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ABSTRACT 

The frontoparietal control network (FPCN) plays a central role in executive control. It has been 

predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN 

functional connectivity (FC) across multiple conditions of varying cognitive demands, in order to 

test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on 

hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. 

These two FPCN subsystems exhibited distinct patterns of FC the default network (DN) and the 

dorsal attentional network (DAN). This 2-fold FPCN differentiation was observed across four 

independent data sets, across 9 different conditions (rest and 8 tasks), as well as in meta-analytic 

co-activation patterns. The extent of FPCN differentiation varied across conditions, suggesting 

flexible adaptation to task demands. These findings reveal a flexible and heterogeneous FPCN 

organization that may in part emerge from separable DN and DAN processing streams. 

 

Keywords: frontoparietal control network, default network, dorsal attention network, executive 

control, functional connectivity 
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INTRODUCTION 

Modern neuroscientific investigations have demonstrated that frontoparietal cortices contribute 

to executive control and adaptive behavior via the flexible encoding of task demands and desired 

outcomes, and the top-down modulation of processing in other brain regions
1-8

. Despite this 

progress, we lack a clear understanding of the functional organization of frontoparietal cortex, a 

critical step in discerning the network architecture underlying executive control. Distributed 

frontoparietal regions often activate together in response to diverse task demands, suggesting that 

they may function as a unified, domain general control system, referred to as the frontoparietal 

control network (FPCN) or “multiple demand” system
4
. It is possible, however, that a finer-level 

of organization may be present within the FPCN, with distinct subsystems contributing to 

different types of executive control. Progress has been made in understanding other networks 

(e.g., default network) via fractionating them into distinct subsystems with unique functional 

roles
9
. Existing models have distinguished the FPCN from networks centered on insular and 

cingulate cortices (e.g., “salience” and cingulo-opercular networks)
10,11

. However, possible 

heterogeneity within the FPCN has not been explored in detail.  

 In a seminal paper, Yeo and colleagues
12

 introduced a 7-network parcellation that has had 

a considerable influence on the field of network neuroscience. In this 7-network parcellation, the 

FPCN appears as a uniform network. However, Yeo et al. also reported a fine-grained 17-

network parcellation that has received much less attention in the literature. In this 17-network 

solution, the FPCN appears to be segregated into 2 distinct subsystems (see Yeo et al., Figure 9). 

Recent work suggests that a fractionation of the FPCN can be observed in the data of individual 

participants
13

. These findings represent important empirical evidence for functional 

heterogeneity within this network. However, prior work has not systematically investigated the 

basis for this FPCN fractionation or its functional implications. 

 Here, we used a hypothesis-driven approach together with graph theoretical analyses to 

examine the possibility that the fine-grained organziation of the FPCN may be driven by specific 

connectional patterns as part of a “distance from sensorimotor processing” principle that defines 

global brain organization
14-17

. The FPCN is extensively interconnected with both the default 

network (DN) and dorsal attention network (DAN)
18

―large-scale systems that contribute to 

distinct, and sometimes competing modes of processing
19,20

. The DAN has a close relationship 

with sensorimotor regions
12

 and plays a key role in visuospatial perceptual attention
21,22

. It 

contains neurons with spatially organized receptive fields
22,23

 that are activated during 

saccades
24

, shifts of attention to salient objects in the external environment
25-27

, and during 

reaching actions towards such objects
21

. In contrast, the DN contributes to social, conceptual, 

and associative thought processes that are, in some cases, independent from sensory input
14,28-31

. 

Specifically, the DN is involved in mentalizing
32

, autobiographical memory
33

, spontaneous 

cognition
34-37

, self-referential processing
38

, and high-level aspects of emotion
29,39

. 

