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 14 

Summary 15 

The genetic basis of brain structure and function is largely unknown. We carried out 16 

genome-wide association studies of 3,144 distinct functional and structural brain 17 

imaging derived phenotypes in UK Biobank (discovery dataset 8,428 subjects). We 18 

show that many of these phenotypes are heritable. We identify 148 clusters of SNP-19 

imaging associations with lead SNPs that replicate at p<0.05, when we would expect 20 

21 to replicate by chance. Notable significant and interpretable associations include: 21 

iron transport and storage genes, related to changes in T2* in subcortical regions; 22 

extracellular matrix and the epidermal growth factor genes, associated with white 23 

matter micro-structure and lesion volume; genes regulating mid-line axon guidance 24 

development associated with pontine crossing tract organisation; and overall 17 genes 25 

involved in development, pathway signalling and plasticity. Our results provide new 26 

insight into the genetic architecture of the brain with relevance to complex 27 

neurological and psychiatric disorders, as well as brain development and aging. The 28 

full set of results is available on the interactive Oxford Brain Imaging Genetics (BIG) 29 

web browser. 30 

 31 

 32 

 33 

 34 

 35 
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Main text  36 

 37 

Brain structure and function are known to vary between individuals in the human 38 

population and can be measured non-invasively using Magnetic Resonance Imaging 39 

(MRI). Disease effects seen in MRI data have been identified in many neurological 40 

and psychiatric disorders such as Alzheimer’s disease, Parkinson’s disease, 41 

schizophrenia, bipolar disorder and autism1. MRI can provide intermediate or endo-42 

phenotypes that can be used to assess the genetic architecture of such disorders. 43 

 44 

Structural MRI measures of brain anatomy include tissue and structure volumes, such 45 

as total grey matter volume and hippocampal volume, while other MRI modalities 46 

allow the mapping of different biological markers such as venous vasculature, 47 

microbleeds and aspects of white matter (WM) micro-structure. Brain function is 48 

typically measured using task-based functional MRI (tfMRI) in which subjects 49 

perform tasks or experience sensory stimuli, and uses imaging sensitive to local 50 

changes in blood oxygenation and flow caused by brain activity in grey matter. Brain 51 

connectivity can be divided into functional connectivity, where spontaneous temporal 52 

synchronisations between brain regions are measured using fMRI with subjects 53 

scanned at rest, and structural connectivity, measured using diffusion MRI (dMRI), 54 

which images the physical connections between brain regions based on how water 55 

molecules diffuse within white matter tracts. For those not familiar with the 56 

neuroimaging field, we have provided a glossary in Supplementary Note 1. 57 

 58 

A new resource for relating neuroimaging measures to genetics is UK Biobank, a rich, 59 

long-term prospective epidemiological  study of 500,000 volunteers2. Participants 60 

were 40–69 years of age at baseline recruitment, a major aim being to acquire as rich 61 

data as possible before disease onset. Identification of disease risk factors and early 62 

markers will increase over time with emerging clinical outcomes3. A brain and body 63 

imaging extension will scan 100,000 participants by 2020, with brain imaging 64 

including three structural modalities, resting and task fMRI, and diffusion MRI4 65 

(Supplementary Table 1). A fully automated image processing pipeline removes 66 

artefacts and renders images comparable across modalities and participants. The 67 

pipeline also generates thousands of image-derived phenotypes (IDPs), distinct 68 

individual measures of brain structure and function 5. Example IDPs include the 69 
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volume of grey matter in many distinct brain regions, and measures of functional and 70 

structural connectivity between specific pairs of brain areas.  The combination of very 71 

large subject numbers with richly multimodal imaging data collected on 72 

homogeneous imaging hardware and software is a unique feature of UK Biobank.  73 

 74 

Another key component of the UK Biobank resource has been the collection of 75 

genome-wide genetic data using a purpose-designed genotyping array. A custom 76 

quality control, phasing and imputation pipeline was developed to address the 77 

challenges specific to the experimental design, scale, and diversity of the UK Biobank 78 

dataset. The genetic data was publicly released in July 2017 and consists of ~96 79 

million genetic variants in ~500,000 participants.6  80 

 81 

Joint analysis of the genetic and brain imaging datasets produced by UK Biobank 82 

presents a unique opportunity for uncovering the genetic bases of brain structure and 83 

function, including genetic factors relating to brain development, aging and disease. 84 

In this study, we carried out genome-wide association studies (GWAS) for 3,144 85 

IDPs, covering the entire brain and including “multi-modal” information of grey 86 

matter volume, area and thickness, white matter connections and functional 87 

connectivity, at 11,734,353 SNPs (single-nucleotide polymorphisms) in up to 8,428 88 

individuals having both genetic and brain imaging data. We used two separate sets of 89 

data from UK Biobank to evaluate replication of significant genetic associations from 90 

the discovery phase. We also carried out multi-trait GWAS, SNP-heritability analysis, 91 

genetic correlation analysis of IDPs with brain-related traits and an analysis of 92 

enrichment of genomic regions with different functions. Previous large-scale GWAS 93 

imaging studies have focussed on narrower ranges of phenotypes including studies of: 94 

grey matter volume in 7 localised regions of the subcortical brain by combining data 95 

across >50 different studies7,8; whole brain grey matter volumes and thicknesses by 96 

combining data from 59 acquisition sites 9; and cortico-cortical white matter 97 

connections in healthy young adult twins10. We expect that homogeneous image 98 

aquistion and genetic data assay in UK Biobank will have a positive impact on the 99 

power of our study.  100 

 101 

The full set of results are available on the Oxford Brain Imaging Genetics (BIG) web 102 

browser that allows users to browse associations by SNP, gene or phenotype. This 103 
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browser was built from the PheWeb code base and extended to allow easier searching 104 

of phenotypes. In addition to the brain IDP GWAS results, the browser also includes 105 

GWAS results from more than 2,500 other traits and diseases (see URLs). 106 

Heritability and genetic correlations of IDPs 107 
 108 

Figure 1 shows the estimated SNP-heritability (h2) of all IDPs and whether h2 is 109 

significantly different from 0 at the nominal 5% significance level (see also 110 

Supplementary Table 2 and Supplementary Figure 1). 1,578 of 3,144 IDPs show 111 

significant SNP-heritability. Of the structural MRI IDPs, volumetric measures are the 112 

most heritable and cortical thicknesses the least. Of the diffusion MRI measures, the 113 

tractography-based IDPs show lower heritability than the tract-skeleton-based IDPs. 114 

The resting-state fMRI functional connectivity edges show the lowest levels of SNP-115 

heritability, with just 235 of 1,771 IDPs significant, which is consistent with additive 116 

heritability estimates from twin studies of network edges from fMRI and MEG in the 117 

Human Connectome Project 11. However, 4 of the 6 rfMRI ICA features (estimated as 118 

data-driven reductions of this full set of fMRI edges) are much more highly heritable. 119 

In contrast the resting-state node amplitude IDPs do mostly show significant evidence 120 

of SNP-heritability; the task fMRI IDPs do not.  121 

 122 

We found lower levels of SNP-heritability for sub-cortical volumes than previously 123 

estimated in twin studies12-14 (Supplementary Figure 2). This is typical of many 124 

traits in the literature15 and maybe due to twin study estimates being upwardly biased 125 

due to gene-gene and gene-environment interactions16,17, or downward bias of SNP-126 

heritability due to uncaptured rare genetic variation. We also compared the GWAS 127 

results for 7 subcortical volumes with those obtained by the ENIGMA consortium, via 128 

a genetic correlation analysis (Supplementary Table 3). We find a strong correlation 129 

between the studies, suggesting no major differences between how these phenotypes 130 

have been measured. In all cases a perfect genetic correlation of 1 lies within the 95% 131 

confidence intervals. 132 

 133 

Supplementary Figure 3 shows the genetic correlations, together with the raw 134 

phenotype correlations, for several groups of analysed IDPs. These plots show that 135 

there is a range of both strong and weak, positive and negative genetic correlations 136 

between the IDPs. 137 
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Significant associations between IDPs and SNPs 138 

 139 

In all analyses we estimated genetic effects with respect to the number of copies of 140 

the non-reference allele. Using a minor allele frequency filter of 1% and a –log10 p-141 

value threshold of 7.5, we found 1,262 significant associations between SNPs and the 142 

3,144 IDPs. These associations span all classes of IDPs, except task fMRI 143 

(Supplementary Table 4), with the swMRI T2* group showing a relatively large 144 

number of associations. The –log10 p-value threshold of 7.5 controls for the number 145 

of tests carried out across SNPs and takes into account the correlation structure 146 

between genetic variants. 844 and 455 of these 1,262 associations replicated at the 5% 147 

significance level using our two smaller replication datasets (Methods and 148 

Supplementary Table 5). Some associated genetic loci overlap across IDPs; we 149 

estimate that there are approximately 427 distinct associated genetic regions 150 

(“clusters”), and 148 of these “clusters” have a lead SNP that replicates at the 5% 151 

level in our replication set of 3,456 participants, and 91 below a 5% False Discovery 152 

