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The most merciful thing in the world, I think, is the inability of the human mind to correlate all its 
contents. (H.P. Lovecraft, 1890-1937)  
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Abstract	

	

The	genetic	basis	of	brain	structure	and	function	is	largely	unknown.	We	carried	

out	genome-wide	association	studies	(GWAS)	of	3,144	distinct	functional	and	

structural	brain	imaging	derived	phenotypes	(IDPs),	using	imaging	and	genetic	

data	from	a	total	of	9,707		participants	in	UK	Biobank.	All	subjects	were	imaged	

on	a	single	scanner,	with	6	distinct	brain	imaging	modalities	being	acquired.	We	

show	that	most	of	the	IDPs	are	heritable	and	we	identify	patterns	of	co-

heritability	within	and	between	IDP	sub-classes.	We	report	1,262	SNP	

associations	with	IDPs,	based	on	a	discovery	sample	of	8,426	subjects.	Notable	

significant	and	interpretable	associations	include:	spatially	specific	changes	in	

T2*	in	subcortical	regions	associated	with	several	genes	related	to	iron	transport	

and	storage;	spatially	extended	changes	in	white	matter	micro-structure	and	

lesion	volume	associated	with	genes	coding	for	proteins	of	the	extracellular	

matrix	and	the	epidermal	growth	factor;	variations	in	pontine	crossing	tract	

organization	associated	with	genes	that	regulate	axon	guidance	and	fasciculation	

during	development;	and	more	broadly,	variations	in	brain	imaging	measures	

associated	with	14	genes	involved	in	development,	pathway	signalling	and	

plasticity,	including	overlap	with	6	genes	contributing	to	transport	of	nutrients	

and	minerals.	Our	results	provide	new	insight	into	the	genetic	architecture	of	the	

brain	with	relevance	to	complex	neurological	and	psychiatric	disorders,	as	well	

as	brain	development	and	aging.	
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Introduction	
	

Brain	structure,	function	and	connectivity	are	known	to	vary	between	

individuals	in	the	human	population.	Changes	in	these	features	have	been	

identified	in	many	neurological	and	psychiatric	disorders	such	as	Alzheimer’s	

disease1,	amyotrophic	lateral	sclerosis2,	schizophrenia3,	major	depression4,	

autism5,	bipolar	disorder6	and	drug	addiction7.	These	effects	can	be	measured	

non-invasively	using	Magnetic	Resonance	Imaging	(MRI)	and	provide	

intermediate	or	endo-phenotypes	that	can	be	used	to	assess	the	genetic	

architecture	of	such	traits.8	

	

MRI	is	a	versatile	imaging	technique	with	different	brain	imaging	modalities	

used	to	separately	assess	brain	anatomy,	function,	and	connectivity.	Measures	of	

brain	anatomy	include	brain	tissue	and	structure	volumes,	such	as	total	grey	

matter	volume	and	hippocampal	volume,	while	other	modalities	allow	the	

mapping	of	different	biological	markers	such	as	venous	vasculature,	microbleeds	

and	aspects	of	white	matter	(WM)	micro-structure.	Brain	function	is	typically	

measured	using	task-based	functional	MRI	(tfMRI)	in	which	subjects	perform	

tasks	or	experience	sensory	stimuli,	and	uses	imaging	sensitive	to	local	changes	

in	blood	oxygenation	and	flow	caused	by	brain	activity	in	grey	matter.	Brain	

connectivity	can	be	divided	into	functional	connectivity,	where	spontaneous	

temporal	synchronisations	between	brain	regions	are	measured	using	fMRI	with	

subjects	scanned	at	rest,	and	structural	connectivity,	measured	using	diffusion	

MRI	(dMRI),	which	traces	the	physical	connections	between	brain	regions	based	

on	how	water	molecules	diffuse	within	white	matter	tracts”.	

	

A	new	resource	for	relating	neuroimaging	measures	to	genetics	is	the	

prospective	UK	Biobank	study.	UK	Biobank	is	a	rich	epidemiological	resource	

including	lifestyle	questionnaires,	physical	and	cognitive	measures,	biological	

samples	(including	genotyping)	and	medical	records	in	a	cohort	of	500,000	

volunteers9.	Participants	were	40–69	years	of	age	at	baseline	recruitment,	a	
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major	aim	being	to	characterize	subjects	before	disease	onset	.	Identification	of	

disease	risk	factors	and	early	markers	should	increase	over	time	with	emerging	

clinical	outcomes	in	significant	numbers10.	

	

An	imaging	extension	to	the	existing	UK	Biobank	study	was	funded	in	2016	to	

scan	100,000	subjects	from	the	existing	cohort,	aiming	to	complete	by	2022.	

Imaging	includes	MRI	of	the	brain,	heart	and	body,	low-dose	X-ray	bone	and	joint	

scans,	and	ultrasound	of	the	carotid	arteries.	Imaging	takes	place	in	three	centres	

across	the	UK,	all	using	identical	imaging	hardware	(though	all	imaging	data	

used	here	was	acquired	from	the	first	centre	to	open).	The	brain	imaging	

component	attempts	to	capture	imaging	phenotypes	relevant	to	the	widest	

possible	range	of	diseases	and	hypotheses,	including	three	structural	modalities,	

resting	and	task	fMRI,	and	diffusion	MRI11.	

	

Unlike	most	of	the	measurements	included	in	the	UK	Biobank	resource	(for	

example,	tobacco	use	and	body	mass	index),	raw	imaging	data	is	not	a	directly	

useful	source	of	information.	A	fully	automated	image	processing	pipeline	

(primarily	based	on	the	FMRIB	Software	Library,	FSL12)	has	been	developed	for	

UK	Biobank	that	removes	artefacts	and	renders	images	comparable	across	

modalities	and	participants.	The	pipeline	also	generates		thousands	of	image-

derived	phenotypes	(IDPs),	distinct	individual	measures	of	brain	structure	and	

function11,13.	Example	IDPs	include	the	volume	of	grey	matter	in	many	distinct	

brain	regions,	and	measures	of	functional	and	structural	connectivity	between	

specific	pairs	of	brain	areas.	

	

Another	key	component	of	the	UK	Biobank	resource	has	been	the	collection	of	

genome-wide	genetic	data	on	every	participant	using	a	purpose-designed	

genotyping	array.	A	custom	quality	control,	phasing	and	imputation	pipeline	was	

developed	to	address	the	challenges	specific	to	the	experimental	design,	scale,	

and	diversity	of	the	UK	Biobank	dataset.	The	genetic	data	was	publicly	released	

in	July	2017	and	consists	of	~96	million	genetic	variants	in	~500,000	study	

participants.14		
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Most	brain	imaging	studies	consist	of	small,	well	defined	cohorts	of	subjects,	

with	sample	size	being	constrained	by	cost	and	time	of	imaging	acquisition.	To	

maximise	statistical	power	and	biological	interpretability,	most	studies	aim	to	

acquire	imaging	data	as	consistently	as	possible	across	all	subjects;	this	includes	

minimizing	changes	to:	MRI	hardware;	MRI	software	and	protocol	parameters	

(when	acquiring	the	raw	data);	and	algorithms	used	for	image	processing.	The	

largest	brain	imaging	studies	have	collected	a	few	thousand	subjects	at	most,	and	

few	have	collected	genetic	data	in	parallel.	A	notable	exception	is	the	ENIGMA	

meta-analysis	project	that	is	pooling	data	from	many	independent	studies,	

currently	summing	to	more	than	30,000	subjects;	while	the	heterogeneity	of	

modalities	and	protocols	across	the	many	studies	combined	by	ENIGMA	is	much	

greater	than	found	within	individual	focused	studies,	this	is	to	some	degree	

ameliorated	by	the	very	high	total	subject	numbers,	and	there	has	been	success	

in	finding	genetic	associations	via	meta-analysis	for	some	phenotypes	such	as	

sub-cortical	brain	volumes15,16.	The	Human	Connectome	Project	(HCP),	while	

aiming	for	more	modest	numbers	(but	still	being	very	large	compared	with	most	

studies)	has	acquired	extremely	high	quality	functional	and	structural	imaging	in	

over	1,000	healthy	young	adults	on	a	common	imaging	platform,	together	with	

genome-wide	array	genotypes	and	deep	phenotyping,	and	has	recently	started	

expanding	that	dataset	to	add	similar	imaging	data	from	hundreds	of	

participants	from	ages	4	up	to	100	years17.	In	UK	Biobank,	the	combination	of	

very	large	subject	numbers	with	imaging	data	collected	on	a	maximally	

homogeneous	imaging	platform	and	protocol	is	a	unique	feature.	

	

Joint	analysis	of	the	genetic	and	brain	imaging	datasets	produced	by	the	UK	

Biobank	dataset	presents	a	unique	opportunity	for	starting	to	uncover	the	

genetic	bases	of	brain	structure	and	function,	including	genetic	factors	relating	to	

brain	development,	aging	and	disease.	In	this	study	we	carried	out	GWAS	for	

3,144	IDPs	at	11,734,353	SNPs	(single-nucleotide	polymorphisms)	in	up	to	8,428	

individuals	having	both	genetic	and	brain	imaging	data.			
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Methods		
	

Imaging	data	and	derived	phenotypes	

	

The	UK	Biobank	Brain	imaging	protocol	consists	of	6	distinct	modalities	covering	

structural,	diffusion	and	functional	imaging,	summarised	in	Table	1.	For	this	

study,	we	used	data	from	the	February	2017	release	of	~10,000	participants’	

imaging	data.		

	

Modality	name	 Type	 Description	

T1-weighted	image	

(T1)	

Structural	 Measures	anatomical	features	based	on	contrast	

between	grey	and	white	matter	and	other	

tissues.	

T2-weighted	FLAIR	

image	(T2	FLAIR)	

Structural	 Provides	a	different	contrast	between	tissues	

(compared	with	T1),	and	is	sensitive	to	some	

pathologies	such	as	white	matter	lesions.	

Susceptibility-

weighted	imaging	

(swMRI	or	SWI)	

Structural	 Can	be	processed	in	multiple	ways	to	reflect	

venous	vasculature,	microbleeds,	aspects	of	

micro-structure	(local	cellular	structure)	and	

biochemical	processes	such	as	iron	deposition.	