Correspondingly, it has been demonstrated that the DN is further removed spatially and 

functionally from sensorimotor processing than is the DAN
14

. Notably, there is also some 

evidence of a gradient of representational abstraction within parts of the FPCN, specifically, the 

lateral prefrontal cortex
40-46

. Based on these findings, we hypothesized that the distinct DN and 

DAN processing streams may be carried forward into the organization and functions of the 

FPCN. While prior work has documented functional connections linking the FPCN to these 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/178863doi: bioRxiv preprint 

https://doi.org/10.1101/178863


3 
 

networks
18

, here we predicted that these connections may exhibit a specific topographical 

organization.  

 We first examined the network architecture of the FPCN using hierarchal clustering to 

determine whether FPCN nodes separate into distinct subsystems based on intra-modular 

(within-network) connections. We then determined whether the observed subsystems exhibit 

topographically organized functional connections with the DN and DAN. That is, we predicted 

that FPCN regions coupled with the DN would be spatially distinct from FPCN regions coupled 

with the DAN. We investigated functional coupling patterns during rest and several different 

tasks, which allowed us to look for differences in coupling patterns that persist across different 

cognitive states. Second, to determine the generalizability of a putative FPCN fractionation 

related to the DN and DAN, we examined FC patterns in three additional independent data sets, 

and examined meta-analytic co-activation patterns across 11,406 neuroimaging studies within 

the Neurosynth database
47

. Third, we examined the temporal evolution of network properties, 

and investigated whether dynamic FC patterns also display evidence of a FPCN fractionation. 

Specifically, we examined whether spatially-specific FPCN interactions correlate with time-

varying changes in the capacity for specialized processing within the DN and DAN, indexed 

with a graph theoretic measure known as the clustering coefficient
48

. We also examined how the 

FPCN fractionation relates to task-related flexibility in FC patterns. Finally, in an exploratory 

analysis, we used Neurosynth topic mapping to identify functional domains that differentially 

predict activation in the subsystems. 

 Our primary data set involved data collected from 24 participants that underwent fMRI 

scanning during six separate conditions designed to elicit mental states similar to those 

frequently experienced in everyday life. These six conditions varied in the amount of abstract 

conceptual thought and perceptual demands, and included: (i) rest; (ii) movie viewing; (iii) 

analysis of artwork; (iv) social preference shopping task; (v) evaluation-based introspection; and 

(vi) acceptance-based introspection (see Methods for details). Additionally, we examined FC 

patterns in three other data sets involving traditional cognitive control tasks that are known to 

activate the FPCN: (i) rule use; (ii) Stroop; (iii) 2-Back working memory. Data were processed 

using standard techniques
49

, and we did not use global signal regression, so as to avoid distorting 

FC values
50

.   

RESULTS 

Evidence for distinct FPCN subsystems  

Graph theory represents complex systems such as the brain as a graph consisting of a set of 

nodes (regions) and edges (connections between nodes), and allows for a quantitative description 

of network properties
48,51

. We calculated the time-series correlation between nodes spanning the 

DAN, DN, and FPCN based on the Yeo parcellation
12

. We first analyzed the organization of 

FPCN nodes based on intra-modular (within-network) FC patterns. We used hierarchical 

clustering to organize nodes into a tree structure based on the similarity of their FC profiles. The 

analysis revealed clear evidence of two distinct clusters or subsystems that we refer to as FPCNA 

and FPCNB (Fig. 1a-b). FPCNA and FPCNB regions were somewhat interleaved, similar to 

observations in prior work
12,13

. To examine whether the distinction between FPCNA and FPCNB 

FC patterns were consistent across participants, we used a linear support vector machine (SVM) 

classifier to distinguish FPCNA and FPCNB intra-modular FC patterns in new participants based 
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on data from other participants. The SVM attempts to find a hyperplane that best separates the 

two classes of data. We used k-fold cross-validation (k=4) where the classifier was trained on 

data from 75% of participants then tested on unlabeled data from the remaining 25% of 

participants. Using this procedure, we found highly accurate (> 90 %) discrimination of the 

FPCNA and FPCNB during every condition in the primary data set (Fig. 1c; Supplementary Fig. 