Rate (FDR) threshold. We would expect ~21 of the lead SNPs in the 148 clusters to 153 

replicate under a null hypothesis of no association. 154 

 155 

At a threshold of -log10 p-value > 11, which additionally corrects for all 3,144 156 

GWAS carried out (see Methods), we find 368 significant associations between 157 

genetic regions and distinct IDPs (Supplementary Table 6, Supplementary Figure 158 

4). These associations with 78 unique SNPs can be grouped together into 38 distinct 159 

clusters by grouping across IDPs (Table 1). Taking our lead SNP in each of the 38 160 

regions, we find that all 38 have p<0.05 in our replication set of 3,456 participants, 161 

and all 38 are significant at 5% FDR. We found no appreciable change in these 162 

GWAS results when we included a set of potential body confound measures in 163 

addition to the main set of imaging confound measures (see Methods and 164 

Supplementary Figure 5). We also carried out a Winner’s Curse corrected post-hoc 165 

power analysis that agrees well with the results of our replication studies. 166 

(Supplementary Note 2). 167 

 168 

Supplementary Figures 6 and 7 provide genome-wide association plots (also known 169 

as Manhattan plots) and QQ-plots for all 3,144 IDPs and the subset of IDPs listed in 170 

Table 1, respectively. Having identified a SNP as being associated with a given IDP, 171 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/178806doi: bioRxiv preprint 

https://doi.org/10.1101/178806
http://creativecommons.org/licenses/by-nc-nd/4.0/


it can be useful then to explore the association with all other IDPs via a PheWAS 172 

(Phenome Wide Association Study) plot. Supplementary Figure 8 shows the 173 

PheWAS plots for all 78 SNPs listed in Supplementary Table 6 with -log10p>11. 174 

The Oxford Brain Imaging Genetics (BIG) web browser (see URLs) allows 175 

researchers to view the PheWAS for any SNP of interest. We found that 4 of the 78 176 

SNPs were associated (p-value < 0.05/3144, i.e., -log10 p-value > 4.79) with all 3 177 

classes of structural, dMRI and functional measures, and these were all SNPs in 178 

cluster 31 of Table 1 (see pages 62-65 of Supplementary Figure 8. This genetic 179 

locus is associated with the volume of the precuneus and cuneus, dMRI measures for 180 

the forceps major (a fibre bundle connecting left and right cuneus), and two functional 181 

connections (parcellation 100 edges 614 and 619, which connect the precuneus to 182 

other cognitive networks). Supplementary Figure 9 illustrates the sharing of 183 

association signal across IDPs at the 615 unique SNPs listed in Supplementary 184 

Table 5. Supplementary Figure 10 shows the relationship between the number of 185 

associations found and the estimated SNP heritability for each IDP. 186 

 187 

Overall, our results clearly replicate the majority of the loci identified by the 188 

ENIGMA consortium in two separate GWAS of 7 brain subcortical volume IDPs in 189 

up to 13,171 subjects7, and of hippocampal volume in 33,536 subjects (although not 190 

all reached genome-wide significance, likely due to the smaller sample size in our 191 

study: Supplementary Figure 11). We also replicate an association between volume 192 

of white matter hyperintensities (“lesions”) and SNPs in TRIM47 (e.g., rs3744017, 193 

P=1.4E-12, cluster 37) 18. 194 

 195 

It can be challenging to precisely interpret the function of SNPs identified in GWAS. 196 

We find that most of the SNPs in the 38 loci in Table 1 are either in genes, including 197 

7 missense SNPs and 2 SNPs in untranslated regions (UTRs), or in high linkage 198 

disequilibrium (LD) with SNPs that are themselves in the genes of interest, and many 199 

are significant expression quantitative trait loci (eQTLs) in the GTEx database 19. In 200 

total we find 17 genetic loci that can be linked to genes that broadly contribute to 201 

brain development, patterning and plasticity (out of the 38 clusters reported in Table 202 

1; for more details, see Supplementary Note 3). In what follows we focus on some of 203 

the most compelling examples. 204 

 205 
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A major source of cross-subject differences seen in T2* data is microscopic variations 206 

in magnetic field, often associated with iron deposition in ageing and pathology 20. 207 

We identified many associations between T2* measurements in the caudate, putamen 208 

and pallidum and SNPs in genes (TF, rs4428180, Pmin=2.23E-22, cluster 7; HFE, 209 

rs1800562 (missense) Pmin=6.6E-20, cluster 14; SLC25A37, rs35469695, Pmin=2.22E-210 

12, cluster 18) or near genes (FTH1, rs11230859, Pmin=2.31E-17, cluster 26) known 211 

to affect iron transport and storage, as well as neurodegeneration with brain iron 212 

accumulation (NBIA)21 (COASY, rs668799, Pmin=1.43E-17, cluster 36). In particular, 213 

a SNP in HFE (s1800562) is associated with haemoglobin levels22, iron status 214 

biomarkers23 and LDL cholesterol24. In addition to TF, which transports iron from the 215 

intestine, and SLC25A37, a mitochondrial iron transporter, we identified four further 216 

SNPs that are either coding SNPs for, or eQTLs of, genes involved in transport of 217 

nutrients and minerals: SLC44A5 (rs76934732, P=8.51E-13, cluster 1), 218 

SLC39A8/ZIP8 (rs13107325 (missense) Pmin=1.04E-42, cluster 10), SLC20A2 219 

(rs2923405, Pmin=3.31E-17, cluster 19) and SLC39A12/ZIP12 (rs10764176 220 

(missense), Pmin=3.3E-21, cluster 22). 221 

 222 

Interrogating images at a voxel-wise level can provide further insight about detailed 223 

spatial localisation of SNP associations (e.g., a specific thalamic nucleus), as well as 224 

possibly identifying additional associated areas not already well captured by the IDPs 225 

(while keeping in mind the statistical dangers of potential circularity25). For instance, 226 

by looking at the difference between the average T2* image from the subjects having 227 

0 vs. 1 copy of the rs4428180 (TF) non-reference allele, effects of this SNP were 228 

found not just in the putamen and pallidum, but also in additional, much smaller or 229 

more localised regions of subcortical structures that were not included as IDPs 230 

(Figure 2). We similarly created in Figure 2 the voxelwise differences associated 231 

with 3 additional SNPs, from the most significant GWAS associations with T2* in the 232 

putamen as seen in the Manhattan plot. This approach also allowed us to observe grey 233 

matter volume effects across the entire brain associated with rs13107325 234 

(SLC39A8/ZIP8) (Figure 3), which has been linked in many previous (non-imaging) 235 

GWAS to e.g., intelligence 26, schizophrenia 27, blood pressure 28 and higher risk of 236 

cardiovascular death29. These effects could now be observed in a very relevant brain 237 

region, the anterior cingulate cortex, which is well-known for its multifaceted roles 238 
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including precisely in fluid intelligence30,  schizophrenia 31 and in modulating 239 

autonomic states of cardiovascular arousal32. 240 

 241 

Interestingly, three SNPs related to our white matter IDPs were in genes or eQTLs of 242 

genes coding for three proteins of the extracellular matrix (ECM). The first SNP 243 

(rs2365715, P=5.38E-12, cluster 2), an eQTL of BCAN, is associated with one dMRI 244 

microstructural measure in the genu of the corpus callosum. The second SNP 245 

(rs3762515, P=4.27E-13, cluster 3), in the 5’ UTR of EFEMP1, is associated with the 246 

volume of white matter lesions. Finally, the third SNP (rs67827860, Pmin=4.06E-37, 247 

cluster 11, Figure 4), located in an intron of VCAN, is in a cluster associated with 248 

multiple dMRI measures of most of the brain white matter tracts (199 IDPs in total). 249 

BCAN and VCAN in particular both code for chondroitin sulfate proteoglycans of the 250 

ECM, which are especially crucial for synaptic plasticity33 and myelin repair34. VCAN 251 

is, for instance, increased in association with astrocytosis in multiple sclerosis35, 252 

while both BCAN and VCAN are differentially regulated following spinal cord 253 

injury36. BCAN, EFEMP1 and VCAN have been further associated in three separate 254 

GWAS with stroke37, site of onset of amyotrophic lateral sclerosis38 and major 255 

depressive disorder39, respectively. Furthermore, EFEMP1 is characterised by tandem 256 

arrays of epidermal growth factor (EGF)-like domains, and we also identified a strong 257 

association between the whole of the corpus callosum (genu, body and splenium) and 258 

a SNP in HBEGF (rs4150221, Pmin=8.43E-20, cluster 13), a heparin-binding EGF-like 259 

growth factor. Similarly to BCAN and VCAN, HBEGF plays an important role in 260 

oligodendrocyte development and helps recovering WM injury in preterm babies40. 261 