Diffusion-weighted	

imaging	(dMRI)	

Structural	

connectivity	

Measures	movement	of	water	molecules	within	

their	local	tissue	environment,	allowing	for	the	

estimation	of	long-range	structural	connectivity	

and	local	microstructure.	

Resting-state	

functional	MRI	

(rfMRI)	

Functional	

connectivity	

Measures	dynamic	changes	in	blood	oxygenation	

associated	with	intrinsic	brain	activity,	to	assess	

functional	connectivity	via	temporal	similarities	

between	brain	regions.	

Task	functional	MRI	

(tfMRI)	

Functional	

activation	

Functional	imaging	while	subject	performs	a	

particular	task	or	experiences	a	sensory	

stimulus.	

Table	1	:	Brain	Imaging	modalities.	An	overview	of	the	6	different	brain	

imaging	types	used	in	the	UK	Biobank	study.	
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The	raw	data	from	these	6	modalities	has	been	processed	for	UK	Biobank	to	

create	a	set	of	imaging	derived	phenotypes	(IDPs)11,13.	These	are	available	from	

UK	Biobank,	and	it	is	these	IDPs	from	the	February	2017	data	release	that	we	

used	in	this	study.		

	

In	addition	to	the	IDPs	directly	available	from	UK	Biobank,	we	created	two	extra	

sets	of	IDPs.	Firstly,	we	used	the	FreeSurfer	v6.0.0	software18,19	to	model	the	

cortical	surface	(inner	and	outer	2D	surfaces	of	cortical	grey	matter),	as	well	as	

modelling	several	subcortical	structures.	We	used	both	the	T1	and	T2-FLAIR	

images	as	inputs	to	the	FreeSurfer	modelling.	FreeSurfer	estimates	a	large	

number	of	structural	phenotypes,	including	volumes	of	subcortical	structures,	

surface	area	of	parcels	identified	on	the	cortical	surface,	and	grey	matter	cortical	

thickness	within	these	areas.	The	areas	are	defined	by	mapping	an	atlas	

containing	a	canonical	cortical	parcellation	onto	an	individual	subject’s	cortical	

surface	model,	thus	achieving	a	parcellation	of	that	surface.	Here	we	used	two	

atlases	in	common	use	with	FreeSurfer:	the	Desikan-Killiany–Tourville	atlas	

(denoted	“DKT”	20)	and	the	Destrieux	atlas	(denoted	“a2009s”	21).		The	DKT	

parcellation	is	gyral-based,	while	Destrieux	aims	to	model	both	gyri	and	sulci	

based	on	the	curvature	of	the	surface.	Cortical	thickness	is	averaged	across	each	

parcel	from	each	atlas,	and	the	cortical	area	of	each	parcel	is	estimated,	to	create	

two	IDPs	for	each	parcel.	Finally,	subcortical	volumes	are	estimated,	to	create	a	

set	of	volumetric	IDPs.	

	

Secondly,	we	applied	a	dimension	reduction	approach	to	the	large	number	of	

functional	connectivity	IDPs.	Functional	connectivity	IDPs	represent	the	network	

“edges”	between	many	distinct	pairs	of	brain	regions,	comprising	in	total	1,695	

distinct	region-pair	brain	connections	(see	URLs).	In	addition	to	this	being	a	very	

large	number	of	IDPs	from	which	to	interpret	association	results,	these	

individual	IDPs	tend	to	be	significantly	noisier	than	most	of	the	other,	more	

structural,	IDPs.	Hence,	while	we	did	carry	out	GWAS	for	each	of	these	1,695	

connectivity	IDPs,	we	also	reduced	the	full	set	into	just	6	new	summary	IDPs	

using	data-driven	feature	identification.	This	used	independent	component	

analysis	(ICA22),	applied	to	all	functional	connectivity	IDPs	from	all	subjects,	to	
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find	linear	combinations	of	IDPs	that	are	independent	between	the	different	

features	(ICA	components)	identified23.	The	ICA	feature	estimation	was	carried	

out	with	no	use	of	the	genetic	data,	and	was	applied	to	maximize	independence	

between	component	IDP	weights	(as	opposed	to	subject	weights).	Split-half	

reproducibility	(across	subjects)	was	used	to	optimize	both	the	initial	

dimensionality	reduction	(14	eigenvectors	from	a	singular	value	decomposition	

was	found	to	be	optimal)	and	also	the	final	number	of	ICA	components	(6	ICA	

components	was	optimal,	with	reproducibility	of	ICA	weight	vectors	greater	than	

r=0.9).	The	resulting	6	ICA	features	were	then	treated	as	new	IDPs,	representing	

6	independent	sets	(or,	more	accurately,	linear	combinations)	of	the	original	

functional	connectivity	IDPs.	These	6	new	IDPs	were	added	into	the	GWAS	

analyses.	The	6	ICA	features	are	visualized	in	Supplementary	Figure	S10.	

	

We	grouped	all	3,144	IDPs	into	9	groups	(Table	2),	each	having	a	distinct	

pattern	of	missing	values	(not	all	subjects	have	usable,	high	quality	data	from	all	

modalities)11.	For	the	GWAS	in	this	study	we	did	not	try	to	impute	missing	IDPs	

due	to	low	levels	of	correlation	observed	across	classes.	

	

The	distributions	of	IDP	values	varied	considerably	between	phenotype	classes,	

with	some	phenotypes	exhibiting	significant	skew	(Supplementary	Figure	S1)	

which	would	likely	invalidate	the	assumptions	of	the	linear	regression	used	to	

test	for	association.	To	ameliorate	this	issue	we	quantile	normalized	each	of	the	

IDPs	before	association	testing.	This	transformation	also	helps	avoid	undue	

influence	of	outlier	values.	We	also	(separately)	tested	an	alternative	process	in	

which	an	outlier	removal	process	was	applied	to	the	un-transformed	IDPs;	this	

gave	very	similar	results	for	almost	all	association	tests,	but	was	found	to	reduce	

the	significance	of	a	very	small	number	of	associations.	This	possible	alternative	

method	for	IDP	“preprocessing”	was	therefore	not	followed	through	(data	not	

shown).	

	

	

	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 25, 2017. ; https://doi.org/10.1101/178806doi: bioRxiv preprint 

https://doi.org/10.1101/178806
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

IDP	Group	name	 Description	 Number	of	

IDPs	

Number	of	

complete	

samples	

T1-SIENAX	 White,	grey	and	cerebrospinal	fluid	

(CSF)	volumes	

10	 8,428	

T1-FIRST	 7	Sub-cortical	volumes	x3	(left,	right	

and	left+right);	brain-stem	volume	

22	 8,428	

T1-FAST_ROIs	 Grey	matter	partial	volume	for	139	

regions	of	interest	(ROIs)	

139	 8,427	

T2-FLAIR-BIANCA	 Total	white	matter	hyperintensity	

volume	

1	 7,705	

SWI-T2*	 Signal	intensity	in	7	distinct	

subcortical	structures	x	3	(left,	right	

and	left+right)	

21	 7,778	

FreeSurfer	 Cortical	areas	and	thicknesses	based	

on	2	different	cortical	atlases;	

subcortical	volumes	

483	 8,411	

dMRI	 6	Diffusion	tensor	and	3	

microstructure	modelling	measures,	

on	each	of	75	white	matter	tract	

regions	

675	 7,532	

tfMRI	 Signal	strength	in	task	activated	

regions	

16	 7,612	

rfMRI	 Resting	state	fluctuation	amplitudes	

in	regions	from	two	functional	

parcellations,	and	functional	

network	connectivity	between	all	

pairs	of	regions	+	ICA	dimension	

reduced	connectivity	

1,777	 7,916	

	

Table	2	:	Imaging	derived	phenotype	(IDP)	grouping.	The	3,144	IDPs	

grouped	according	to	modality	and	missing	data	patterns.	Column	1:	short	

descriptive	name	for	each	IDP	group.	Column	2:	a	short	description	of	each	IDP	

grouping.	Column	3:	the	number	of	IDPs	in	each	group.	Column	4:	the	number	of	

subjects	with	fully	observed	IDPs	in	each	group.	
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Genetic	data	processing	

	

We	used	the	imputed	dataset	made	available	by	UK	Biobank	in	its	July	2017	

release14.	This	dataset	consists	of	>92	million	autosomal	variants	imputed	from	

the	Haplotype	Reference	Consortium	(HRC)	reference	panel24	and	a	merged	

UK10K	+	1000	Genomes	reference	panel25.	We	first	identified	a	set	of	12,623	

participants	who	had	also	been	imaged	by	UK	Biobank.	We	then	applied	filters	to	

remove	variants	with	minor	allele	frequency	(MAF)	below	0.1%	and	with	an	

imputation	information	score26	below	0.3,	which	reduced	the	number	of	SNPs	to	

18,174,817.	We	then	kept	only	those	samples	(subjects)	estimated	to	have	white	

British	ancestry	using	the	sample	quality	control	information	provided	centrally	

by	UK	Biobank14	(using	the	variable	in.white.British.ancestry.subset	in	the	file	

ukb_sqc_v2.txt);	population	structure	can	be	a	serious	confound	to	genetic	

association	studies27,	and	this	type	of	sample	filtering	is	standard.	This	reduced	

the	number	of	samples	to	8,522.	The	UK	Biobank	dataset	contains	a	number	of	

close	relatives	(3rd	cousin	or	closer).	We	therefore	created	a	subset	of	8,428	

nominally	unrelated	subjects	following	similar	procedures	in	Bycroft	et	al.	

(2017).	After	running	GWAS	on	all	the	(SNP)	variants	we	applied	three	further	

variant	filters	to	remove	variants	with	a	HWE	(Hardy-Weinberg	equilibrium)	p-

value	less	than	10-7,	remove	variants	with	MAF<0.1%	and	to	keep	only	those	

variants	in	the	HRC	reference	panel.	This	resulted	in	a	dataset	with	11,734,353	

SNPs.		