2). Permutation testing in which FPCN subsystem labels were randomly shuffled revealed 

chance level discrimination (~ 50% accuracy; see Methods). A FPCN fractionation was also 

observed when using an independent set of nodes and network definitions based on the Gordon 

parcellation
52

 (Fig. 1d), or Power parcellation
53

 (Supplementary Fig. 1).  

 

  

Figure 1. FPCN fractionation based on intra-modular connectivity. (a) Hierarchical clustering results based on intra-

modular (within-FPCN) connections. FPCN nodes cluster into two separate families. (b) Surface rendering of FPCN 

nodes from the Yeo parcellation, color-coded based on the hierarchical clustering results in (a). (a) Accuracy of the 

support vector machine classifier in distinguishing FPCNA and FPCNB within-network FC patterns during each 

condition. Dotted line represents baseline accuracy (50%). (d) Surface rendering of FPCN nodes from the Gordon 

parcellation, color-coded based on the hierarchical clustering results in Supplementary Figure 1a. Abbreviations: 

RLPFC, rostrolateral prefrontal cortex; MFG, middle frontal gyrus; aIPL, anterior inferior parietal lobule; MTG, 

middle temporal gyrus; pre-SMA, pre-supplementary motor area; aIFS, anterior inferior frontal sulcus; pIFS, 

posterior inferior frontal sulcus; IPS, intraparietal sulcus; pMTG, posterior middle temporal gyrus; pSFS, posterior 

superior frontal gyrus. 
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 We next examined FPCN clustering patterns based strictly on functional connections 

with the DN and DAN. The results again revealed two distinct subsystems, nearly identical to the 

structure observed based on intra-modular connections (Fig. 2; Supplementary Fig. 3). The 

separation between FPCNA and FPCNB based on FC with the DN and DAN was highly 

consistent across participants, as evidenced by highly accurate discrimination when using a 

linear SVM classifier and 4-fold cross-validation (Fig. 2c; Supplementary Fig. 4). Together, 

these findings reveal heterogeneity within the FPCN based on intra-modular connections and 

based on inter-network connectivity patterns with the DN and DAN.  

 

 

Figure 2. FPCN fractionation based on inter-network connectivity with the DN and DAN. (a) Hierarchical 

clustering results based on inter-modular connections. FPCN nodes cluster into two separate families. (b) Surface 

rendering of FPCN nodes from the Yeo parcellation, color-coded based on the hierarchical clustering results in A. 

(c) Accuracy of the support vector machine classifier in distinguishing FPCNA and FPCNB FC patterns with the DN 

and DAN during each condition. Dotted line represents baseline accuracy (50%). (d) Surface rendering of FPCN 

nodes from the Gordon parcellation, color-coded based on the hierarchical clustering results in Supplementary 

Figure 3a. Abbreviations: RLPFC, rostrolateral prefrontal cortex; MFG, middle frontal gyrus; aIPL, anterior inferior 

parietal lobule; MTG, middle temporal gyrus; pre-SMA, pre-supplementary motor area; aIFS, anterior inferior 

frontal sulcus; pIFS, posterior inferior frontal sulcus; IPS, intraparietal sulcus; pMTG, posterior middle temporal 

gyrus; pSFS, posterior superior frontal gyrus. 
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Differential coupling patterns with the DN and DAN 

To elucidate the underlying basis of the FPCN fractionation, we visualized the network topology 

using the Kamada–Kawai energy algorithm
54

, which produces spring-embedded layouts that 

minimize the geometric distances of nodes based on their topological distances in the graph. 

Nodes are pulled together or pushed apart based on the strength of functional connections rather 

than anatomical locations. The network visualization revealed a clear separation of FPCNA and 

FPCNB nodes during all six conditions in the primary data set, with FPCNA preferentially 

connecting to DN nodes, and FPCNB preferentially connecting to DAN nodes (Fig. 3). The 

group-averaged correlation matrix revealed that FPCNA nodes exhibited positive correlations 

with DN nodes and no correlation or negative correlations with DAN nodes, whereas FPCNB 

nodes exhibited the opposite pattern (Fig. 4a). Furthermore, FC fingerprints (Fig. 4b) and whole-

brain seed-based correlation maps (Supplementary Fig. 5) revealed that spatially adjacent 

FPCNA and FPCNB nodes exhibited highly divergent functional coupling patterns with DN and 

DAN regions. Importantly, differences in FPCNA and FPCNB coupling patterns were not driven 

by spatial proximity to DN and DAN nodes (Supplementary Results). Thus, distinct FPCN 

subsystems can be delineated based on topographically organized functional connections with 

the DN and DAN. 