Remarkably, this means that the vast majority of forebrain WM-related dMRI IDPs 262 

are associated in this study with SNPs related to genes coding for proteins involved 263 

either in the extracellular matrix, the epidermal growth factor, or both.  264 

 265 

Two additional examples further illustrate highly meaningful correspondences 266 

between locations of our brain IDPs and significantly associated genes. First, the 267 

volume of the 4th ventricle, which develops from the central cavity of the neural tube, 268 

was found to be significantly associated with a SNP in, and eQTL of, ALDH1A2 269 

(rs2642636, P=5.2E-16, cluster 33). This gene codes for an enzyme which facilitates 270 

posterior organ development and prevents human neural tube defects, including spina 271 

bifida41. Second, we found two SNPs associated with dMRI IDPs of the crossing 272 
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pontine tract (the part of the pontocerebellar fibre bundle arising from pontine nuclei 273 

that decussate across the brain midline to project to contralateral cerebellar cortex) in 274 

genes that regulate axon guidance and fasciculation during development (SEMA3D, 275 

rs2286184, P=5.31E-17, cluster 15 and ROBO3, rs4935898 (missense), P=1.76E-19, 276 

cluster 27, Figure 5). The exact location of our IDP in the crossing fibres of the pons 277 

remarkably coincides with the function of ROBO3, which is specifically required for 278 

axons to cross the midline in the hindbrain (pons, medulla oblongata and cerebellum); 279 

mutations in ROBO3 result in horizontal gaze palsy, a disorder in which the 280 

corticospinal and somatosensory axons fail to cross the midline in the medulla42. 281 

Notably, all three significant associations with the IDP of the crossing pontine tract 282 

were found using the mode of anisotropy (MO), which is a tensor-model dMRI 283 

measure particularly sensitive to regions of crossing fibres43. 284 

 285 

Multi-phenotype association tests 286 
 287 

One alternative strategy for analysing large numbers of IDPs is to use multi-trait tests 288 

that fit joint models of associations to groups of IDPs. Such approaches can utilise 289 

estimates of genetic correlation to boost power. In addition, by analysing P traits in 290 

one GWAS, these tests can avoid the need to correct for multiple genome-wide scans. 291 

We used a multi-trait test (see Methods) to analyse 23 groups of IDPs with up to 243 292 

IDPs per group. These IDP groupings were chosen to cover the majority of the IDP 293 

classes with significant IDP correlations in each grouping (Supplementary Table 7). 294 

Supplementary Figure 12 shows the Manhattan plots for these genome-wide scans. 295 

Overall across these 23 groups, we found 278 SNPs at ~160 loci associated with –296 

log10 p-value > 7.5 (see Supplementary Table 8). We found that 170 of these 278 297 

SNPs survived a correction for 23 scans with –log10 p-value > 8.86 and 138 of these 298 

170 SNPs had a p-value < 0.05 in the larger replication set of 3,456 samples.  There 299 

can be quite large differences in p-values between the multi-trait tests and the 300 

individual IDP tests (Supplementary Figure 13), especially when taking account of 301 

the smaller number of tests carried out by the multi-trait approach (Supplementary 302 

Figure 14). We found 25 loci that showed both a significant and replicated multi-trait 303 

association for an IDP group, while showing no genome-wide significance in the 304 

flanking region for any individual IDP in the corresponding grouping 305 

(Supplementary Table 9). 306 
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 307 

 308 

Three of these loci show associations with the dMRI MO measures (rs62073157, 309 

P=4.07E-11; rs35884657, p=1.04E-09; rs9939914,p=1.15E-11) and all are eQTLs of 310 

microtubule related genes MAPT, TUBA1B and TUBB3 respectively. The first SNP 311 

rs62073157 resides in a long stretch of LD (43.4-44.9Mb) on chromosome 17 known 312 

to contain a common inversion polymorphism44. This extended MAPT (encoding for 313 

Microtubule Associated Protein Tau) region has been repeatedly associated with  314 

several neurodegenerative disorders, such as  Alzheimer's disease, where it has been 315 

shown to modulate the age of onset 45 and to be associated with APOE ɛ4- alleles46, 316 

fronto-temporal dementia47 and progressive supranuclear palsy48. Notably, a locus in 317 

this MAPT region also shows overlap between Alzheimer’s and Parkinson’s disease49. 318 

Mutations in tubulin genes have been shown to correlate strongly with multiple 319 

cortical and subcortical abnormalities50. 320 

 321 

Another example of the value of the multi-trait testing can be seen in the association 322 

between IDPs of global brain volume measurements and a SNP located between 323 

BANK1 and ZIP8, previously identified in a GWAS of schizophrenia51 (rs35518360, 324 

P=4.07E-12). This locus is also part of a multi-modal cluster from our single-trait 325 

GWAS that includes subcortical and cerebellar grey matter volumes, pallidum T2* 326 

and dMRI in midbrain white matter tracts (cluster 10 in Supplementary Table 6). 327 

The multi-trait test thus made it possible to uncover this additional association 328 

between global brain volume measurement and this locus, which might prove relevant 329 

in better understanding observations of smaller brain volume in (first episode/drug-330 

naïve) schizophrenic patients 52. 331 

Another locus (rs112651271, p=3.23E-11) is associated with a dMRI IDP group 332 

encompassing all measurements collected in major white matter tracts. This SNP lies 333 

150Kb upstream of EDNRA, which plays a role in potent and long-lasting 334 

vasoconstriction, and (likely related to this), has been linked to hypertension and 335 

migraine, as well as intracranial aneurysm  53. 336 

 337 

The multi-trait analysis also uncovered an association with SNPs in the IL34 gene 338 

(rs12928124, p=1.31E-10) and Freesurfer brain volume IDPs. IL-34 is a ligand of the 339 
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CSF-1 receptor (CSF-1R) that regulates CNS microglial development and has been 340 

shown to regulate cortical development in mice 54. Il-34 has also been shown to 341 

promote clearance of soluble oligomeric amyloid-β, which mediates synaptic 342 

dysfunction and neuronal damage in Alzheimer’s disease. 55. 343 

 344 

Iron, cardiovascular traits and brain development in brain disorders 345 

 346 

Of those genes involved in neurodegenerative disorders which we identified in our 347 

single-IDP association analysis, interestingly most mainly code for iron-related 348 

proteins. While TF and HFE might play a relevant role for iron mobilisation and 349 

regulation in neurodegenerative disorders such as Parkinson’s disease, Creutzfeldt-350 

Jakob disease, amyotrophic lateral sclerosis and Alzheimer’s disease56,57, SLC25A37 351 

shows increased expression in Alzheimer’s and Friedreich's ataxia58 and mutations in 352 

COASY are associated with neurodegeneration with brain iron accumulation 21.  353 

 354 

One notable exception, is in an LD region encompassing significant SNPs in both 355 

MRC1 and ZIP12 (cluster 22), which has been linked to 356 

neurodegenerative/neuropsychiatric disorders and cardiovascular processes (as 357 

opposed to iron-related processes). SNPs in MRC1 have been shown in a GWAS to be 358 

associated with risk of cardiovascular disease 59 and MRC1 expression is increased in 359 

a model of Alzheimer’s disease 60, while ZIP12 demonstrates altered expression in the 360 

cortex of subjects with schizophrenia 61. Our significant SNPs in ZIP8 (cluster 10) 361 

show a similar overlap, and ZIP8 hit has been found associated both with 362 

schizophrenia and Parkinson’s disease62, as well cardiovascular death29.  363 

 364 

Similarly to ZIP8 and ZIP12, of those genes related to mental health disorders 365 

identified both in the single-IDP and multi-trait analyses, most are strongly involved 366 

in brain development and plasticity. This is the case of VCAN, for which SNPs have 367 

been associated in a GWAS with major depressive disorder 39, SEMA3D and DAAM1, 368 

which might both contribute to schizophrenia 63 64, ROBO3 that may be associated 369 

with autism65 and CTTNBP2, for which disruption is related to autism66, and 370 

knockdown reduces the density and size of dendritic spines in neurons (rs12113919, 371 

eQTL of CTTNBP2, P=3.96E-12, cluster 16). This latter SNP was interestingly 372 

associated here with one dMRI measures in the corpus callosum, a white matter tract 373 
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that has been shown in dMRI meta-analyses to be the most consistently disrupted 374 

white matter tract in autism67,68.  375 

 376 

Genetic correlation with neurodegenerative, psychiatric and personality traits 377 

 378 

We measured the genetic correlation (hence also co-heritability) between a subset of 379 

heritable IDPs and 10 neurodegenerative, psychiatric and personality traits (see 380 

Methods). We found some suggestive evidence of elevated levels of non-zero genetic 381 

correlation for amyotrophic lateral sclerosis (ALS), schizophrenia and stroke, mainly 382 

with dMRI measures in white matter tracts (Supplementary Figure 15). The 383 

strongest genetic correlation for ALS (P<10-3) was found in the genu of the corpus 384 

callosum (with a co-heritability of 0.63). This result is in line with consistent findings 385 

of corpus callosum involvement in this degenerative disorder 69. Correlations found in 386 

schizophrenia with the tapetum (P<10-3) were likely due to partial volume effects, 387 

given that the next most strongly associated IDPs reflect ventricular and thalamic 388 

volume, which are some of the most robust volumetric findings in this mental health 389 

disorder 52; hence it is interesting to see the genetic input into this volumetric disease 390 

association. While more modest correlations in stroke were observed, it was across a 391 

wide range of dMRI IDPs, with the strongest genetic correlations (P<10-2) in the 392 

corona radiata, internal capsule and thalamic radiations, i.e., white matter tracts that 393 

follow the probabilistic distribution of stroke 70. Supplementary Table 10 contains 394 

genetic correlation estimates for all IDP/trait combinations with nominal p-value < 395 