	

We	constructed	a	set	of	930	additional	samples	to	use	for	replicating	the	

associated	variants	found	in	this	study.	The	1,279	samples	with	imaging	data	

that	we	did	not	use	for	the	main	GWAS	had	been	primarily	excluded	due	to	not	

being	in	the	white	British	subset.	An	examination	of	these	samples	according	the	

genetic	principal	components	(PCs)	revealed	that	many	of	those	samples	are	

mostly	of	European	ancestry	(Supplementary	Figure	S2).	We	selected	930	

samples	with	a	1st	genetic	PC	<	14	from	Supplementary	Figure	S2	and	these	

constituted	the	replication	sample.	
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Potential	Confounds	for	brain	IDP	GWAS	

	

There	are	a	number	of	potential	confounding	variables	when	carrying	out	GWAS	

of	brain	IDPs.	We	used	three	sets	of	covariates	in	our	analysis	relating	to	(a)	

imaging	confounds	(b)	measures	of	genetic	ancestry,	and	(c)	non-brain	imaging	

body	measures.	

	

We	identified	a	set	of	variables	likely	to	represent	imaging	confounds,	for	

example	being	associated	with	biases	in	noise	or	signal	level,	corruption	of	data	

by	head	motion	or	overall	size	changes.	For	many	of	these	we	generated	various	

numerical	versions	(for	example,	using	quantile	normalization	and	also	outlier	

removal,	to	generate	two	versions	of	a	given	variable,	as	well	as	including	the	

squares	of	these	to	help	model	nonlinear	effects	of	the	potential	confounds).	This	

was	done	in	order	to	generate	a	rich	set	of	covariates	and	hence	reduce	as	much	

as	possible	potential	confounding	effects	on	analyses	such	as	the	GWAS,	which	

are	particularly	of	concern	when	the	subject	numbers	are	so	high.11		

	

Age	and	sex	are	can	be	variables	of	biological	interest,	but	can	also	be	sources	of	

imaging	confounds,	and	here	were	included	in	the	confound	regressors.	Head	

motion	is	summarized	from	the	rfMRI	and	tfMRI	as	the	mean	(across	timepoints)	

of	the	mean	(across	the	brain)	estimated	displacement	(in	mm)	between	one	

timepoint	and	the	next.	Head	motion	can	be	a	confounding	factor	for	all	

modalities	and	not	just	those	comprising	timeseries	of	volumes,	but	are	only	

readily	estimable	from	the	timeseries	modalities.	

	

The	exact	location	of	the	head	and	the	radio-frequency	receive	coil	in	the	scanner	

can	affect	data	quality	and	IDPs.		To	help	account	for	variations	in	position	in	

different	scanned	participants,	several	variables	have	been	generated	that	

describe	aspects	of	the	positioning	(see	URLs).	The	intention	is	that	these	can	be	

useful	as	“confound	variables”,	for	example	these	might	be	regressed	out	of	brain	

IDPs	before	carrying	out	correlations	between	IDPs	and	non-imaging	variables.			
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TablePosition	is	the	Z-position	of	the	coil	(and	the	scanner	table	that	the	coil	sits	

on)	within	the	scanner	(the	Z	axis	points	down	the	centre	of	the	magnet).	

BrainCoGZ	is	somewhat	similar,	being	the	Z-position	of	the	centre	of	the	brain	

within	the	scanner	(derived	from	the	brain	mask	estimated	from	the	T1-

weighted	structural	image).	BrainCoGX	is	the	X-position	(left-right)	of	the	centre	

of	the	brain	mask	within	the	scanner.	BrainBackY	is	the	Y-position	(front-back	

relative	to	the	head)	of	the	back	of	brain	mask	within	the	scanner.	

	

UK	Biobank	brain	imaging	aims	to	maintain	as	fixed	an	acquisition	protocol	as	

possible	during	the	5-6	years	that	the	scanning	of	100,000	participants	will	take.	

There	have	been	a	number	of	minor	software	upgrades	(the	imaging	study	seeks	

to	minimise	any	major	hardware	or	software	changes).	Detailed	descriptions	of	

every	protocol	change,	along	with	thorough	investigations	of	the	effects	of	these	

on	the	resulting	data,	will	be	the	subject	of	a	future	paper.	Here,	we	attempt	to	

model	any	long-term	(over	scan	date)	changes	or	drifts	in	the	imaging	protocol	

or	software	or	hardware	performance,	generating	a	number	of	data-driven	

confounds.	The	first	step	is	to	form	a	temporary	working	version	of	the	full	

subjects	×	IDPs	matrix	with	outliers	limited	(see	below)	and	no	missing	data,	

using	a	variant	of	low-rank	matrix	imputation	with	soft	thresholding	on	the	

eigenvalues28.	Next,	the	data	is	temporally	regularized	(approximate	scale	factor	

of	several	months	with	respect	to	scan	date)	with	spline-based	smoothing.	PCA	

was	then	applied	and	the	top	10	components	kept,	to	generate	a	basis	set	

reflecting	the	primary	modes	of	slowly-changing	drifts	in	the	data.		

	

To	describe	the	full	set	of	imaging	confounds	we	use	a	notation	where	subscripts	

“i”	indicate	quantile	normalization	of	variables,	and	“m”	to	indicate	median-

based	outlier	removal	(discarding	values	greater	than	5	times	the	median-

absolute-deviation	from	the	overall	median).	If	no	subscript	is	included,	no	

normalization	or	outlier	removal	was	carried	out.	Certain	combinations	of	

normalization	and	powers	were	not	included,	either	because	of	very	high	

redundancy	with	existing	combinations,	or	because	a	particular	combination	was	

not	well-behaved.	The	full	set	of	variables	used	to	create	the	confounds	matrix	

are:	
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• a	=	age	at	time	of	scanning,	demeaned	(cross-subject	mean	subtracted)	

• s	=	sex,	demeaned	

• q	=	4	confounds	relating	to	the	position	of	the	radio-frequency	coil	and	

the	head	in	the	scanner	(see	above),	all	demeaned	

• d	=	drift	confounds	(see	above)	

• m	=	2	measures	of	head	motion	(one	from	rfMRI,	one	from	tfMRI)	

• h	=	volumetric	scaling	factor	needed	to	normalise	for	head	size29	

	

The	full	matrix	of	imaging	confounds	is	then:	

[	a		a2		a×s		a2×s		ai		ai2		ai×s		ai2×s		mm		mm2		hm		qm		qm2		dm		mi		hi		qi		qi2		di		]	

Any	missing	values	in	this	matrix	are	set	to	zero	after	all	columns	have	had	their	

mean	subtracted.	This	results	in	a	full-rank	matrix	of	53	columns	(ratio	of	

maximum	to	minimum	eigenvalues	=	42.6).		

	

Genetic	ancestry	is	a	well	known	potential	confound	in	GWAS.	We	ameliorated	

this	issue	by	filtering	out	samples	with	non-white	British	ancestry.	However,	a	

set	of	40	genetic	principal	components	(PCs)	has	been	provided	by	UK	Biobank14	

and	we	used	these	PCs	as	covariates	in	all	of	our	analysis.	The	matrix	of	imaging	

confounds,	together	with	a	matrix	of	40	genetic	principal	components,	was	

regressed	out	of	each	IDP	before	the	analyses	reported	here.	

	

There	exist	a	number	of	substantial	correlations	between	IDPs	and	non-genetic	

variables	collected	on	the	UK	Biobank	subjects11.	Based	on	this,	we	also	included	

some	analyses	involving	variables	relating	to	Blood	Pressure	(Diastolic	and	

Systolic),	Height,	Weight,	Head	Bone	Mineral	Density,	Head	Bone	Mineral	

Content	and	2	principal	components	from	the	broader	set	of	bone	mineral	

variables	available	(see	URLs).	Supplementary	Figure	S3	shows	the	association	

of	these	8	variables	against	the	IDPs	and	shows	significant	associations.	These	

are	variables	that	will	likely	have	a	genetic	basis,	at	least	in	part.	Genetic	variants	

associated	with	these	variables	might	then	produce	false	positive	associations	

for	IDPs.	To	investigate	this	we	ran	GWAS	for	these	8	traits	(conditioned	on	the	

imaging	confounds	and	genetic	PCs)	(Supplementary	Figures	S3).	We	also	ran	a	

parallel	set	of	IDP	GWAS	with	these	“body	confounds”	regressed	out	of	the	IDPs.	
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Heritability	and	co-heritability	of	IDPs	

	

We	used	a	multi-trait	mixed	model	to	jointly	estimate	heritability	and	genetic	

correlations	between	traits.	If	Y	is	an	NxP		matrix	of	P	phenotypes	(columns)	

measured	on	N	individuals	(rows)	then	we	use	the	model		

	Y =U + ε 	 		 	 		 	 										(1)	

where	U	is	an	NxP		matrix	of	random	effects	and	ε 	is	a	NxP		matrix	of	residuals	

and	are	modelled	using	Matrix	normal	distributions	as	follows	

	

		

U~MN 0,K ,B( )
ε ~MN 0,IN ,E( ) 	

In	this	model	K	is	the	NxN		kinship	matrix	between	individuals,	B	is	the	PxP	

matrix	of	genetic	covariances	between	phenotypes	and	E	is	the	PxP		matrix	of	

residual	covariances	between	phenotypes.	We	estimate	the	covariance	matrices	

B	and	E	using	a	new	C++	implementation	of	an	EM	algorithm30	included	in	the	

SBAT	software	(see	URLs).	For	the	Kinship	matrix	(K)	in	the	model	we	used	

realised	relationship	matrices	(RRMs)	that	were	calculated	for	the	8,428	

nominally	unrelated	individuals	using	fastLMM	(see	URLs).	We	used	the	subset	

of	imputed	SNPs	that	were	both	assayed	by	the	genotyping	chips	and	included	in	

the	HRC	reference	panel.	In	addition,	all	SNPs	with	duplicate	rsids	were	

removed.	PLINK	(see	URLs)	was	used	to	convert	imputed	genotype	calls	to	

thresholded	genotypes,	as	required	by	fastLMM.	We	fit	the	model	to	several	of	

the	groupings	of	IDPs	detailed	in	Table	2.	The	estimated	covariance	matrices	B	

and	E	were	used	to	estimate	heritability	of	each	IDP	and	genetic	correlation	of	

pairs	of	IDPs.	Specifically,	the	heritability	of	ith	IDP	in	a	jointly	analyzed	group	of	

IDPs	is	estimated	as		

ℎ!! =
𝐵!!