 

Figure 3. Visualization of the network topology. FPCN nodes are color-coded based on the hierarchical clustering 

analysis of intra-modular connections using the Yeo parcellation nodes. In every context, there is a clear separation 

of FPCN nodes, with FPCNA nodes exhibiting preferential FC with DN nodes, and FPCNB nodes exhibiting 

preferential FC with DAN nodes.  

 

 To quantify coupling patterns, we computed the average strength of FC between each 

pair of networks (Fig. 5). A 2 (FPCNA vs FPCNB) x 2 (DN vs DAN) repeated measures ANOVA 

revealed a robust interaction during every condition [all F1, 23  > 96.83, P's < .001)]. In each case, 

FPCNA-DN coupling was stronger than FPCNB-DN coupling (paired t-test: all t23 > 9.01, P's < 

.05, Bonferroni corrected), whereas FPCNB-DAN coupling was stronger than FPCNA-DAN 

coupling (paired t-test: all t23 > 6.93, P's < .05, Bonferroni corrected). While the DN Core 
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subsystem was our main focus, for completeness we also report relationships involving the other 

subsystems of the DN in Supplementary Figure 6. Interestingly, a “selectivity index” (see 

Methods) revealed that differential coupling was stronger for FPCNA nodes than FPCNB nodes 

[paired t-test: t23 = 4.78, P < .001] (Supplementary Fig. 7).   

 

Figure 4. Differential FPCN subsystem coupling patterns. (a) Group-averaged correlation matrix reflecting mean 

z(r) values across the six task conditions, using Yeo parcellation nodes. (b) FC fingerprints for each FPCN node . 

Top panel: FPCNA nodes demonstrate a clear leftward bias, reflecting stronger FC with DN nodes (yellow text). 

Bottom panel: FPCNB show a slight rightward bias reflecting stronger FC with DAN nodes (green text), though 

there is evidence of FC with DN nodes as well. Critically, FPCNA and FPCNB fingerprints are highly divergent for 

each pair of spatially adjacent nodes (top versus bottom panel fingerprint). Abbreviations: RLPFC, rostrolateral 

prefrontal cortex; MFG, middle frontal gyrus; aIPL, anterior inferior parietal lobule; MTG, middle temporal gyrus; 

pre-SMA, pre-supplementary motor area; aIFS, anterior inferior frontal sulcus; pIFS, posterior inferior frontal 

sulcus; IPS, intraparietal sulcus; pMTG, posterior middle temporal gyrus; pSFS, posterior superior frontal gyrus; 

RMPFC, rostromedial prefrontal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobule; 

SFS, superior frontal suclus; LTC, lateral temporal cortex; FEFs, frontal eye fields; aIPS/SPL, anterior intraparietal 

sulcus/superior parietal lobule; PrCv, ventral precentral cortex; aMT anterior middle temporal region. 

 

Replication and generalizability of differential coupling patterns 

We next examined whether the fractionation would replicate in three independent data sets 

involving demanding cognitive control tasks (rule use; Stroop; 2-Back working memory). We 

found a robust FPCN subsystem x DN/DAN interaction in each task, with FPCNA preferentially 
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coupling with the DN, and FPCNB preferentially coupling with the DAN [rule use: F1,14 = 

109.84, P < .001; Stroop: F1,27 = 189.17, P < .001; N-Back: F1,40 = 108.40, p < .001] (Fig. 5c).  