0.01, to highlight which IDPs occur in the tails of these distributions. However, in line 396 

with previous observations [Bulik-Sullivan 2015], we also found evidence that the 397 

LDSCORE regression approach71 for estimating genetic correlation seems best suited 398 

to pairs of traits both of which are heritable and polygenic in genetic aetiology. For 399 

example, the deflated p-value distribution for the correlation of IDPs with 400 

Alzheimer’s is driven by the large APOE association for Alzheimer’s disease on 401 

chromosome 19. 402 

 403 

Partitioning heritability by functional annotation 404 

 405 

We applied a statistical approach that partitions the additive genetic heritability of a 406 

set of common variants for each of the 3,144 IDPs according to 24 functional 407 
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annotations of the genome71. Figure 6 summarizes which functional annotations show 408 

enrichment stratified by 23 groups of IDPs (see also Supplementary Table 11). We 409 

find that regions of the genome annotated as Super Enhancers and several histone 410 

modifications show enrichment across many of the structural and diffusion IDP 411 

groups. Regions of the genome enriched for histone modification H3K27me3 (and 412 

indicating strong evidence for silenced genes) show depletion of heritability across 413 

many of the IDP classes (Supplementary Figure 16). IDP groups such as T1 414 

subcortical volumes, dMRI FA and ICVF show the strongest evidence of enrichment 415 

across multiple categories. The resting fMRI connectivity edge IDPs show no 416 

elevated enrichment, consistent with these traits showing low overall levels of 417 

heritability (Figure 1). Supplementary Figure 17 provides the results of this 418 

partitioning analysis for each IDP.  419 

 420 

Conclusions 421 

 422 

Bringing together researchers with backgrounds in brain imaging and genetic 423 

association was key to this work. We have uncovered a large number of associations 424 

at the nominal level of GWAS significance (-log10 p-value > 7.5) and at a more 425 

stringent threshold (-log10 p-value > 11) designed to (probably over-conservatively) 426 

control for the number of IDPs tested. Our use of multi-trait tests uncovered further 427 

novel loci. We find associations with all the main IDP groups except the task fMRI 428 

measures (despite these measures containing usable signal, for example having unique 429 

and strong cognitive associations4). We mainly found associations between our MRI 430 

measures and genes involved in brain development and plasticity, as well as with 431 

genes contributing to transport of nutrients and minerals. Most of these genes have 432 

also been demonstrated to contribute to a vast array of disorders including major 433 

depression disorder, cardiovascular disease, schizophrenia, amyotrophic lateral 434 

sclerosis and Alzheimer’s disease. We further uncovered enrichments of functional 435 

annotations for many of the structural and diffusion IDPs.  436 

 437 

A valuable aspect of this work has been to link the associated SNPs back to spatial 438 

properties of the voxel-level brain imaging data. For example, we have linked SNPs 439 

associated with IDPs to both highly spatially localized (Figures 2,3,5) and widely 440 

spatially distributed (Figure 4) effects, restricting these voxelwise analyses to the 441 
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same imaging modality from which the original phenotypic association was found 442 

(though of course other modalities could also be tested in the same way). In addition, 443 

looking at PheWAS plots has been useful when working with so many phenotypes. It 444 

has allowed investigation of the overall patterns of association and has led to the 445 

identification of SNP associations that span multiple modalities.  446 

 447 

We have used two separate sets of 930 and 3,456 samples to replicate a large number 448 

of the associations uncovered at the discovery phase. Over the next few years, the 449 

number of UK Biobank participants with imaging data will gradually increase to 450 

100,000, which will allow a much more complete discovery of the genetic basis of 451 

human brain structure, function and connectivity. Combining the discovery and 452 

replication samples will likely also lead to novel associations, as will the use of 453 

methods that can analyze the huge IDP × SNP matrix of summary statistics of 454 

association.  A potential avenue of research will involve attempting to uncover causal 455 

pathways that link genetic variants to IDPs and then onto a range of neurological, 456 

psychiatric and developmental disorders. 457 

 458 

Methods  459 
 460 

Imaging data and derived phenotypes 461 

 462 

The UK Biobank Brain imaging protocol consists of 6 distinct modalities covering 463 

structural, diffusion and functional imaging, summarised in Supplementary Table 1. 464 

For this study, we primarily used data from the February 2017 release of ~10,000 465 

participants’ imaging data (and an additional ~5,000 subjects’ data released in 466 

January 2018 provided the larger replication sample).  467 

 468 

The raw data from these 6 modalities has been processed for UK Biobank to create a 469 

set of imaging derived phenotypes (IDPs)4,72. These are available from UK Biobank, 470 

and it is these IDPs from the 2017/18 data releases that we used in this study.  471 

 472 

In addition to the IDPs directly available from UK Biobank, we created two extra sets 473 

of IDPs. Firstly, we used the FreeSurfer v6.0.0 software73,74 to model the cortical 474 

surface (inner and outer 2D surfaces of cortical grey matter), as well as modelling 475 
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several subcortical structures. We used both the T1 and T2-FLAIR images as inputs 476 

to the FreeSurfer modelling. FreeSurfer estimates a large number of structural 477 

phenotypes, including volumes of subcortical structures, surface area of parcels 478 

identified on the cortical surface, and grey matter cortical thickness within these 479 

areas. The areas are defined by mapping an atlas containing a canonical cortical 480 

parcellation onto an individual subject’s cortical surface model, thus achieving a 481 

parcellation of that surface. Here we used two atlases in common use with FreeSurfer: 482 

the Desikan-Killiany–Tourville atlas (denoted “DKT” 75) and the Destrieux atlas 483 

(denoted “a2009s” 76).  The DKT parcellation is gyral-based, while Destrieux aims to 484 

model both gyri and sulci based on the curvature of the surface. Cortical thickness is 485 

averaged across each parcel from each atlas, and the cortical area of each parcel is 486 

estimated, to create two IDPs for each parcel. Finally, subcortical volumes are 487 

estimated, to create a set of volumetric IDPs. 488 

 489 

Secondly, we applied a dimension reduction approach to the large number of 490 

functional connectivity IDPs. Functional connectivity IDPs represent the network 491 

“edges” between many distinct pairs of brain regions, comprising in total 1,695 492 

distinct region-pair brain connections (see URLs). In addition to this being a very 493 

large number of IDPs from which to interpret association results, these individual 494 

IDPs tend to be significantly noisier than most of the other, more structural, IDPs. 495 

Hence, while we did carry out GWAS for each of these 1,695 connectivity IDPs, we 496 

also reduced the full set of connectivity IDPs into just 6 new summary IDPs using 497 

data-driven feature identification. We did this dimensionality reduction by applying 498 

independent component analysis (ICA77), applied to all functional connectivity IDPs 499 

from all subjects, to find linear combinations of IDPs that are independent between 500 

the different features (ICA components) identified78. We carried out the ICA feature 501 

estimation without any use of the genetic data, and we maximized independence 502 

between component IDP weights (as opposed to subject weights). We used split-half 503 

reproducibility (across subjects) to optimize both the initial dimensionality reduction 504 

(14 eigenvectors from a singular value decomposition was found to be optimal) and 505 

also the final number of ICA components (6 ICA components was optimal, with 506 

reproducibility of ICA weight vectors greater than r=0.9). The resulting 6 ICA 507 

features were then treated as new IDPs, representing 6 independent sets (or, more 508 

accurately, linear combinations) of the original functional connectivity IDPs. These 6 509 
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new IDPs were added into the GWAS analyses. The 6 ICA features explain 4.9% of 510 

the total variance in the full set of network connection features, and are visualized in 511 

Supplementary Figure 18. More details of the ICA analysis of the resting state data, 512 

together with browsing functionality of the highlighted brain regions can be found on 513 

the FMRIB Biobank Resource web page (see URLs). 514 

 515 

We organised all 3,144 IDPs into 9 groups (Supplementary Table 12), each having a 516 

distinct pattern of missing values (not all subjects have usable, high quality data from 517 

all modalities4). For the GWAS in this study we did not try to impute missing IDPs 518 

due to low levels of correlation observed across groups. 519 

 520 

The distributions of IDP values varied considerably between phenotype classes, with 521 

some phenotypes exhibiting significant skew (Supplementary Figure 19) which 522 

would likely invalidate the assumptions of the linear regression used to test for 523 

association. To ameliorate this we quantile normalized each of the IDPs before 524 

association testing. This transformation also helps avoid undue influence of outlier 525 

values. We also (separately) tested an alternative process in which an outlier removal 526 

process was applied to the un-transformed IDPs; this gave very similar results for 527 

almost all association tests, but was found to reduce the significance of a very small 528 

number of associations. This possible alternative method for IDP “preprocessing” was 529 

therefore not followed through (data not shown). 530 

 531 

Genetic data processing 532 

 533 

We used the imputed genetic dataset made available by UK Biobank in its July 2017 534 

release6. This consists of >92 million autosomal variants imputed from the Haplotype 535 