𝐵!! + 𝐸!!
	

The	genetic	correlation	between	the	ith	and	jth	IDPs	in	a	jointly	analyzed	group	

of	IDPs	is	estimated	as	
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𝑟!" =
𝐵!"
𝐵!!𝐵!!

	

	

Genetic	association	of	IDPs	

	

We	used	BGENIE	v1.2	(see	URLs)	to	carryout	GWAS	of	imputed	variants	against	

each	of	the	processed	IDPs.	This	program	was	designed	to	carryout	the	large	

number	of	IDP	GWAS	required	in	this	analysis.	It	avoids	repeated	reading	of	the	

genetic	data	file	for	each	IDP	and	uses	efficient	linear	algebra	libraries	and	

threading	to	achieve	good	performance.	The	program	has	already	been	used	by	

several	studies	to	analyze	genetic	data	from	the	UK	Biobank31,32.	We	fit	an	

additive	model	of	association	at	each	variant,	using	expected	genotype	count	

(dosage)	from	the	imputed	genetic	data.	We	ran	associated	tests	on	the	main	set	

of	8,428	and	the	replication	set	of	930	samples.	

	

Identifying	associated	genetic	loci	

	

Most	GWAS	only	analyze	one	or	a	few	different	phenotypes,	and	often	uncover	

just	a	handful	of	associated	genetic	loci,	which	can	be	interrogated	in	detail.	Due	

to	the	large	number	of	associations	uncovered	in	this	study	we	developed	an	

automated	method	to	identify,	distinguish	and	count	individual	associated	loci	

from	the	3,144	GWAS	(each	corresponding	to	one	IDP).	For	each	GWAS	we	first	

identified	all	variants	with	a	–log10	p-value	>	7.5.	We	applied	an	iterative	

process	that	starts	by	identifying	the	most	strongly	associated	variant,	storing	it	

as	a	lead	variant,	and	then	removing	it,	and	all	variants	within	0.25cM	from	the	

list	of	variants.	This	process	is	then	repeated	until	the	list	of	variants	is	empty.	

We	applied	this	process	to	each	GWAS	using	2	different	filters	on	MAF:	(a)	MAF	>	

0.1%,	and	(b)	MAF	>	1%.	

	

	

	

	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 25, 2017. ; https://doi.org/10.1101/178806doi: bioRxiv preprint 

https://doi.org/10.1101/178806
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

Results	

	

Heritability	and	genetic	correlations	of	IDPs	

	

Figure	1	shows	the	estimated	heritability	(h2)	of	the	IDPs	analyzed	using	SBAT.	

It	shows	that	the	majority	of	the	IDPs	have	estimated	levels	of	h2	in	the	range	

(0.25,	0.65).	Notable	exceptions	are	the	task	fMRI	and	resting	fMRI	IDPs	which	

are	estimated	to	have	relatively	lower	heritability	than	the	structural	T1,	T2*	and	

FreeSurfer	IDPs	and	the	structural	connectivity	diffusion	MRI	IDPs.		

	

Supplementary	Figure	S4	shows	the	estimated	genetic	correlations,	together	

with	the	raw	phenotype	correlations,	for	several	groups	of	analyzed	IDPs.	These	

plots	show	that	there	is	a	range	of	both	strong	and	weak	positive	and	negative	

genetic	correlations	between	the	IDPs.	

	

	
Figure	1:	Estimated	heritability	of	IDPs.	Estimated	heritability	(y-axis)	of	all	of	

the	IDPs	analyzed	jointly	in	groups	(x-axis).	Each	point	is	an	IDP.	Points	are	

coloured	according	to	IDP	groups.	

	

Significant	associations	between	IDPs	and	SNPs	
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Using	a	minor	allele	frequency	filter	of	1%	and	a	–log10	p-value	threshold	of	7.5,	

we	found	1,262	significant	associations	between	SNPs	and	the	3,144	IDPs.	The	–

log10	p-value	threshold	of	7.5	is	an	established	threshold	in	the	GWAS	literature	

for	controlling	for	the	large	number	of	tests	carried	out	and	takes	into	account	

the	correlation	structure	between	test	variants,	in	much	the	same	way	that	

Random	Field	theory	is	used	to	determine	brain-wide	voxel	testing	thresholds	in	

fMRI	experiments.	455	of	these	1,262	associations	replicated	at	the	5%	

significance	level	(see	Supplementary	Table	S1).	Using	the	estimated	effect	

sizes	and	allele	frequencies	at	each	of	the	1,262	SNPs	we	calculated	that	the	

expected	number	of	replications	in	a	sample	size	of	930	would	be	427	

(Supplementary	Methods).	This	seems	to	agree	well	with	what	we	observe,	and	

strongly	suggests	that	increasing	the	size	of	the	replication	sample	will	improve	

the	number	of	successful	replications.	Some	associated	genetic	loci	overlap	

across	IDPs;	we	estimate	that	there	are	approximately	427	distinct	associated	

genetic	regions,	and	91	of	these	“clusters”	have	at	least	one	IDP	that	already	

replicates	at	the	5%	level.	

	

To	correct	for	the	huge	number	of	tests	(all	IDPs	tested	against	all	SNPs)	we	

adjusted	the	genome-wide	significance	threshold	(-log10	p-value	>	7.5)	by	a	

factor	(–log10(3144)=3.5)	to	account	for	the	number	of	IDPs	tested,	giving	a	

threshold	of	-log10	p-value	>	11.	This	assumes	(incorrectly)	that	the	IDPs	are	

independent	and	so	is	likely	to	be	conservative,	but	we	were	inclined	to	be	

cautious	when	analyzing	so	many	IDPs.	At	this	threshold	we	find	368	significant	

associations	between	genetic	regions	and	IDPs,	which	can	be	grouped	together	

into	38	distinct	clusters	(Table	3,	Supplementary	Table	S2).	229	of	these	368	

associated	regions	replicated	at	the	5%	significance	level.	Using	the	estimated	

effect	sizes	and	allele	frequencies	at	each	of	the	368	SNPs	we	calculated	that	the	

expected	number	of	replications	in	a	sample	size	of	930	would	be	188	

(Supplementary	Methods).	Taking	the	most	strongly	associated	SNP	in	each	of	

the	38	regions,	we	find	that	27	of	these	replicate	at	the	5%	significance	level;	on	

the	basis	of	the	actual	replication	sample	size	we	would	expect	just	19	to	

replicate	on	average	(Supplementary	Methods).	We	found	no	appreciable	
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difference	between	these	GWAS	results	when	we	included	the	set	of	potential	

body	confound	measures	(Supplementary	Figure	S11).	

	

	

	

Table	3:	Summary	of	most	highly	associated	SNP-IDP	clusters.	The	table	

summarises	the	38	clusters	of	SNP-IDP	associations.	For	each	cluster	the	most	

significant	association	between	a	SNP	and	an	IDP	is	detailed	by	the	chromosome,	

rsID,	base-pair	position,	SNP	alleles,	non-reference	allele	frequency,	p-value	in	

the	discovery	sample	and	the	replication	p-value.		

	

	

cluster	
index	

cluster	name	 #	IDPs	 top	IDP	 chr	rsid	 pos	 ref	
allele	

nonref	
allele	

nonref	
AF	

p	value	 replication	p-
value	

1	 Volume	Cerebellum	VIIIa	(vermis)	 1	 T1_FAST_ROIs_V_cerebellum_VIIIa	 1	 rs76934732	 76013268	 G	 A	 0.145	 8.51E-13	 0.052191527	
2	 dMRI	Corpus	callosum	(genu)	 1	 dMRI_TBSS_ICVF_Genu_of_corpus_callosum	 1	 rs2365715	 156615114	 A	 G	 0.388	 5.38E-12	 0.013298419	
3	 Volume	WM	lesions	 1	 T2_FLAIR_BIANCA_WMH_volume	 2	 rs146896516	 56152750	 C	 A	 0.104	 4.58E-14	 0.35087304	
4	 rfMRI	Cortical	and	cerebellar	

motor	nodes	and	edges	
2	 NODEamps25_0012	 2	 rs60873293	 114092549	 G	 T	 0.217	 9.86E-15	 0.0950167	

5	 T2*	Pallidum	 1	 SWI_T2*_pallidum_L+R	 2	 rs6740926	 190326498	 C	 T	 0.038	 1.31E-14	 0.0003783	
6	 rfMRI	Middle	temporal	sulcus	

nodes	and	edges	
2	 netmat_ICA_003	 3	 rs66499884	 89659012	 T	 G	 0.402	 2.77E-23	 0.004825	

7	 T2*	Putamen	and	pallidum	 6	 SWI_T2*_putamen_L+R	 3	 rs4428180	 133466374	 A	 G	 0.152	 2.23E-22	 0.0010337	
8	 rfMRI	Prefrontal	and	parietal	

edges	
1	 netmat_ICA_002	 3	 rs2279829	 147106319	 C	 T	 0.221	 8.34E-12	 0.002507	

9	 dMRI	Superior	cerebellar	
peduncles	

8	 dMRI_TBSS_ICVF_Superior_cerebellar_peduncle_L	 4	 rs4697414	 23724255	 C	 T	 0.823	 5.83E-24	 0.0463126	

10	 Volume	Putamen,	ventral	
striatum,	cerebellum	VIIIb,	IX,	X;	
T2*	Pallidum;	dMRI	Cerebral	
peduncles	

20	 IDP_T1_FAST_ROIs_L_ventral_striatum	 4	 rs13107325	 103188709	 C	 T	 0.073	 1.04E-42	 8.97222E-06	

11	 dMRI	Most	WM	tracts	 199	 dMRI_ProbtrackX_ICVF_ilf_r	 5	 rs67827860	 82860485	 C	 T	 0.188	 4.06E-37	 0.0002194	
12	 rfMRI	Parietal	and	prefrontal	

edges	
1	 netmat_ICA_004	 5	 rs7442779	 92788278	 A	 G	 0.050	 8.18E-15	 0.0404482	

