, Y64 and S65, making H-bonds with R68 and D69, respectively. 

We observed these H-bonds between the backbone H atoms of Y64 & S65 and the 

backbone O atoms of R68 & D69 only in K-RasG12D. Additionally, during the K-RasG12D 

simulations R73-K104 pair also assumed a closer conformation which may have resulted 

from the H-bonds between R73-D105 and G75-K104 (Figure S2B).  

On the other hand, in Figure S2C, we show that the residue pair M72-G75 switches between 

two conformations in K-RasWT, where one has a closer conformation around 5.5 Å and the 

other one has a distant conformation around 8.5 Å. However, their distance distribution has a 

single peak at 5.5 Å in K-RasG12D that is similar to the closer conformation in K-RasWT. We 

have observed that the residue M72 forms an H-bond with G75 only in K-RasG12D. This H-

bond may have caused their single-peaked distance distribution. 
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Figure 2. Distribution of distances between residue pairs in K-RasWT (black) and K-

RasG12D (red). Distance distribution of residue pairs (A) Q61-A11; (B) Q61G-12D; (C) 

Q61-G13; (D) E37-D57; (E) S65-H95; (F) R68-M72; (G) M72-Y96; (H) R68-Y96. 
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G12D mutation causes changes in local volume. According to the GNM model, a residue 

typically fluctuates within its first or second coordination shell51,52. Within these fluctuation 

volumes, there are several other residues, which are either near-neighbors along the chain 

or are spatially distant. As has been shown by the GNM model, each residue has a different 

number of neighbors52. A residue with a smaller number of neighbors will show larger 

fluctuations than a residue with a larger number of neighbors. Therefore, the neighborhood of 

a given residue significantly affects its fluctuations, and as we will show here there is also a 

significant effect on its dynamics. In order to understand which parts of K-Ras move away 

from its neighbors and which parts move closer upon mutation, we have calculated the 

average of all ∆�̅�ij values for each residue, 〈∆�̅�𝑖〉. Figure 1C shows that most of the protein 

parts, especially the P-loop and SII, move away from their neigbors after G12D mutation. 

In summary, we identified the residue pairs that underwent the largest distance change due 

to G12D mutation. In addition, for each residue in the identified pairs, we showed the extent 

of its deviation from its neighbors. For this purpose, we have compared the individual ∑ ∆�̅�𝑖𝑗𝑗  

values of the residues in the identified pairs (Table S1). We discovered that the residues 

which move further away from each other in K-RasG12D also move away from their neighbors. 

On the other hand, the residues that move closer to each other in K-RasG12D  have different 

conformations relative to their neighbors. 

3. Dynamic Changes 

 

Residue fluctuations of central residues of SII are increased in K-RasG12D. To 

understand how the flexibility of K-Ras changes upon G12D mutation, we calculated the root-

mean-square fluctuations (RMSF) of each residue in both wild-type and mutant protein, 

where RMSF is a measure of the average atomic fluctuations of a residue. In Figure 3A, we 

display our results, which show that the fluctuations of central residues of SII are increased in 

K-RasG12D. 

The correlated motions of residues are markedly increased in K-RasG12D in comparison 

to K-RasWT. Regulation of protein dynamics is strictly coordinated by the correlations of 

residue fluctuations. Figures 3C-D present pairwise correlations of residue fluctuations (𝐶𝑖𝑗), 

where we show the results for K-RasWT and K-RasG12D in the left and right panels, 

respectively. Specifically, β3-SII residues become negatively correlated with the residues of 

P-loop, SI, and β4-α3. 

The characteristic decay times of residues in P-loop, SI and SII are longer in K-RasG12D. 

Fluctuations of each residue has a characteristic decay time that corresponds to the memory 

of its past56. In other words, characteristic decay time is the time-delay for which the present 

fluctuations of residue i becomes decoupled from its past fluctuations. Figure 3B shows that 

the characteristic decay times of residue fluctuations. Moreover, SII residues show the 

longest correlation decay times within the K-RasG12D residues. 
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Figure 3. Dynamic changes in K-Ras upon G12D mutation. Residue indices 1-165 refer 

to K-Ras. (A) RMSF values of K-RasWT (black) and K-RasG12D (red) residues. (B) 

Characteristic decay times of residue fluctuations in K-RasWT (black) and K-RasG12D (red). (C-

D) Correlation coefficient maps of K-RasWT (C) and K-RasG12D (D). Red dots show positive 

correlations and blue dots show negative correlations. 