Reference Consortium (HRC) reference panel79 and a merged UK10K + 1000 536 

Genomes reference panel. We first identified a set of 12,623 participants who had also 537 

been imaged by UK Biobank. We then applied filters to remove variants with minor 538 

allele frequency (MAF) below 0.1% and with an imputation information score below 539 

0.3, which reduced the number of SNPs to 18,174,817. We then kept only those 540 

samples (subjects) estimated to have recent British ancestry using the sample quality 541 

control information provided centrally by UK Biobank6 (using the variable 542 

in.white.British.ancestry.subset in the file ukb_sqc_v2.txt); population structure can be 543 
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a serious confound to genetic association studies80, and this type of sample filtering is 544 

standard. This reduced the number of samples to 8,522. The UK Biobank dataset 545 

contains a number of close relatives (3rd cousin or closer). We therefore created a 546 

subset of 8,428 nominally unrelated subjects following similar procedures in Bycroft 547 

et al. (2017). After running GWAS on all the (SNP) variants in the 8,428 samples we 548 

applied three further variant filters to remove variants with a HWE (Hardy-Weinberg 549 

equilibrium) p-value less than 10-7, remove variants with MAF<0.1% and to keep 550 

only those variants in the HRC reference panel. This resulted in a dataset with 551 

11,734,353 SNPs.  552 

 553 

We used two separate datasets for replicating the associated variants found in this 554 

study. The first set of 930 samples were a subset of the 1,279 samples with imaging 555 

data that we did not use for the main GWAS, which had been primarily excluded due 556 

to not being in the recent British ancestry subset. An examination of these samples 557 

according the genetic principal components (PCs) revealed that many of those 558 

samples are mostly of European ancestry (Supplementary Figure 20). We selected 559 

930 samples with a 1st genetic PC < 14 from Supplementary Figure 20 and these 560 

constituted the replication sample. In January 2018 a further tranche of 4,588 samples 561 

with imaging data was released by UK Biobank. Of these subjects, we selected 3,956 562 

subjects that both had genetic data available and also were imaged in the same 563 

imaging center as the discovery sample. We applied the same pre-processing pipeline 564 

as for the discovery set. We then restricted this to 3,456 subjects that were of recent 565 

British ancestry and replication tests were then conducted on these 3,456 subjects. 566 

 567 

Potential Confounds for brain IDP GWAS 568 

 569 

There are a number of potential confounding variables when carrying out GWAS of 570 

brain IDPs. We used three sets of covariates in our analyses relating to (a) imaging 571 

confounds (b) measures of genetic ancestry, and (c) non-brain imaging body 572 

measures. 573 

 574 

We identified a set of variables likely to represent imaging confounds, for example 575 

those being associated with biases in noise or signal level, corruption of data by head 576 

motion or overall head size changes. For many of these we generated various versions 577 
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(for example, using quantile normalization and also outlier removal, to generate two 578 

versions of a given variable, as well as including the squares of these to help model 579 

nonlinear effects of the potential confounds). This was done in order to generate a rich 580 

set of covariates and hence reduce as much as possible potential confounding effects 581 

on analyses such as the GWAS, which are particularly of concern when the subject 582 

numbers are so high.4,81  583 

 584 

Age and sex are can be variables of biological interest, but can also be sources of 585 

imaging confounds, and here were included in the confound regressors. Head motion 586 

is summarized from the rfMRI and tfMRI as the mean displacement (in mm) between 587 

one timepoint and the next, averaged over all timepoints and across the brain. Head 588 

motion can be a confounding factor for all modalities and not just those comprising 589 

timeseries of volumes, but is only readily estimable from the timeseries modalities. 590 

Nevertheless, the amount of head motion is expected to be reasonably similar across 591 

all modalities (e.g., correlation between head motion in resting and task fMRI is 592 

r=0.52) and so it is worth using fMRI-derived head motion estimates as confound 593 

regressors for all modalities. 594 

 595 

The exact location of the head and the radio-frequency receive coil in the scanner can 596 

affect data quality and IDPs.  To help account for variations in position in different 597 

scanned participants, several variables have been generated that describe aspects of 598 

the positioning (see URLs). The intention is that these can be useful as “confound 599 

variables”, for example these might be regressed out of brain IDPs before carrying out 600 

correlations between IDPs and non-imaging variables.   TablePosition is the Z-601 

position of the coil (and the scanner table that the coil sits on) within the scanner (the 602 

Z axis points down the centre of the magnet). BrainCoGZ is somewhat similar, being 603 

the Z-position of the centre of the brain within the scanner (derived from the brain 604 

mask estimated from the T1-weighted structural image). BrainCoGX is the X-position 605 

(left-right) of the centre of the brain mask within the scanner. BrainBackY is the Y-606 

position (front-back relative to the head) of the back of brain mask within the scanner. 607 

 608 

UK Biobank brain imaging aims to maintain as fixed an acquisition protocol as 609 

possible during the 5-6 years that the scanning of 100,000 participants will take. 610 

There have been a number of minor software upgrades (the imaging study seeks to 611 
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minimise any major hardware or software changes). Detailed descriptions of every 612 

protocol change, along with thorough investigations of the effects of these on the 613 

resulting data, will be the subject of a future paper. Here, we attempted to model any 614 

long-term (over scan date) changes or drifts in the imaging protocol or software or 615 

hardware performance, by generating a number of data-driven confounds. The first 616 

step was to form a temporary working version of the full subjects × IDPs matrix with 617 

outliers limited (see below) and no missing data, using a variant of low-rank matrix 618 

imputation with soft thresholding on the eigenvalues82. Next, the data is temporally 619 

regularized (approximate scale factor of several months with respect to scan date) 620 

with spline-based smoothing. We then applied PCA and kept the top 10 components 621 

kept, to generate a basis set reflecting the primary modes of slowly-changing drifts in 622 

the data.  623 

 624 

To describe the full set of imaging confounds we use a notation where subscripts “i” 625 

indicate quantile normalization of variables, and “m” to indicate median-based outlier 626 

removal (discarding values greater than 5 times the median-absolute-deviation from 627 

the overall median). If no subscript is included, no normalization or outlier removal 628 

was carried out. Certain combinations of normalization and powers were not included, 629 

either because of very high redundancy with existing combinations, or because a 630 

particular combination was not well-behaved. The full set of variables used to create 631 

the confounds matrix are: 632 

• a = age at time of scanning, demeaned (cross-subject mean subtracted) 633 

• s = sex, demeaned 634 

• q = 4 confounds relating to the position of the radio-frequency coil and the 635 

head in the scanner (see above), all demeaned 636 

• d = 10 drift confounds (see above) 637 

• m = 2 measures of head motion (one from rfMRI, one from tfMRI) 638 

• h = volumetric scaling factor needed to normalise for head size 83 639 

 640 

The full matrix of imaging confounds is then: 641 

[ a  a2  a×s  a2×s  ai  ai
2  ai×s  ai

2×s  mm  mm
2  hm  qm  qm

2  dm  mi  hi  qi  qi
2  di  ] 642 

Any missing values in this matrix are set to zero after all columns have had their 643 

mean subtracted. This results in a full-rank matrix of 53 columns (ratio of maximum 644 
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to minimum eigenvalues = 42.6). For additional discussion on the dangers and 645 

interpretation of imaging confounds in big imaging data studies, particularly in the 646 

context of disease studies, see 81. 647 

 648 

Genetic ancestry is a well-known potential confound in GWAS. We ameliorated this 649 

by filtering out samples that were not of recent British ancestry. However, a set of 40 650 

genetic principal components (PCs) has been provided by UK Biobank6 and we used 651 

these PCs as covariates in all of our analysis. The matrix of imaging confounds, 652 

together with a matrix of 40 genetic principal components, was regressed out of each 653 

IDP before the analyses reported here. 654 

 655 

There exist a number of substantial correlations between IDPs and non-genetic 656 

variables collected on the UK Biobank subjects4. Based on this, we also carried out 657 

some analyses involving variables relating to Blood Pressure (Diastolic and Systolic), 658 

Height, Weight, Head Bone Mineral Density, Head Bone Mineral Content and 2 659 

principal components from the broader set of bone mineral variables available (see 660 

URLs). Supplementary Figure 21 shows the association of these 8 variables against 661 

the IDPs and shows significant associations. These are variables that likely have a 662 

genetic basis, at least in part. Genetic variants associated with these variables might 663 

then produce false positive associations for IDPs. To investigate this, we ran GWAS 664 

for these 8 traits (conditioned on the imaging confounds and genetic PCs) 665 

(Supplementary Figures 22). We also ran a parallel set of IDP GWAS with these 666 

“body confounds” regressed out of the IDPs. 667 

 668 

Heritability and genetic correlation of IDPs 669 

 670 

We used a linear mixed model implemented in the SBAT (Sparse Bayesian 671 

Association Test) software (see URLs) to calculate additive genetic heritabilities for 672 

the P=3,144 traits. To estimate genetic correlations we used a multi-trait mixed 673 

model. If Y is an NxP matrix of P phenotypes (columns) measured on N individuals 674 