13	 dMRI	Corpus	callosum	(genu,	
body,	splenium)	

7	 dMRI_TBSS_ICVF_Genu_of_corpus_callosum	 5	 rs4150221	 139719991	 T	 C	 0.264	 8.43E-20	 0.0406349	

14	 T2*	Putamen	 3	 SWI_T2*_putamen_L+R	 6	 rs144861591	 26072992	 C	 T	 0.074	 4.81E-20	 0.0035917	
15	 dMRI	Crossing	pontine	tract	 1	 dMRI_TBSS_MO_Pontine_crossing_tract	 7	 rs2286184	 84630516	 C	 T	 0.201	 5.31E-17	 0.0001577	
16	 dMRI	Corpus	callosum	(genu)	 1	 dMRI_TBSS_OD_Genu_of_corpus_callosum	 7	 rs12113919	 117612315	 C	 G	 0.416	 3.96E-12	 0.0018373	
17	 Volume	Brain	 2	 volume_MaskVol	 7	 rs2536185	 120984041	 G	 T	 0.452	 1.30E-16	 9.14E-05	
18	 T2*	Putamen	 2	 SWI_T2*_putamen_L+R	 8	 rs35469695	 23406169	 C	 G	 0.174	 2.22E-12	 0.2172300	
19	 Volume	Pallidum	 3	 T1_FIRST_pallidum_volume_L+R	 8	 rs2923405	 42448126	 T	 G	 0.583	 3.31E-17	 0.0059841	
20	 T2*	Pallidum	 2	 SWI_T2*_pallidum_L+R	 8	 rs2978098	 101676675	 A	 C	 0.468	 6.43E-15	 0.3227379	
21	 Volume	Cerebellum		 3	 T1_FAST_ROIs_L_cerebellum_crus_I	 9	 rs72754248	 119061396	 G	 A	 0.069	 1.38E-17	 0.2010620	
22	 T2*	Caudate,	putamen	and	

pallidum	
17	 SWI_T2*_caudate_L+R	 10	 rs10430578	 18226714	 G	 A	 0.243	 2.73E-31	 0.0256921	

23	 T2*	Caudate	 3	 SWI_T2*_caudate_L+R	 10	 rs12570727	 18425519	 G	 A	 0.394	 2.17E-22	 0.0006228	
24	 rfMRI	Parietal,	temporal	and	

prefrontal	nodes	
20	 NODEamps100_0002	 10	 rs2274224	 96039597	 G	 C	 0.431	 6.55E-19	 0.0721107	

25	 rfMRI	Prefrontal	nodes	 6	 NODEamps25_0013	 10	 rs11596664	 134280157	 C	 T	 0.439	 1.97E-15	 0.035958	
26	 T2*	Pallidum	 3	 SWI_T2*_pallidum_L+R	 11	 rs11230859	 61769972	 G	 A	 0.663	 2.31E-17	 0.0482947	
27	 dMRI	Crossing	pontine	tract	 1	 dMRI_TBSS_MO_Pontine_crossing_tract	 11	 rs4935898	 124742385	 G	 A	 0.048	 1.76E-19	 0.2465982	
28	 Volume	Mesencephalon	(WM	

cerebellum,	brainstem)	
3	 volume_Right-Cerebellum-White-Matter	 12	 rs4301837	 102336310	 T	 C	 0.501	 3.40E-13	 0.0122659	

29	 Volume	Hippocampus	 2	 T1_FAST_ROIs_R_hippocampus	 12	 rs7315280	 117320938	 A	 G	 0.115	 7.06E-14	 0.6694528	
30	 Volume	Putamen	 4	 volume_Right-Putamen	 14	 rs945270	 56200473	 C	 G	 0.419	 3.67E-14	 0.0033166	
31	 Volume	and	area	of	precuneus	

and	cuneus	
11	 T1_FAST_ROIs_R_intracalc_cortex	 14	 rs74826997	 59628609	 T	 C	 0.125	 2.46E-16	 0.028780	

32	 Thickness,	area	and	volume	of	
primary	sensorimotor	cortex	

15	 a2009s_lh_S_central_area	 15	 rs4924345	 39639898	 A	 C	 0.081	 3.27E-53	 1.01E-06	

33	 Volume	4th	ventricle	 1	 volume_4th-Ventricle	 15	 rs2464469	 58362025	 G	 A	 0.587	 3.16E-16	 0.2281602	
34	 dMRI	Uncinate	 4	 dMRI_ProbtrackX_ISOVF_unc_r	 16	 rs7197215	 51449978	 A	 G	 0.566	 2.24E-15	 0.0001434	
35	 Volume	Cerebellum	IX	 2	 T1_FAST_ROIs_L_cerebellum_IX	 17	 rs9905515	 35261073	 G	 C	 0.230	 3.32E-13	 0.0002698	
36	 T2*	Caudate	and	putamen		 6	 SWI_T2*_putamen_L+R	 17	 rs668799	 40716235	 C	 T	 0.278	 1.43E-17	 0.0009855	
37	 Volume	WM	lesions	 1	 T2_FLAIR_BIANCA_WMH_volume	 17	 rs3744020	 73871773	 G	 A	 0.188	 1.15E-12	 0.033604	
38	 dMRI	Crossing	pontine	tract	 1	 dMRI_TBSS_MO_Pontine_crossing_tract	 18	 rs2928990	 49421125	 T	 G	 0.898	 3.97E-16	 0.0022656	
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Supplementary	Figure	S6	provides	genome-wide	association	plots	(also	

generally	known	as	Manhattan	plots)	and	QQ-plots	for	all	3,144	IDPs.	

Supplementary	Figure	S7	provides	(for	convenience)	the	same	plots	for	just	

the	subset	of	IDPs	listed	in	Table	3.	Having	identified	a	SNP	as	being	associated	

with	a	given	IDP,	it	can	be	useful	then	to	explore	the	association	with	all	other	

IDPs.	These	associations	can	be	visualized	in	a	PheWAS	(Phenome	wide	

Association	Study)	plot.	Supplementary	Figure	S8	shows	the	PheWAS	plots	for	

all	78	SNPs	listed	in	Supplementary	Table	S2.	Examining	these	plots	highlights	

that	it	is	often	the	case	that	a	SNP	is	associated	with	several	IDPs	in	addition	to	

the	IDP	that	most	strongly	identified	it.	In	some	cases	we	find	SNPs	that	are	

associated	with	IDP	measures	that	span	the	classes	of	structural,	structural	

connectivity	and	functional	connectivity	measures.		

	

Overall,	we	found	that	4	of	the	78	unique	SNPs	in	Supplementary	Table	S1	

were	associated	(-log10	p-value	>	4.79)	with	all	3	classes	of	structural,	dMRI	and	

functional	measures,	and	these	were	all	SNPs	in	cluster	31	of	Table	3	(see	pages	

61-64	of	Supplementary	Figure	S8).	This	genetic	locus	is	associated	with	the	

volume	of	the	precuneus	and	cuneus,	the	dMRI	measure	for	the	forceps	major	

which	is	a	fibre	bundle	which	connects	the	left	and	right	cuneus,	and	two	

functional	connections	(parcellation	100	edges	614	and	619,	which	connect	two	

cognitive	networks	-	the	default	mode	network	and	the	dorsal	attention	

network).	There	were	18	SNPs	that	showed	association	with	both	structural	and	

structural	connectivity	classes	but	not	with	the	functional	measures.	There	were	

2	that	showed	association	with	both	structural	and	functional	IDP	classes	but	not	

with	the	dMRI.	There	were	no	SNPs	that	showed	association	with	just	the	dMRI	

and	functional	IDP	classes.	The	number	of	SNPs	that	showed	association	with	

only	one	of	the	structural,	dMRI	and	functional	IDP	classes	was	30,	12	and	12	

respectively.	Supplementary	Figure	S9	shows	the	local	association	plots	for	the	

368	SNP-IDP	associations	listed	in	Supplementary	Table	S2	
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Table	4	shows	the	pattern	of	associations	stratified	by	the	9	IDP	groups	listed	in	

Table	2.	We	found	associations	at	the	nominal	GWAS	threshold	of	–log10	p-

value	>	7.5	in	all	classes	except	the	task	fMRI	IDPs.	Taking	account	of	the	number	

of	associations	in	each	group	the	SWI-T2*	group	shows	a	relatively	large	number	

of	associations.	

	

	

Table	4:	Summary	of	associations	by	IDP	group.	The	table	shows	the	number	of	

associated	genetic	loci	stratified	by	IDP	group.	Column	2:	the	number	of	IDPs	in	

each	group.	Column	3:	the	number	of	associated	genetic	loci	(from	

Supplementary	Table	S2)	for	each	group.	Column	4:	the	number	of	associated	

genetic	loci	(from	Supplementary	Table	S1)	for	each	group.	

	

The	368	associations	passing	–log10	p-value	threshold	of	11	are	listed	in	

Supplementary	Table	S2,	where	they	are	organized	into	the	same	38	distinct	

clusters	summarized	in	Table	3;	each	cluster	contains	one	or	more	IDPs	

associated	with	one	or	more	SNPs	within	a	single	genetic	locus	The	strongest	

IDP-SNP	association	for	each	cluster	is	listed	in	Table	3.	In	general,	a	cluster	that	

contains	multiple	IDPs	tend	to	contain	IDPs	of	similar	feature	types;	for	example,	

cluster	11	contains	199	IDPs,	most	of	which	are		primarily	reflecting	water	

diffusivity	measures	in	the	dMRI	data.	

	

IDP	Group	name	 Number	

of	IDPs	

Number	of	associated	

loci	with	–log10	p	>	11	

Number	of	associated	loci	

with	–log10	p	>	7.5	

T1-SIENAX	 10	 0	 14	

T1-FIRST	 22	 5	 18	

T1-FAST_ROIs	 139	 24	 88	

T2-FLAIR-BIANCA	 1	 2	 3	

SWI-T2*	 21	 47	 89	

FreeSurfer	 483	 33	 185	

dMRI	 675	 225	 599	

tfMRI	 16	 0	 0	

rfMRI	 1,777	 32	 266	
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Many	 of	 these	 clusters	 relate	 to	 known	brain-related	 genes	 or	 relevant	GWAS.	