SII motions are the main drivers of correlated motions in K-RasG12D. We analyzed 

mutant K-Ras dynamics in depth by applying time-delayed correlation analysis to MD 

simulation data of K-RasG12D. The time-delayed correlation of residues i and j (𝐶𝑖𝑗(𝜏)) is the 

correlation of the fluctuations of residue i with the later fluctuations of residue j. Through this 

analysis, we identified driver-responder residue pairs in K-RasG12D motions. Then, we 

compared the driver-responder pairs for K-RasG12D that we have calculated here with those 

for K-RasWT that we have previously published45. 

Our causality analysis calculations show that in K-RasG12D, the motions of SII are the main 

drivers, driving the motions of both P-loop and β3. We present the time delayed correlation 

plots of Q70 (SII) with V9 (P-loop) (Figure 4A) and C80 (β4) (Figure 4B) and D69 (SII) with 
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D54 (β3) (Figure 4C) for K-RasG12D. These are newly formed driver-responder interactions 

which do not exist in K-RasWT. 

 

Figure 4.Causality relations in K-RasG12D. Red curves for 〈∆𝑅𝑖(𝑡)∆𝑅𝑗(𝑡 + 𝜏)〉 show that the 

fluctuations of residue i at time t affect the fluctuations of residue j at a later time t+τ. X-axes 

represent 𝑡 values from 1 ns to 100ns. All correlations (𝐶(𝜏)) are normalized with respect 

their value at zero (𝐶(0)) and are shown in Y-axes. (A) Q70 (SII) fluctuations drive V9 (P-

loop) fluctuations. (B) Q70 (SII) fluctuations drive C80 (β4) fluctuations. (C) D69 (SII) 

fluctuations drive D54 (β3) fluctuations.  

Relations between the changes in K-Ras structure-conformation-dynamics 

 

Formation of new salt bridges results in distortion of backbone Cα atoms in K-RasG12D. Our 

results show that upon K-Ras G12D mutation, salt bridges are formed between the sidechain 

atoms of the residues D12 (P-loop)-K16 (P-loop) and K16-D57 (SII). Furthermore, the SII 

region moves away from the P-loop, and they both move away from their neighbors. MD 

simulations of K-RasG12D show that the sidechains of the K16-D57 residue pair approach 

each other and form salt bridges, while their backbone Cα atoms move away from each other 

(Figure S1). Therefore, the new salt bridges formed between the P-loop and SII residues 

may cause the conformations of these two regions to move away from each other and from 

their neighbors. As a consequence of these structural and conformational changes in SII 

region, SII also moves away from SI and α3 regions. 

Relationships Between Structural and Dynamic Changes in K-RasG12D. Since K-RasG12D 

simulations show the formation of a salt bridge between of D12 (P-loop) and K16 (P-loop), 

we investigated whether D12 and K16 moving closer due to the salt bridge causes changes 

in distal regions of K-RasG12D. For this purpose, we first defined a connectivity vector, 

ΔR12→16, between D12 and K16 based on the definition in our previous paper45, as 

summarized in Supplementary. We then defined connectivity vectors between the correlated 

residue pairs in K-RasG12D. Finally, we calculated the correlations of ΔR12→16 with the other 

connectivity vectors. We discovered that that ΔR12→16 is significantly correlated with ΔR60→70, 

ΔR61→75 and ΔR60→82. Consequently, D12-K16 pair moving closer as a result of salt bridge 

formation affects the dynamics of distant residue pairs such as G60-Q70, Q61-G75 and G60-

F82. 

Relationships Between Conformational and Dynamic Changes in K-RasG12D 

Fluctuations of dilated regions become negatively correlated in K-RasG12D. We observed that 
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after G12D mutation, negative correlations occur between the regions that move away from 

each other and from their neighbors. Combination of distance and correlation calculations 

gives us the relation between conformational and dynamic changes in the protein as a result 

of the mutation in its structure (Figure 5). 

 

Figure 5. Comparison of the distance and correlation changes due to G12D mutation. 