(rows) then we use the model  675 

                 (1) 676 

where U is an NxP  matrix of random effects and  is a NxP  matrix of residuals and 677 

these are modelled using Matrix normal distributions as follows 678 

Y =U + ε

ε
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 679 

 680 

In this model K is the NxN  kinship matrix between individuals, B is the PxP matrix 681 

of genetic covariances between phenotypes and E is the PxP  matrix of residual 682 

covariances between phenotypes. We estimate the covariance matrices B and E using 683 

a new C++ implementation of an EM algorithm
84

 included in the SBAT software (see 684 

URLs).  685 

 686 

For the marginal heritabilities and genetic correlation analysis we used a realised 687 

relationship matrix (RRM) for the Kinship matrix (K). This RRM was calculated from 688 

the 8,428 nominally unrelated individuals using fastLMM (see URLs). We used the 689 

subset of imputed SNPs that were both assayed by the genotyping chips and included 690 

in the HRC reference panel, and so will essentially be hard-called genotypes. In 691 

addition, all SNPs with duplicate rsids were removed. PLINK (see URLs) was used 692 

for file conversion before input into fastLMM.  693 

 694 

To estimate genetic correlations, we fit the model to several of the groupings of IDPs 695 

detailed in Supplementary Table 12. The estimated covariance matrices B and E 696 

were used to estimate the genetic correlation of pairs of IDPs. The genetic correlation 697 

between the ith and jth IDPs in a jointly analyzed group of IDPs is estimated as 698 ݎ௜௝ =  ௝௝ܤ௜௜ܤ௜௝ඥܤ

 699 

Multi-trait association tests 700 

 701 

We used a multi-trait mixed model to test each SNP for association with different 702 

groupings of traits detailed in Supplementary Table 7. The model has the form 703 

 704 

where G is an Nx1 vector of SNP dosages and is a 1xP vector of effect sizes. We fit 705 

the model using estimates of B and E from the “null” model with  and a leave 706 

one chromosome out (LOCO) approach for RRM calculation. We ran this test on the 707 

main set of 8,428 samples and on the replication samples. For the replication analysis 708 

U~MN 0,K ,B( )
ε ~MN 0,IN ,E( )

Y =Gα +U + ε
α

α = 0
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we used the estimates of B and E from the main set of 8,428 samples. This test is 709 

implemented in the SBAT software (see URLs). 710 

 711 

Genetic association of IDPs 712 

 713 

We used BGENIE v1.2 (see URLs) to carry out GWAS of imputed variants against 714 

each of the processed IDPs. This program was designed to carry out the large number 715 

of IDP GWAS required in this analysis. It avoids repeated reading of the genetic data 716 

file for each IDP and uses efficient linear algebra libraries and threading to achieve 717 

good performance. The program has already been used by several studies to analyze 718 

genetic data from the UK Biobank85,86. We fit an additive model of association at each 719 

variant, using expected genotype count (dosage) from the imputed genetic data. We 720 

ran associated tests on the main set of 8,428 samples and the replication samples. 721 

 722 

Identifying associated genetic loci 723 

 724 

Most GWAS only analyze one or a few different phenotypes, and often uncover just a 725 

handful of associated genetic loci, which can be interrogated in detail. Due to the 726 

large number of associations uncovered in this study we developed an automated 727 

method to identify, distinguish and count individual associated loci from the 3,144 728 

GWAS (one GWAS for each IDP). For each GWAS we first identified all variants 729 

with a –log10 p-value > 7.5. We applied an iterative process that starts by identifying 730 

the most strongly associated variant, storing it as a lead variant, and then removing it, 731 

and all variants within 0.25cM from the list of variants (equivalent to approximately 732 

250kb in physical distance). The process was then repeated until the list of variants 733 

was empty. We applied this process to each GWAS using 2 different filters on MAF: 734 

(a) MAF > 0.1%, and (b) MAF > 1%. We grouped associated lead SNPs across 735 

phenotypes into clusters. This process first grouped SNPs within 0.25cM of each 736 

other, and this mostly produced sensible clusters, but some hand curation was used to 737 

merge or split clusters based on visual inspection of cluster plots and levels of LD 738 

between SNPs. For some clusters in Table 1 we report coding SNPs that were found 739 

to be in high LD with the lead SNPs.  740 

 741 

Accounting for multiple IDPs 742 
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 743 

We adjusted the genome-wide significance threshold (-log10 p-value > 7.5) by a 744 

Bonferroni factor (–log10(3144)=3.5) that  accounts for the number of IDPs tested, 745 

giving a threshold of –log10 p > 11. This assumes (incorrectly) that the IDPs are 746 

independent and so is likely to be conservative, but we preferred to be cautious when 747 

analyzing so many IDPs. 748 

 749 

 750 

Genetic correlation analysis 751 

 752 

We used LD score regression87  to estimate the genetic correlation between the IDPs 753 

studied in our analysis and 10 disease, personality or brain related traits. We gathered 754 

summary statistics for genome wide association studies of the neuroticism personality 755 

trait, autism spectrum and sleep duration and also 7 disease traits: attention deficit 756 

hyperactivity disorder, bipolar disorder, Alzheimer's disease, major depressive 757 

disorder, schizophrenia, stroke and amyotrophic lateral sclerosis. The number of 758 

samples in each of these studies and the DOIs for the corresponding studies are 759 

provided in Supplementary Table 13. 760 

 761 

For each IDP/trait pair, we used the LDSCORE regression software (v1.0.0) to 762 

compute the genetic correlation between the IDP and the trait, with linkage 763 

disequilibrium measurements taken from 1000 Genomes Project (provided by the 764 

maintainers of the LDSCORE regression software). We filtered the SNPs to include 765 

only those with imputation INFO >= 0.9 and MAF >= 0.1%. Only INFO scores for 766 

major depressive disorder, schizophrenia and attention deficit hyperactivity disorder 767 

were provided by the source studies, and so for these three analyses we applied the 768 

INFO threshold to both the SNPs from our study and also the source study. For the 769 

remaining 6 studies, an INFO filter was applied to the SNPs from our own study. Due 770 

to low levels of heritability of the functional edge IDPs, all of these were removed 771 

from this analysis. Since calculation of genetic correlation between traits only really 772 

makes sense if both traits are themselves heritable, we only used those IDPs with z-773 

scores for significantly non-zero heritability greater than 4. In total we used 897 IDPs. 774 

To account for correlations between IDPs we used the raw phenotype correlation 775 
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matrix to simulate z-scores (and associated tail probabilities) using samples from a 776 

multivariate normal distribution with that same correlation matrix.  777 

 778 

 779 

 780 

Analysis of enrichment of functional categories 781 

We used the LDSCORE regression software to carry out the heritability enrichment 782 

partitioning analysis into different functional categories (see URLs). We used 24 783 

functional categories: coding, UTR, promoter, intron, histone marks H3K4me1, 784 

H3K4me3, H3K9ac5 and two versions of H3K27ac, open chromatin DNase I 785 

hypersensitivity Site (DHS) regions, combined chromHMM/ Segway predictions, 786 

regions conserved in mammals, super-enhancers and active enhancers from the 787 

FANTOM5 panel of samples. For each IDP, the enrichment of each functional 788 

category is summarized as the proportion of h2 explained by the category divided by 789 

the proportion of common variants in the category. For each IDP and each annotation 790 

we used the two-side enrichment p-value as reported by the LDSCORE regression 791 

software. We labeled those p-values as enriched or depleted depending on whether 792 

the enrichment estimate was greater or less than 1. We stratified these p-values 793 

accordingly into 23 groups of IDPs.  794 
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 1094 

Various resources relating to the brain imaging in UK Biobank, including 3D-maps 1095 

and connectome browsers for the group-ICA rfMRI analyses, and matlab code used to 1096 

generate and apply the confound variables for this paper: 1097 

http://www.fmrib.ox.ac.uk/ukbiobank/ 1098 

 1099 

UK Biobank showcase variables used for head positioning confounds and scan date: 1100 

http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25756 1101 

http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25757 1102 

http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25758 1103 

http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25759 1104 

https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=53 1105 

 1106 

Head bone density and mineral content measures: 1107 

https://biobank.ctsu.ox.ac.uk/crystal/docs/DXA_explan_doc.pdf 1108 

 1109 
GWAS summary statistics used for genetic correlation analysis 1110 
 1111 
Major depressive disorder - https://www.med.unc.edu/pgc/  1112 

Schizophrenia - https://www.med.unc.edu/pgc/  1113 

Autism spectrum - https://www.med.unc.edu/pgc/  1114 

Attention deficit hyperactivity disorder and bipolar disorder - 1115 

https://www.med.unc.edu/pgc/  1116 

Alzheimer’s disease - http://web.pasteur-1117 

lille.fr/en/recherche/u744/igap/igap_download.php  1118 

Amyotrophic lateral sclerosis - http://databrowser.projectmine.com/  1119 

Stroke - PMC4818561 from http://cerebrovascularportal.org/informational/downloads  1120 