We	 replicated	 (in	 our	 8,428	 subjects)	 the	 same	 genome-wide	 significant	

associations	 as	 found	 in	 several	 other	 GWAS	 of	 brain	 MRI	 measures.	 In	

subcortical	 regions,	we	 observed	 a	 significant	 association	 between	 volumes	 of	

the	 putamen	 (L/R)	 and	 an	 intergenic	 region	 between	 KTN1	 and	 RPL13AP3	

(rs945270,	Pmin=3.67E-14,	 cluster	30).	This	 is	 the	 same	 location	 identified	 in	 a	

previous	 GWAS	 of	 subcortical	 volumes	 as	 being	 associated	 with	 volume	 of	

putamen15.	Similarly,	 a	 significant	association	was	seen	between	 the	volume	of	

the	 hippocampus	 (L/R)	 and	 a	 region	 slightly	 upstream	 from	HRK	 (rs7315280,	

Pmin=7.06E-14,	 cluster	29).	This	 locus	was	 less	 than	10kb	away	 from	two	SNPs	

further	upstream	from	HRK,	which	were	previously	found	to	be	associated	with	

hippocampal	 volumes	 in	 four	 separate	 GWAS	 of	 hippocampal	 and	 subcortical	

volumes	 (rs729491933	 34;	 rs7795631415	 16).	 We	 also	 identified	 an	 association	

between	 volume	 of	 white	 matter	 hyperintensities	 from	 T2	 FLAIR	 images	

(“lesions”)	 and	 TRIM47	 (rs3744020,	 P=1.15E-12,	 cluster	 37),	 the	 same	 gene	

identified	 in	 a	 GWAS	 of	 cerebral	white	matter	 lesion	 burden35,	 one	 of	 the	 two	

strongest	candidate	genes	for	small	vessel	disease.		

	

A	 major	 source	 of	 cross-subject	 differences	 seen	 in	 T2*	 data	 is	 microscopic	

variations	 in	magnetic	 field,	often	associated	with	 iron	deposition	 in	aging	and	

pathology11.	We	identified	many	associations	between	T2*	measurements	in	the	

caudate,	putamen	and	pallidum	with	genes	known	 to	 affect	 iron	 transport	 and	

storage	 (TF36,	 rs4428180,	 Pmin=2.23E-22,	 cluster	 7;	 HFE37,	 rs144861591,	

Pmin=4.81E-20,	 cluster	 14;	 SLC25A3738,	 rs35469695,	 Pmin=2.22E-12,	 cluster	 18;	

FTH139,	 rs2978098,	 Pmin=6.43E-15,	 cluster	 20),	 as	 well	 as	 neurodegeneration	

with	brain	iron	accumulation	(NBIA)	(COASY40,	rs668799,	Pmin=1.43E-17,	cluster	

36).	In	addition	to	TF,	which	transports	iron	from	the	intestine,	and	SLC25A37,	a	

mitochondrial	iron	transporter,	four	further	genes	were	found	that	are	involved	

in	 transport	 of	 nutrients	 and	 minerals:	 SLC44A541	 (rs76934732,	 P=8.51E-13,	

cluster	1),	SLC39A8/ZIP842	 (rs13107325,	Pmin=1.04E-42,	 cluster	10),	SLC20A243	

(rs2923405,	 Pmin=3.31E-17,	 cluster	 19)	 and	 SLC39A12/ZIP1244	 (rs10430578,	

Pmin=2.73E-31,	cluster	22).	
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While	the	GWAS	results	we	report	here	have	been	based	purely	on	IDPs	(which	

use	 pre-determined	 spatial	 regions	 over	 which	 to	 summarise	 the	 original	

voxelwise	 imaging	data),	 it	 is	 possible	 to	 interrogate	 the	 full	 voxelwise	data	 in	

order	 to	 seek	 further	 insight	 about	 detailed	 spatial	 localization	 of	 SNP	

associations,	 as	 well	 as	 possibly	 identifying	 additional	 associated	 areas	 not	

already	well	captured	by	the	IDPs	(while	keeping	in	mind	the	statistical	dangers	

of	 potential	 circularity45).	 For	 instance,	 we	 computed	 the	 average	 T2*	 image	

across	 the	5,602	 subjects	 having	 close	 to	 0	 copies	 of	 the	 rs4428180	 (TF)	 non-

reference	 allele,	 and	 separately	 computed	 the	 average	 T2*	 image	 across	 the	

1,995	subjects	having	close	to	1	copy.	(In	this	case	the	number	of	subjects	with	2	

copies	was	small	(181),	resulting	in	a	much	noisier	average	T2*	image.)	We	then	

subtracted	the	copies~1	average	T2*	image	from	the	copies~0	image,	in	order	to	

visualize,	 voxelwise	 across	 the	 whole	 brain,	 areas	 relating	 to	 the	 significant	

association	found	between	T2*	in	the	putamen	and	pallidum	and	rs4428180.	T2*	

intensity	 is	 a	 quantitative	 measure	 and	 so	 the	 group	 difference	 image	 can	 be	

thresholded	 in	 an	 interpretable	 way;	 the	 group	 differences	 in	 T2*	 shown	 in	

Figure	2	were	thresholded	at	0.8ms.		

	

In	Figure	 2	 we	 can	 therefore	 see	 the	 voxelwise	 differences	 (across	 the	whole	

brain)	 associated	 with	 rs4428180	 and	 3	 additional	 SNPs,	 from	 the	 4	 most	

significant	 GWAS	 associations	 with	 T2*	 in	 the	 putamen	 (as	 seen	 in	 the	

Manhattan	plot	 at	 the	 top).	While	 the	T2*	group-average	difference	 images	 for	

these	 4	 SNPs	 are	 all	 thresholded	 (at	 0.8ms)	 to	 show	 the	 strongest	 group	

differences,	no	further	masking	of	the	results	was	applied,	showing	the	relative	

spatial	specificity	of	these	associations.	On	the	other	hand,	the	4	SNPs	that	are	all	

strongly	 associated	 with	 T2*	 in	 these	 subcortical	 areas,	 have	 quite	 distinct	

voxelwise	patterns,	showing	that	the	exact	effects	of	these	SNPs	are	not	identical	

to	 each	 other.	 rs668799	 is	 most	 strongly	 associated	 with	 T2*	 changes	 in	

posterior	putamen	(and	anterior	caudate);	rs10430578	most	strongly	in	anterior	

(and	 slightly	 medial)	 putamen	 (and	 anterior	 caudate);	 rs144861591	 strongly	

with	most	of	the	putamen,	both	anterior	and	posterior,	(and	less	so	in	caudate);	

rs4428180	 most	 strongly	 	 in	 posterior	 and	 inferior	 putamen,	 and	 also	 in	

pallidum.	 These	 effects	 of	 rs4428180	 (gene	 TF)	 were	 found	 not	 just	 in	 the	
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lenticular	nucleus	(putamen	and	pallidum),	but	also	in	much	smaller	subcortical	

structures,	including	caudate	nucleus,	red	nucleus,	substantia	nigra,	subthalamic	

nucleus,	 lateral	geniculate	nucleus	of	 the	 thalamus	(seen	 in	bottom-right	of	 the	

figure)	and	the	dentate	nucleus	of	the	cerebellum.	

	

Figure	 3	 shows	 the	pattern	of	 association	 in	 and	around	SNP	 rs4428180	with	

the	 IDP	 of	 T2*	 in	 the	 left	 putamen	 plus	 the	 right	 putamen,	 and	 Figure	 4	 is	 a	

PheWAS	plot	for	rs4428180,	which	shows	the	overall	pattern	of	association	with	

all	3,144	IDPs.		

	

Interestingly,	 three	 clusters	 relating	 to	white	matter:	 cluster	2	 (with	one	dMRI	

microstructural	 measure	 in	 the	 genu	 of	 the	 corpus	 callosum),	 cluster	 3	

(measuring	 the	 volume	of	white	matter	 lesions)	 and	 cluster	11	 (encompassing	

multiple	 dMRI	 measures	 of	 most	 of	 the	WM	 tracts),	 were	 strongly	 associated	

with	three	different	genes	coding	for	proteins	of	the	extracellular	matrix	(ECM)	

(BCAN,	 rs2365715,	 P=5.38E-12,	 cluster	 2;	EFEMP1,	 rs146896516,	 P=4.58E-14,	

cluster	3;	VCAN,	rs67827860,	Pmin=4.06E-37,	cluster	11).	In	particular,	BCAN	and	

VCAN	 both	 code	 for	 chondroitin	 sulfate	 proteoglycans	 of	 the	 ECM,	 which	 are	

especially	 crucial	 for	 synaptic	 plasticity46	 and	 myelin	 repair47.	 VCAN	 is,	 for	

instance,	increased	in	association	with	astrocytosis	in	multiple	sclerosis48,	while	

both	BCAN	and	VCAN	are	differentially	regulated	following	spinal	cord	injury49.	