(A) The average of all ∆�̅�ij values for each residue, 〈∆�̅�𝑖〉. (B) Difference of the average 

pairwise distances (∆�̅�ij) (C) Pairwise correlation coefficients 

Relationships Between Negative Correlations and Characteristic Decay Times in K-

RaSG12D. Our results show that upon K-Ras G12D mutation, the fluctuations of the SII region 

become negatively correlated with fluctuations of the P-loop, SI and α3 regions. Moreover, 

fluctuations of these regions have the longest correlation decay times in the protein (Figure 

6). To investigate whether increased negative correlations between the residue fluctuations 

slow down the autocorrelation decay of the residue fluctuations, we calculated the average of 

negative correlation values for each residue of K-RasG12D. In Figure 7, we show that the 

residues whose fluctuations are more negatively correlated with other parts of the protein 

also have longer characteristic decay times. 

 

Figure 6. Comparison of characteristic decay times and pairwise correlatios in K-

RasG12D. (A) Characteristic decay times of K-RasG12D residues. (B) Pairwise correlations in K-

RasG12D. 
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Figure 7. Comparison of characteristic decay times and averaged negative 

correlations in K-RasG12D. (A) Characteristic decay times of K-RasG12D residues. (B) 

Averaged negative correlation values per residue. 

Relationships Between RMSF Values and Characteristic Decay Times in K-RASG12D. 

Autocorrelations of residue fluctuations tend to decay slowly as fluctuation magnitudes 

increase. Since our results showed that the residues in the SII region have the longest 

characteristic decay times and the greatest RMSF values, to investigate whether there is a 

correlation between these RMSF and autocorrelation decay time values, we plot RMSF vs. 

decay times per residue in Figure S3. Our results show that autocorrelation decay times 

become longer as fluctuations increase. 

Relationships Between Negative Correlations, Characteristic Decay Times and 

Causality in K-RASG12D. Negatively correlated residue pairs show causality. All driver-

responder residue pairs we identified in K-RasG12D correspond to regions that are negatively 

correlated during MD simulations. 

Driver residues exhibit slow autocorrelation decays. A slow autocorrelation decay indicates 

that the residue has a strong memory of its past fluctuations. To compare the memory 

lengths of the residues in K-RasG12D driver-responder pairs, we plot their autocorrelation 

decay curves (Figure 8). These plots show slower decay in drivers than responders, 

suggesting that they have longer memory lengths. 
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Figure 8. Autocorrelations for the fluctuations of the residues that are drivers or 

responders in K-RasG12D. Curves for 〈∆𝑅𝑖(𝑡)∆𝑅𝑖(𝑡 + 𝜏)〉 show that fluctuations of residue i at 

time t affect its fluctuations at a later time t+τ.  Red curves correspond to autocorrelations 

with slow decay. X axes is for 𝑡 values from 1 ns to 100ns. (A) Autocorrelations of residues 

Q70(driver)-V9(responder). Red line is autocorrelation decay curve of residue Q70, black line 

is autocorrelation decay curve of residue V9. (B) Autocorrelations of residues Q70(driver)-

C80(responder). Red line is autocorrelation decay curve of residue Q70, black line is 

autocorrelation decay curve of residue C80. (C) Autocorrelations of residues D69(driver)-

D54(responder). Red line is autocorrelation decay curve of residue D69, black line is 

autocorrelation decay curve of residue D54. 

DISCUSSION 

 

K-Ras is an important GTPase in cellular signaling, and is only active in its GTP-bound 

state8,9. Structurally, in active K-Ras, the P-loop, SI and SII regions are bound to the 

phosphate groups of GTP and are responsible for its GTPase function. However, when there 

is a G12D mutation in the P-loop, GTP hydrolysis is impaired and K-Ras freezes in its active 

state9, causing uncontrollable cellular growth and evasion of apoptotic signals24,57,58. In order 

to quantify the conformational and dynamic changes caused by the G12D mutation, we 

followed a new integrated MD data analysis approach. Our method enabled us to relate the 

structural and conformational changes in the residues of a protein to changes in the 

regulation of the protein’s dynamics. Using our method, we first discovered that the G12D 

mutation causes the formation of new salt bridges between the residues of K-Ras, which 

alter the conformations of those at the active site and α3, potentially affecting GTP 

hydrolysis, and freezing K-Ras in its active state. We then correlated the conformational 

changes in the residues at the active site and α3 to the dynamic changes in these regions. 

Our results show that the motions of SII become coupled to the motions of other residues at 

the active site and α3.  

Next, to understand the time-dependent regulation of K-RasG12D motions, we measured the 

‘memory length’ of each residue, and discovered that residues whose motions show strong 

coupling to the rest of the protein have a longer memory of their past. Specifically, the 

fluctuations of SII residues show the highest negative correlations with other parts of the 

protein and have the strongest memory. Most importantly, our results reveal the regulatory 

mechanism of K-RasG12D dynamics, where not only the residues in SII exhibit correlated 

fluctuations with other residues, they also drive them. These memory lengths of the residues 
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determine their driver-responder roles, and our results show that among all residues, those 

on SII have the strongest memory and are drivers in driver-responder pairs. 