Neuroticism - https://www.thessgac.org/data  1121 

Sleep duration - http://www.t2diabetesgenes.org/data/  1122 

 1123 

ENIGMA - http://enigma.ini.usc.edu/research/download-enigma-gwas-results/ 1124 

 1125 

Figure Captions 1126 

 1127 
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Figure 1: Estimated heritability of IDPs. Estimated heritability (y-axis) of all of the 1128 

IDPs analyzed. IDPs have been split into three broad groups : Structural MRI (top), 1129 

Diffusion MRI (middle) and Functional MRI (bottom). Points are colored according 1130 

to IDP groups. Circles and inverted triangles are used to identify IDPs that do/do not 1131 

have heritability significantly different from 0 at the 5% significance level. The mean 1132 

95% confidence interval (CI) is also indicated to the right of each group of IDPs. 1133 

 1134 

Figure 2: Manhattan plot and spatial mapping of the associations between T2* in 1135 

the putamen and 4 SNPs. The Manhattan plot relates to the original GWAS for the 1136 

IDP T2* in the bilateral putamen. The spatial maps show that the 4 SNPs most 1137 

strongly associated with T2* in the putamen have distinct voxelwise patterns of effect 1138 

across the whole brain: rs4428180 (TF) effect is found in the dorsal putamen and 1139 

body of the caudate nucleus, but also in the right subthalamic nucleus and substantia 1140 

nigra, the red nucleus, lateral geniculate nucleus of the thalamus and the dentate 1141 

nucleus; rs144861591 (HFE) in the dorsal striatum, subthalamic nucleus, dentate 1142 

nucleus and Crus I/II of the cerebellum; rs10430578 (ZIP12) in the whole dorsal 1143 

striatum and pallidum; and rs668799 (COASY) in the whole dorsal striatum, 1144 

subgenual cingulate cortex and entorhinal cortex. The standard MNI152 T1 image is 1145 

used as background for the spatial maps (left is right). All group difference images 1146 

(color overlays) are thresholded at a T2* difference of 0.6ms.  1147 

 1148 

Figure 3: Manhattan plot and spatial mapping of the associations between GM 1149 

volume and rs13107325 (SLC39A8/ZIP8). The Manhattan plot relates to the original 1150 

GWAS for the IDP of GM volume in the left ventral striatum. The images show 1151 

spatial mapping of rs13107325 against voxelwise local grey matter volume (GM was 1152 

averaged across all 1,181 subjects with 1 copy of the non-reference allele, and the 1153 

average from all 7,215 subjects having 0 copies was subtracted from that, for display 1154 

in color here; the difference was thresholded at 0.015 - unitless relative measure of 1155 

local grey matter volume). The maps show that the rs13107325 (SLC39A8/ZIP8) 1156 

effect is found more generally bilaterally in the ventral caudate, putamen, ventral 1157 

striatum, anterior cingulate cortex, and with a strong cerebellar contribution (lobules 1158 

VI-X), particularly in the prefrontal-projecting Crus I/II, which are selectively 1159 

expanded in humans.  1160 

 1161 
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Figure 4: Manhattan plot, spatial mapping and PheWAS plot relating to the 1162 

association between the dMRI intra-cellular volume fraction (ICVF) measure 1163 

and rs67827860 (VCAN). a) The Manhattan plot relates to the original IDP GWAS 1164 

with the strongest association (ICVF in the right inferior longitudinal fasciculus using 1165 

tractography, associated with rs67827860). The ICVF parameter, estimated from the 1166 

NODDI modelling88, aims to quantify predominantly intra-axonal water in white 1167 

matter, by estimating where water diffusion is restricted. b) Spatial mapping of 1168 

rs67827860 against voxelwise ICVF in white matter (ICVF was averaged across all 1169 

4,957 subjects with 0 copies of the non-reference allele, and the average from all 1170 

2,304 subjects having 1 copy was subtracted from that, for display in color here; the 1171 

difference was thresholded at 0.005 – unitless fractional measure). Unlike the 1172 

previous examples of (spatially) very focal effects in T2* and grey matter volume in 1173 

Figures 2 and 3, the effects of this SNP are extremely widespread across most of the 1174 

white matter tracts (associated with 45 out of the 199 IDPs in cluster 11, 1175 

Supplementary Table 5). c) The PheWAS plot for SNP rs67827860 shows the 1176 

association (-log10 p-value) on the y-axis for the SNP rs67827860 with each of the 1177 

3,144 IDPs. The IDPs are arranged on the x-axis in the three panels: (top) Structural 1178 

MRI IDPs, (middle) Structural connectivity dMRI IDPs, (bottom) functional MRI 1179 

IDPs. Points are coloured to delineate subgroups of IDPs and detailed in the legends. 1180 

Summary details of SNP rs67827860 are given in the top right box. The grey line 1181 

shows the Bonferroni multiple testing threshold of 4.79. In addition to the IDP of WM 1182 

hyperintensities volume, there is a notable association with numerous dMRI IDPs 1183 

(especially diffusion tensor-derived measures of FA, MO and 1st/2nd/3rd eigenvalues 1184 

of the diffusion tensor, as well as additional ICVF measures). 1185 

 1186 

Figure 5: Manhattan plot and spatial mapping of the association between the 1187 

dMRI tensor mode (MO) measure and SNP rs4935898 (ROBO3). The Manhattan 1188 

plot relates to the original GWAS for the IDP of MO in the crossing pontine tract 1189 

associated with rs4935898. MO was averaged across all 6,807 subjects with ~0 copy 1190 

of the non-reference allele, and the average from all 703 subjects having ~1 copy was 1191 

subtracted from that, for display in red-yellow/blue-lightblue here, thresholded at 0.05 1192 

(b,d). In (b) results are shown overlaid on the MNI152 T1 structural image; in 1193 

contrast, background image in (c, d) is the UK Biobank average FA (fractional 1194 

anisotropy) that shows clear tract structure within the brainstem. In (c) is 1195 
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superimposed the orientation of the fibre tracts (in red, running along the x-axis). The 1196 

spatial distribution (not shown) for the effects of rs2286184 (SEMA3D) on MO is 1197 

almost identical to that of rs4935898, being again extremely spatially specific, with 1198 

no extended effect elsewhere in the brain.  1199 

 1200 

Figure 6: Partitioning of heritability by functional category. The plot shows the 1201 

proportion of IDPs in each of the 23 IDP groupings (x-axis) that show a nominal 1202 

enrichment p-value < 0.05 for the 24 functional categories (y-axis). The total number 1203 

of such IDPs for each category is given on the right edge of the plot. The number of 1204 

IDPs in each IDP group is listed in brackets in the x-axis labels. The proportion of the 1205 

genome annotated by each functional category is listed in brackets in the y-axis 1206 

labels.  1207 
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1.0

● Mean 95% CI (+/−)
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T1 global volumes
T1 sub−cortical volumes
T1 sub−cortical volumes (L+R)
T1 FAST ROIs
T1 Freesurfer volume
T1 Freesurfer cortical area
T1 Freesurfer cortical thickness
T2 FLAIR White matter hyperintensities
T2star sub−cortical
T2star sub−cortical (L+R)
Not significant at 0.05 level
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IDP_T1_FAST_ROIs_L_putamen    4    rs13107325
IDP_T1_FAST_ROIs_R_putamen    4    rs13107325
IDP_T1_FAST_ROIs_L_ventral_striatum    4    rs13107325
IDP_T1_FAST_ROIs_R_ventral_striatum    4    rs13107325
IDP_T1_FAST_ROIs_R_cerebellum_VIIIb    4    rs13107325
IDP_T1_FAST_ROIs_V_cerebellum_IX    4    rs13107325
IDP_T1_FAST_ROIs_V_cerebellum_X    4    rs13107325
volume_Left-Accumbens-area    4    rs13107325
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cluster	
index

cluster	name #	IDPs top	IDP chr RSID position locus ref	
allele

nonref	
allele

nonref	
AF

p	value replication	
p-value	
(N=3456)

replication	
p-value	
(N=930)

GTEX	eQTL

1 Volume	Cerebellum	VIIIa	
(vermis)

1 T1_FAST_ROIs_V_cerebel
lum_VIIIa

1 rs76934732 76013268 SLC44A5	 G A 0.145 8.51E-13 6.10E-04 5.22E-02 SLC44A5	ACADM

2 dMRI	Corpus	callosum	
(genu)

1 dMRI_TBSS_ICVF_Genu_
of_corpus_callosum

1 rs2365715 156615114 BCAN A G 0.388 5.38E-12 4.50E-03 1.33E-02 BCAN.	APOA1BP,	SYT11

3 Volume	WM	lesions 1 T2_FLAIR_BIANCA_WMH
_volume

2 	rs3762515	
(5'	UTR)