BCAN,	EFEMP1	and	VCAN	have	been	further	associated	in	three	separate	GWAS	

with	 stroke50,	 site	 of	 onset	 of	 amyotrophic	 lateral	 sclerosis51	 and	 major	

depressive	disorder52.	Incidentally,	EFEMP1	is	characterised	by	tandem	arrays	of	

epidermal	 growth	 factor	 (EGF)-like	 domains	 and	 a	 C-terminal	 fibulin,	 and	 we	

also	 identified	 a	 strong	 association	 between	 the	whole	 of	 the	 corpus	 callosum	

(genu,	body	and	splenium)	and	HBEGF,	a	heparin-binding	EGF-like	growth	factor	

(rs4150221,	 Pmin=8.43E-20,	 cluster	 13).	 Similarly	 to	 BCAN	 and	 VCAN,	 HBEGF	

plays	an	 important	role	 in	oligodendrocytes	development	and	helps	recovering	

WM	 injury	 in	 preterm	 babies53.	 Remarkably,	 this	 means	 that	 almost	 all	

prosencephalic	WM-related	 dMRI	 IDPs	 that	 were	 found	 to	 be	 associated	 with	

genes	 in	 this	 study	 (N=219)	 were	 with	 genes	 coding	 for	 proteins	 involved	 in	

either	the	extracellular	matrix,	the	epidermal	growth	factor,	or	both.		
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Figure	 2:	 Manhattan	 plot	 and	 detailed	 spatial	 investigations	 into	

associations	 between	 T2*	 and	 4	 SNPs.	 The	 Manhattan	 plot	 relates	 to	 the	

original	GWAS	for	the	IDP	T2*	in	the	putamen	(left	plus	right).	The	spatial	maps	

show	 that	 the	 4	 SNPs	most	 strongly	 associated	with	 T2*	 in	 the	 putamen	 have	

distinct	 voxelwise	 patterns	 of	 effect.	 All	 T2*	 data	 was	 first	 transformed	 into	

standard	 (MNI152)	 space	 before	 being	 averaged	within	 different	 allele	 subject	

groups	 for	 different	 SNPs.	 The	 standard	 MNI152	 image	 is	 used	 as	 the	

background	image	for	the	spatial	maps;	the	left	side	of	the	brain	is	shown	on	the	

right,	and	 the	slices	are	 located	at	 (26,6,3).	All	group	difference	 images	(colour	

rs668799

rs10430578

rs144861591

rs4428180
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overlays)	are	thresholded	at	a	T2*	difference	of	0.8ms.	The	group	differences	for	

all	4	SNPS	are	mean(copies~0)-mean(copies~1).	

	

	
Figure	3:	Genetic	association	of	SNPs	with	T2*	in	the	left	plus	right	

putamen,	centered	on	rs4428180.	In	the	top	panel	SNPs	are	plotted	by	their	

positions	on	the	chromosome	against	association	with	the	IDP	(−log10		P	value)	

on	the	left	y	axis.	Points	are	coloured	by	their	local	linkage	disequilibrium	(LD)	

pattern	with	the	focal	SNP	rs4428180	(purple	diamond).	Below	the	main	plot	are	

two	tracks	that	show	existing	GWAS	associations,	and	position	and	orientation	of	

local	genes.	
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Figure	4:	PheWAS	plot	for	SNP	rs4428180.	The	association	(-log10	p-value	on	

the	 y-axis)	 for	 the	 SNP	 rs4428180	with	 each	 of	 the	 3,144	 IDPs.	 The	 IDPs	 are	

arranged	on	the	x-axis	in	the	three	panels	 :	(top)	Structural	MRI	IDPs,	(middle)	

Structural	 connectivity/micro-structure	 dMRI	 IDPs,	 (bottom)	 functional	 MRI	

IDPs.	 Points	 are	 coloured	 to	 delineate	 subgroups	 of	 IDPs	 and	 detailed	 in	 the	

legends.	Summary	details	of	SNP	rs4428180	are	given	in	the	top	right	box.	The	

grey	line	shows	the	Bonferroni	multiple	testing	threshold	of	4.8.	

	

Figure	5	shows	associations	between	one	measure	from	the	dMRI	data	and	SNP	

rs67827860	 (VCAN).	 The	 measure	 most	 strongly	 associated	 is	 ICVF	 (intra-

cellular	 volume	 fraction),	 estimated	 from	 the	 NODDI	 modelling	 (neurite	

orientation	 dispersion	 and	 density	 imaging)	 54.	 The	 ICVF	 parameter	 aims	 to	

quantify	neurite	density,	predominantly	 intra-axonal	water	 in	white	matter,	by	

estimating	 where	 water	 diffusion	 is	 restricted.	 The	 more	 simplistic	 diffusion	

tensor	model	decomposes	 the	 same	data	differently	 into	mean	diffusivity	 (MD,	

which	inversely	correlates	with	ICVF	since	restricted	diffusion	manifests	as	low	

apparent	diffusivity)	and	diffusion	eigenvalues	(with	the	L2	and	L3	components	

corresponding	 to	 apparent	 diffusivity	 along	 the	 directions	 with	 greatest	

restriction	-	i.e.,	those	directions	that	drive	the	ICVF	estimates).	The	figure	shows	

voxelwise	 mapping	 of	 the	 effect	 of	 this	 SNP.	 Unlike	 the	 previous	 example	 of	
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(spatially)	 very	 focal	 effects	 in	 T2*,	 the	 effect	 of	 this	 SNP	 are	 extremely	

widespread	across	most	of	the	white	matter	tracts	(hence	the	size	of	cluster	11).		

	

	

	
Figure	 5:	Manhattan	plot	 and	detailed	 spatial	mapping	 of	 the	 association	

between	the	dMRI	intra-cellular	volume	fraction	measure	and	rs67827860	

(VCAN).	 The	 Manhattan	 plot	 relates	 to	 the	 original	 GWAS	 for	 the	 IDP	

ProbtrackX_ICVF_ilf_r	 (inferior	 longitudinal	 fasciculus).	 All	 ICVF	 data	 was	

transformed	into	standard	space	and	masked	with	a	white-matter	tract-centres	

skeleton	 mask.	 The	 quantitative	 (though	 unitless)	 ICVF	 measure	 was	 then	

averaged	across	all	4,957	subjects	with	~0	copies	of	the	non-reference	allele,	and	

the	average	from	all	2,304	subjects	having	~1	copy	was	subtracted	from	that,	for	

display	in	colour	here.	The	difference	was	thresholded	at	0.006.	
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Figure	6	shows	the	pattern	of	association	in	and	around	SNP	rs67827860	with	

the	 IDP	 ProbtrackX_ICVF_ilf_r	 (the	 average	 value	 of	 the	 intra-cellular	 volume	

fraction	micro-structure	measure,	in	the	left	inferior	longitudinal	fasciculus),	and	

Figure	7	 is	a	PheWAS	plot	for	rs67827860,	which	shows	the	overall	pattern	of	

association	 with	 all	 3,144	 IDPs,	 and	 how	 this	 SNP	 is	 broadly	 associated	 with	

many	of	the	dMRI	IDPs,	as	well	as	the	T2	FLAIR	white	matter	lesion	volume	IDP.	

	

	
Figure	 6	 :	 Genetic	 association	 of	 SNPs	with	 IDP	ProbtrackX_ICVF_ilf_r	 (the	

average	 value	 of	 the	 intra-cellular	 volume	 fraction	 micro-structure	

measure,	 in	 the	 left	 inferior	 longitudinal	 fasciculus)	 centered	 on	

rs67827860.	 In	 the	 top	 panel	 SNPs	 are	 plotted	by	 their	 positions	 on	 the	

chromosome	 against	 association	 with	 the	 IDP	 (−log10	 	P	 value)	 on	 the	 left	 y	

axis.	Points	are	coloured	by	their	local	linkage	disequilibrium	(LD)	pattern	with	

the	focal	SNP	rs67827860	(purple	diamond).	Below	the	main	plot	are	two	tracks	

that	 show	 existing	 GWAS	 associations,	 and	 position	 and	 orientation	 of	 local	

genes.	
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Figure	7	:	PheWAS	plot	for	SNP	rs67827860.	The	association	(-log10	p-value)	

on	the	y-axis	for	the	SNP	rs67827860	with	each	of	the	3,144	IDPs.	The	IDPs	are	

arranged	on	the	x-axis	in	the	three	panels	 :	(top)	Structural	MRI	IDPs,	(middle)	

Structural	 connectivity	 dMRI	 IDPs,	 (bottom)	 functional	 MRI	 IDPs.	 Points	 are	

coloured	 to	delineate	 subgroups	of	 IDPs	and	detailed	 in	 the	 legends.	 Summary	

details	of	SNP	rs67827860	are	given	in	the	top	right	box.	The	grey	line	shows	the	

Bonferroni	multiple	testing	threshhold	of	4.79.	

	

Two	 additional	 examples	 further	 illustrate	 highly	meaningful	 correspondences	

between	locations	of	our	brain	IDPs	and	significantly	associated	genes.	First,	the	

volume	of	the	4th	ventricle,	which	develops	from	the	central	cavity	of	the	neural	

tube	and	belongs	to	the	hindbrain,	was	found	to	be	significantly	associated	with	

ALDH1A2,	 which	 facilitates	 posterior	 organ	 development	 and	 prevents	 human	

neural	tube	defects,	including	spina	bifida,	a	disorder	which	results	from	failure	

of	 fusion	 of	 the	 caudal	 neural	 tube55	 (rs2464469,	 P=3.15E-16,	 cluster	 33).	

Second,	 amongst	 the	 three	 associations	 we	 identified	 for	 the	 crossing	 pontine	

tract	 (the	part	of	 the	pontocerebellar	 fibres	 from	pontine	nuclei	 that	decussate	

across	the	brain	midline	to	project	to	contralateral	cerebellar	cortex),	two	were	

with	 genes	 that	 regulate	 axon	 guidance	 and	 fasciculation	 during	 development	

(SEMA3D,	 rs2286184,	 P=5.31E-17,	 cluster	 15	 and	 ROBO3	 (exon),	 rs4935898,	
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P=1.76E-19,	cluster	27).	The	exact	location	of	our	IDP	in	the	crossing	fibres	of	the	

pons	 remarkably	 coincides	 with	 the	 function	 of	 ROBO3,	 which	 is	 specifically	

required	 for	 axons	 to	 cross	 the	 midline	 in	 the	 hindbrain	 (pons,	 medulla	

oblongata	and	cerebellum);	mutations	in	ROBO3	result	in	horizontal	gaze	palsy,	a	

disorder	 in	which	 the	 corticospinal	 and	 somatosensory	 axons	 fail	 to	 cross	 the	

midline	in	the	medulla56.	Notably,	all	three	significant	associations	with	the	IDP	

of	 the	 crossing	 pontine	 tract	 were	 found	 using	 the	 dMRI	measure	 of	mode	 of	

anisotropy	 (MO),	 which	 is	 a	 tensor-derived	 measure	 particularly	 sensitive	 to	

regions	of	crossing	fibres57.	