In this study, our first important finding is that the broad distribution of Q61-P-loop distances 

affects GTP hydrolysis function of K-RasG12D. Because in the G12D mutation, glycine residue 

is substituted by aspartate, which has a bulkier side group, it causes a structural change in 

the P-loop which affects the conformations of the other active site regions SI and SII, as 

observed in previous studies22-24,59. Our distance calculations show that after G12D mutation, 

the P-loop residues 11, 12, 13 move away from SII residue Q61. Moreover, the distances 

between Q61-A11, Q61-G12D and Q61-G13 display broad distributions (Figure 2). Since 

Q61 is a known catalytic residue that plays a critical role in both intrinsic and GAP-mediated 

GTP hydrolysis10, the highly variable nature of the P-loop-Q61 distance may affect the GTP 

hydrolysis in K-RasG12D. Furthermore, our distance calculations also show that the residues in 

SII move away from some of the residues in SI, and α3, and distances between those 

residue pairs also display broad distributions in K-RasG12D (Figure 2). Considering the 

increased fluctuations of SII, these broad distance distributions with larger peak values 

between SII and the other parts of the protein may be arising from the increased flexibility of 

SII in K-RasG12D. 

Our second important finding is that the residue E37 moves away from residue D57 in K-

RasG12D and alters Raf effector protein binding. The residues E37 and D57 are known hot-

spots for the interaction of K-Ras with Raf60. This interaction has been previously shown to 

be impaired upon G12D mutation61,62. Our distance analyses describe the possible reason for 

this impartment is that these two hot-spot residues move away from each other and their 

neighbors in K-RasG12D.  

Third, residues R73 and K104 move closer upon mutation and alter PI3Kγ effector binding. 

Pairwise distance calculations indicate that the distances of residue pairs 63-68, 72-75 and 

73-104 significantly decrease upon G12D mutation. The 73-104 pair is particularly important 

since R73 is critical for interaction with the effector protein PI3Kγ63. Experiments have shown 

that PI3Kγ is preferably activated by K-RasG12D with higher binding affinity61,62. Additionally, 

the backbone carbonyls of R73 interact with the amino sidechain of K10464. Therefore, the 

decreased distance between R73 and K104 in K-RasG12D (Figure 2D) may affect the 

interaction of these residues that allow PI3Kγ binding with higher affinity. 

Fourth, active site residues that move apart in K-RasG12D may alter its GTPase function. K-

Ras undergoes conformational changes when it binds to GTP. The P-loop, SI and SII 

constitute the active site of the protein that binds to phosphate groups of GTP and 

participates in GTP hydrolysis10. SI and SII are also responsible for controlling the binding to 

effector molecules. Conformational changes in the active site affect K-Ras interactions with 

the GAPs which amplify the GTPase activity of K-Ras65. Our distance calculations showed 

that the active site residues of K-RasG12D move away from their neighbors (Figure 1C) due to 

the structural change in the P-loop. SII fluctuations also increase (Figure 3A). These 

observations are consistent with previous studies that showed that the larger distances 

between active site residues and increased SII fluctuations in K-RasG12D24. Since 

conformations of the active site play important roles in GTPase activity of K-Ras and its 

binding ability to GAPs, we postulate that the deviation of active site residues may impair the 

GTP hydrolysis and also GAP binding ability which leads to the constitutively active K-

RasG12D. 
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And fifth, G12D mutation augments the correlations between SII and the regions by 

increasing the flexibility of SII. As seen in the pairwise correlation maps, K-RasG12D differs 

markedly from K-RasWT and displays increased correlations between the fluctuations of SII 

residues and other parts of the protein. This is consistent the increased amplitude of the SII 

fluctuations in K-RasG12D, as shown in Figure 3. These results are consistent with a previous 

study that showed that SII fluctuations display increased level of fluctuations and negative 

correlations24. 

Overall, our results provide a mechanistic understanding of the dynamic regulatory 

mechanisms of K-RasG12D as well as predictions of sites that regulate its motions (such as 

SII). Targeting these sites with small molecules can be an effective strategy for the allosteric 

inhibition of oncogenic K-RasG12D for the treatment of several cancers. 
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