56150864 EFEMP1 C T 0.0959 4.27E-13 1.18E-02 4.84E-01

4 rfMRI	Cortical	and	
cerebellar	motor	nodes	and	
edges

2 NODEamps25_0012 2 rs60873293 114092549 intergenic G T 0.217 9.86E-15 3.10E-07 9.50E-02 AC016745.3,	RP11-
480C16.1

5 T2*	Pallidum 1 SWI_T2*_pallidum_L+R 2 rs6740926 190326498 WDR75 C T 0.038 1.31E-14 3.50E-09 3.78E-04 WDR75
6 rfMRI	Middle	temporal	

sulcus	nodes	and	edges
2 netmat_ICA_003 3 rs35124509	

(missense)
89521693 EPHA3 T C 0.3853 4.49E-22 3.27E-09 3.73E-03 EPHA3

7 T2*	Putamen	and	pallidum 6 SWI_T2*_putamen_L+R 3 rs4428180 133466374 TF A G 0.152 2.23E-22 6.11E-07 1.03E-03 TF
8 rfMRI	Prefrontal	and	

parietal	edges
1 netmat_ICA_002 3 rs2279829	

(3'	UTR)
147106319 ZIC4 C T 0.221 8.34E-12 5.46E-05 2.51E-03

9 dMRI	Superior	cerebellar	
peduncles

8 dMRI_TBSS_ICVF_Superi
or_cerebellar_peduncle_
L

4 rs4697414 23724255 RP11-
380P13.2

C T 0.823 5.83E-24 1.33E-06 4.63E-02 RP13-497K6.1,	RP11-
380P13.2

10 Volume	Putamen,	ventral	
striatum,	cerebellum	VIIIb,	
IX,	X;	T2*	Pallidum;	dMRI	
Cerebral	peduncles

20 IDP_T1_FAST_ROIs_L_ve
ntral_striatum

4 rs13107325	
(missense)

103188709 SLC39A8 C T 0.073 1.04E-42 6.64E-20 8.97E-06

11 dMRI	Most	WM	tracts 199 dMRI_ProbtrackX_ICVF_il
f_r

5 rs67827860 82860485 VCAN C T 0.188 4.06E-37 3.93E-12 2.19E-04

12 rfMRI	Parietal	and	
prefrontal	edges

1 netmat_ICA_004 5 rs7442779 92788278 NR2F1-
AS1

A G 0.05 8.18E-15 1.90E-04 4.04E-02

13 dMRI	Corpus	callosum	
(genu,	body,	splenium)

7 dMRI_TBSS_ICVF_Genu_
of_corpus_callosum

5 rs4150221 139719991 HBEGF T C 0.264 8.43E-20 1.72E-09 4.06E-02 SRA1

14 T2*	Putamen 3 SWI_T2*_putamen_L+R 6 rs1800562	
(missense)

26093141 HFE G A 0.0768 6.61E-20 2.91E-04 3.44E-03 U91328.19

15 dMRI	Crossing	pontine	tract 1 dMRI_TBSS_MO_Pontine
_crossing_tract

7 rs2286184 84630516 SEMA3D	 C T 0.201 5.31E-17 6.02E-09 1.58E-04

16 dMRI	Corpus	callosum	
(genu)

1 dMRI_TBSS_OD_Genu_of
_corpus_callosum

7 rs12113919 117612315 intergenic C G 0.416 3.96E-12 1.44E-04 1.84E-03 CTTNBP2

17 Volume	Brain 2 volume_MaskVol 7 rs2908004	
(missense)

120969769 WNT16 G A 0.4455 3.55E-16 7.07E-09 2.50E-04 CPED1,	FAM3C

18 T2*	Putamen 2 SWI_T2*_putamen_L+R 8 rs35469695 23406169 SLC25A37 C G 0.174 2.22E-12 2.11E-02 2.17E-01 SLC25A37
19 Volume	Pallidum 3 T1_FIRST_pallidum_volu

me_L+R
8 rs2923405 42448126 SMIM19/S

LC20A2
T G 0.583 3.31E-17 1.34E-04 5.98E-03 SMIM19,		SLC20A2

20 T2*	Pallidum 2 SWI_T2*_pallidum_L+R 8 rs2978098 101676675 	SNX31 A C 0.468 6.43E-15 1.08E-05 3.23E-01 SNX31
21 Volume	Cerebellum	 3 T1_FAST_ROIs_L_cerebell

um_crus_I
9 rs72754248 119061396 PAPPA G A 0.069 1.38E-17 4.23E-06 2.01E-01

22 T2*	Pallidum,	putamen	and	
caudate

17 SWI_T2*_pallicum_L+R 10 rs10764176		
(missense)

18,242,311 SLC39A12 A G 0.3 3.30E-21 1.01E-11 9.71E-02 SLC39A12

23 T2*	Caudate 3 SWI_T2*_caudate_L+R 10 rs12570727 18,425,519 CACNB2 G A 0.394 2.17E-22 2.20E-10 6.23E-04 SLC39A12-AS1
24 rfMRI	Parietal,	temporal	and	

prefrontal	nodes
20 NODEamps100_0002 10 rs2274224

(missense)
96039597 PLCE1 G C 0.431 6.55E-19 1.73E-03 7.21E-02 NOC3L,	PLCE1,	PLCE1-

AS1
25 rfMRI	Prefrontal	nodes 6 NODEamps25_0013 10 rs11596664 134280157 INPP5A C T 0.439 1.97E-15 2.23E-05 3.60E-02 INPP5A	RP11,	432J24.6

26 T2*	Pallidum 3 SWI_T2*_pallidum_L+R 11 rs11230859 61769972 intergenic G A 0.663 2.31E-17 6.39E-03 4.83E-02
27 dMRI	Crossing	pontine	tract 1 dMRI_TBSS_MO_Pontine

_crossing_tract
11 rs4935898	

(missense)
124742385 ROBO3 G A 0.048 1.76E-19 2.47E-05 2.47E-01

28 Volume	Mesencephalon	
(WM	cerebellum,	
brainstem)

3 volume_Right-
Cerebellum-White-
Matter

12 rs4301837 102336310 DRAM1	
GNPTAB	
CHPT1

T C 0.501 3.40E-13 3.37E-04 1.23E-02 GNPTAB,	CHPT1,	
DRAM1

29 Volume	Hippocampus 2 T1_FAST_ROIs_R_hippoc
ampus

12 rs7315280 117320938 intergenic A G 0.115 7.06E-14 6.80E-05 6.69E-01 FBXW8,	HRK

30 Volume	Putamen 4 volume_Right-Putamen 14 rs945270 56200473 	intergenic C G 0.419 3.67E-14 9.27E-06 3.32E-03

31 Volume	and	area	of	
precuneus	and	cuneus

11 T1_FAST_ROIs_R_intracal
c_cortex

14 rs74826997 59628609 DAAM1 T C 0.125 2.46E-16 3.08E-07 2.88E-02 L3HYPDH,	JKAMP

32 Thickness,	area	and	volume	
of	primary	sensorimotor	
cortex

15 a2009s_lh_S_central_are
a

15 rs4924345 39639898 RP11-
624L4.1	

A C 0.081 3.27E-53 1.69E-27 1.01E-06

33 Volume	4th	ventricle 1 volume_4th-Ventricle 15 rs2642636 58363242 ALDH1A2 C G 0.415 5.24E-16 5.63E-03 1.81E-01 ALDH1A2,	AQP9
34 dMRI	Uncinate 4 dMRI_ProbtrackX_ISOVF

_unc_r
16 rs7197215 51449978 intergenic A G 0.566 2.24E-15 4.50E-02 1.43E-04

35 Volume	Cerebellum	IX 2 T1_FAST_ROIs_L_cerebell
um_IX

17 rs9905515 35261073 RP11-
445F12.1

G C 0.23 3.32E-13 9.84E-06 2.70E-04

36 T2*	Caudate	and	putamen	 6 SWI_T2*_putamen_L+R 17 rs668799 40716235 COASY	 C T 0.278 1.43E-17 1.79E-04 9.86E-04 TUBG2,	CNTNAP1,	
FAM134C,	NAGLU,	
BECN1,	HSD17B1,	
PLEKHH3

37 Volume	WM	lesions 1 T2_FLAIR_BIANCA_WMH
_volume

17 rs3744020 73871773 TRIM47	 G A 0.188 1.15E-12 6.05E-06 3.36E-02 TRIM47,	TRIM65,	RP11-
552F3.9,	etc.

38 dMRI	Crossing	pontine	tract 1 dMRI_TBSS_MO_Pontine
_crossing_tract

18 rs2928990 49421125 intergenic T G 0.898 3.97E-16 3.96E-05 2.27E-03
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Table	1:	Summary	of	most	highly	associated	SNP-IDP	clusters.	The	table	summarises	the	38	clusters	of	SNP-

IDP	associations.	For	each	cluster	the	most	significant	association	between	a	SNP	and	an	IDP	is	detailed	by	

the	 chromosome,	 rsID,	 base-pair	 position,	 SNP	 alleles,	 non-reference	 allele	 frequency,	 p-value	 in	 the	

discovery	sample	and	the	replication	p-values.	The	locus	column	details	a	gene	if	the	SNP	is	in	that	gene.	If	

we	found	a	coding	SNP	or	eQTL	in	high	LD	with	the	lead	SNP,	then	this	is	reported	instead.	
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