	

These	 associations	 are	 investigated	 spatially	 in	 Figure	 8.	 As	 with	 the	 T2*	

voxelwise	 results	 shown	 above,	 these	 spatial	 maps	 for	 the	 effect	 of	 SNPs	

rs4935898	and	rs2286184	on	tensor	mode	are	extremely	spatially	specific,	with	

no	 extended	 differences	 elsewhere	 in	 the	 brain.	 However,	 unlike	 with	 the	 4	

distinct	maps	in	the	T2*	shown	above,	here	these	two	SNPs	had	almost	identical	

spatial	localizations.	

	

Figure	 9	 shows	 the	pattern	of	 association	 in	 and	around	SNP	 rs4935898	with	

the	 IDP	 of	 TBSS_MO_Pontine_crossing_tract	 (average	 value	 of	 the	 tensor	 mode	

tract	measure	within	the	pontine	crossing	tract),	and	Figure	10	is	a	PheWAS	plot	

for	 rs4935898	 which	 shows	 the	 overall	 pattern	 of	 association	 with	 all	 3,144	

IDPs,	and	how	this	SNP	is	broadly	associated	with	many	of	 the	dMRI	IDPs,	and	

the	T2	FLAIR	IDP.	
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Figure	 8:	Manhattan	 plot	 and	 detailed	 spatial	 mapping	 of	 the	 association	

between	 the	 dMRI	 tensor	 mode	 measure	 and	 SNPs	 rs4935898	 and	

rs2286184.	 The	 Manhattan	 plot	 relates	 to	 the	 original	 GWAS	 for	 the	 IDP	

TBSS_MO_Pontine_crossing_tract.	 All	 tensor	 mode	 data	 was	 transformed	 into	

standard	space.	For	rs4935898,	 the	quantitative	(though	unitless)	tensor	mode	

measure	was	then	averaged	across	all	6,807	subjects	with	~0	copies	of	the	non-

reference	 allele,	 and	 the	 average	 from	 all	 703	 subjects	 having	 ~1	 copy	 was	

subtracted	 from	 that,	 for	 display	 in	 red-yellow	here,	 thresholded	 at	 0.08	 (b,e).	

For	rs2286184,	the	average	mode	from	4,810	subjects	with	~0	copies	of	the	non-

reference	allele	was	subtracted	from	the	average	from	all	2,412	subjects	having	

~1	copy,	 for	display	 in	green	here,	 thresholded	at	0.03	(f).	No	 further	masking	

was	applied.	In	(b)	the	results	from	mapping	rs4935898	are	shown	overlaid	on	

.08 .12

a
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c d

e f

rs4935898 rs2286184
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the	MNI152	T1	 structural	 image;	 it	 can	be	 seen	how	 little	within-white-matter	

contrast	is	available	in	the	T1	data.	In	contrast,	images	c-f	show	the	UK	Biobank	

average	 FA	 (fractional	 anisotropy)	 image	 from	 the	 dMRI	 data,	with	 clear	 tract	

structure	 visible	 within	 the	 brainstem.	 In	 (d)	 the	 ICBM-DTI-81	 white-matter	

atlas	is	overlaid,	showing	delineation	of	tracts	such	as	the	pontine	crossing	tract	

(medium	green,	 spanning	 the	main	areas	 affected	by	 these	 two	SNPs),	 and	 the	

middle	cerebellar	peduncle	(light	green,	incorporating	the	small	areas	shown	in	

blue	 in	e,	where	 rs4935898	has	 the	 opposite	 effect	 on	 tensor	mode	 compared	

with	its	effect	in	the	pontine	crossing	tract).	

	

	
Figure	 9	 :	 Genetic	 association	 of	 SNPs	 with	 IDP	

TBSS_MO_Pontine_crossing_tract	 (average	 value	 of	 the	 tensor	 mode	 tract	

measure	within	 the	pontine	crossing	 tract)	centered	on	rs4935898.	In	the	

top	 panel	 SNPs	 are	 plotted	by	 their	 positions	 on	 the	 chromosome	 against	

association	with	the	IDP	(−log10		P	value)	on	the	left	y	axis.	Points	are	coloured	

by	their	local	linkage	disequilibrium	(LD)	pattern	with	the	focal	SNP	rs4935898	

(purple	diamond).	Below	the	main	plot	are	two	tracks	that	show	existing	GWAS	

associations,	and	position	and	orientation	of	local	genes.	
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Figure	10	:	PheWAS	plot	for	SNP	rs4935898.	The	association	(-log10	p-value)	

on	the	y-axis	 for	the	SNP	rs4935898	with	each	of	 the	3,144	IDPs.	The	IDPs	are	

arranged	on	the	x-axis	in	the	three	panels	 :	(top)	Structural	MRI	IDPs,	(middle)	

Structural	 connectivity	 dMRI	 IDPs,	 (bottom)	 functional	 MRI	 IDPs.	 Points	 are	

coloured	to	delineate	subrgroups	of	IDPs	and	detailed	in	the	legends.	Summary	

details	of	SNP	rs4935898	are	given	in	the	top	right	box.	The	grey	line	shows	the	

Bonferroni	multiple	testing	threshhold	of	4.79.	

	

	

14	 genes	 identified	 here	 contribute	 broadly	 to	 brain	 development,	 patterning	

and	 plasticity.	 Beside	 SEMA3D	 and	 ROBO3,	 BCAN	 and	 VCAN	 have	 also	 been	

involved,	 as	 chondroitin	 sulfate	proteoglycans,	 in	 axon	 guidance	 and	 signalling	

pathways	in	neurons58,	with	VCAN	co-localising	with	SEMA3A,	a	guidance	cue59.	

Similarly,	 EPHA3	 was	 associated	 in	 our	 GWAS	 with	 cluster	 6,	 which	 included	

many	 rfMRI	 functional	 connections	 between	 the	 middle	 temporal	 sulcus	 and	

mainly	prefrontal	and	parietal	brain	areas	(rs66499884,	Pmin=2.77E-23).	EPHA3	

mediates	 the	 regulation	 of	 cell	 migration	 and	 axon	 guidance60,	 and	 regulates	

trans-axonal	 signalling61.	We	 have	 discussed	 above	 the	 role	 of	 EFEMP1	 in	 the	

ECM.	 The	 other	 relevant	 genes	 are:	WDR75,	 which	 reduces	 the	 expression	 of	

homeobox	NANOG62	 and	was	 associated	with	 T2*	 in	 the	 pallidum	 (rs6740926,	
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Pmin=1.31E-14,	 cluster	 5);	 ZIC4	 (exon)	 which	 can	 lead	 to	 cerebellar	

malformations	 and	 was	 found	 associated	 with	 multiple	 rfMRI	 connections	

mainly	between	prefrontal,	 cerebellar	and	parietal	areas	 (rs2279829,	P=8.34E-

12,	 cluster	 8);	 ZIP8	 (see	 above)	 which	 plays	 a	 role	 in	 brain	 development	 via	

release	 from	choroid	plexus;	NR2F1-AS1	 (COUP-TF1),	 a	master	 regulator	which	

interacts	 with	 PAX6	 (rs7442779,	 P=8.18E-15,	 cluster	 12);	 HBEGF	 which	

stimulates	 neurogenesis	 in	 proliferative	 zones	 of	 the	 adult	 brain	 (see	 above);	

WNT16	(rs2536185,	Pmin=1.30E-16,	cluster	17);	ALDH1A2	(cluster	33,	see	above)	

and	COASY	(cluster	39,	see	above).	

	

Conclusions	

 

Bringing	together	researchers	with	backgrounds	in	both	brain	imaging	analysis	

and	genetic	association	was	key	to	this	work.	We	have	uncovered	a	very	large	

number	of	associations	at	the	nominal	level	of	GWAS	significance	(-log10	p-value	

>	7.5)	and	at	a	more	stringent	threshold	(-log10	p-value	>	11)	designed	to	

(probably	over-conservatively)	control	for	the	number	of	IDPs	tested.	We	find	

associations	with	all	the	main	IDP	groups	(Table	4)	except	the	task	fMRI	

measures.	We	mainly	found	associations	between	our	MRI	measures	and	genes	

involved	in	brain	development	and	plasticity,	as	well	as	with	genes	contributing	

to	transport	of	nutrients	and	minerals.	Most	of	these	genes	have	also	been	

demonstrated	to	contribute	to	a	vast	array	of	disorders	including	major	

depression	disorder,	cardiovascular	disease,	schizophrenia,	amyotrophic	lateral	

sclerosis	and	Alzheimer’s	disease.		

	

A	valuable	aspect	of	this	work	has	been	to	link	the	associated	SNPs	back	to	

spatial	properties	of	the	voxel-level	brain	imaging	data.	For	example,	we	have	

linked	SNPs	associated	with	IDPs	to	both	highly	localized	(Figures	2	and	8)	and	

distributed	spatial	properties	(Figure	5).	In	addition,	looking	at	PheWAS	plots	

has	been	useful	when	working	with	so	many	phenotypes.	It	has	allowed	

investigation	of	the	overall	patterns	of	association	and	has	led	to	the	

identification	of	SNP	associations	that	span	multiple	modalities.		
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Using	the	modest	replication	set	of	930	samples,	we	were	only	able	here	to	

replicate	a	sizeable,	but	not	complete	subset	of	these	associations.	It	will	shortly	

be	possible	to	increase	the	size	of	the	replication	sample	(as	UK	Biobank	is	

regularly	releasing	additional	imaging	data),	and	substantially	increase	the	

number	of	replicated	associations.	Combining	the	discovery	and	replication	

samples	will	likely	also	lead	to	novel	associations,	as	will	use	of	methods	that	can	

analyze	multiple	IDPs	together,	both	from	the	raw	genetic	data,	and	from	the	IDP	

by	SNP	matrix	of	summary	statistics	of	association.	Over	the	next	few	years	the	

number	of	UK	Biobank	participants	with	imaging	data	will	gradually	increase	to	

100,000,	which	will	allow	a	much	more	complete	discovery	of	the	genetic	basis	

of	human	brain	structure,	function	and	connectivity.		A	potential	avenue	of	

research	will	involve	attempting	to	uncover	causal	pathways	that	link	genetic	

variants	to	IDPs	and	then	onto	a	range	of	neurological,	psychiatric	and	

developmental	disorders.		
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