 

Figure 5. Mean function connectivity between the FPCN subsystems and the DN and DAN, using Yeo parcellation 

nodes. Conditions are separated into: (a) tasks with a perceptual component; (b) tasks without a perceptual 

component; and (c) cognitive control tasks from the replication samples. Data for each participant (black dots), with 

mean (white line), 95% CI (light red and blue shaded areas) and 1 SD (dark red lines). 

 

 To examine the generalizability of the FPCN fractionation we performed an automated 

meta-analysis on coactivation patterns across the wide range of tasks within the Neurosynth 

database
47

. The results demonstrated that there are notable differences in co-activation with other 

parts of the brain between the two FPCN subsystems, consistent with our predictions (Fig. 6). In 

particular, FPCNA co-activates to a greater extent with the default network (e.g., rostromedial 

PFC, posterior cingulate cortex, lateral temporal cortex), than does FPCNB. There was less 

evidence for a distinction with respect to co-activation with the DAN. However, FPCNB does co-

activate to a greater extent with portions of DAN around the superior parietal lobule and frontal 

eye fields.    
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Figure 6. Meta-analytic coactivation contrasts. Red voxels indicate significantly greater coactivation with FPCNB 

than FPCNA. Blue voxels indicate significantly greater coactivation with FPCNA than FPCNB. Images were whole-

brain corrected using a false discovery rate of q = 0.05. 

 

Dynamic evolution of differential coupling patterns and network clustering 

We next asked whether differential coupling is present in dynamic network interactions, and 

whether these interactions correlate with time-dependent changes in the capacity for specialized 

processing within the DN and DAN. We quantified the nature of processing within the DN and 

DAN using a modified version of the clustering coefficient, a graph theoretic measure which 

computes the proportion of neighbors around node i that are also interconnected
48

. When 

normalized by the connection strength (weight) between nodes, the clustering coefficient 

provides an index of the strength of communication within a densely-connected neighborhood 

(which in this case was a specific network; see Methods). Using a sliding window approach, we 

derived a time-series of mean weighted clustering coefficients for the DN and DAN. We also 

derived a time-series of between-network FC values. We then used the Pearson correlation to 

quantify the relationship between time-dependent coupling patterns and clustering strength.  

 As illustrated in Figure 7, DN and DAN within-network processing strength (i.e., mean 

weighted-clustering) varied considerably across time. Critically, these changes were tightly 

coupled with the strength of interactions involving the FPCN subsystems (Fig. 7). Periods of 

time characterized by stronger FPCNA-DN coupling were associated with larger clustering 

coefficients for the DN, whereas temporal variation in FPCNB-DN coupling was unrelated to 

changes in DN clustering. The relationship between FPCNA-DN coupling and DN clustering was 

significantly stronger than the relationship between FPCNB-DN coupling and DN clustering in 

every condition (paired t-test: all t's > 4.17 P's < .05, Bonferroni corrected) with the exception of 

the acceptance-based introspection condition which did not reach significance (P = .26, 

Bonferroni corrected). On the other hand, periods of time characterized by stronger FPCNB-DAN 

coupling were associated with larger clustering coefficients for the DAN, whereas temporal 

variation in FPCNA-DAN coupling was unrelated to changes in DAN clustering. The 

relationship between FPCNB-DAN coupling and DAN clustering was significantly stronger than 

the relationship between FPCNA-DAN coupling and DAN clustering in every condition (paired 

t-test: all t's > 3.96, P's < .05, Bonferroni corrected) with the exception of the shopping (P = .09, 

Bonferroni corrected) and two introspection conditions (evaluation: P = .87, Bonferroni 
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corrected; acceptance: P = .14, Bonferroni corrected) which did not reach significance. Control 

analyses revealed that these patterns were unrelated to motion (Supplementary Results). Thus, 

dynamic interactions between FPCNA and the DN were specifically associated with temporal 

variation in the strength of communication within the DN, whereas dynamic interactions 

between FPCNB and the DAN were specifically associated with temporal variation in the 

strength of communication within the DAN. These findings reveal clear structure in how 

network properties evolve across time, and reinforce the idea that FPCN organization has a close 

relationship with the DN and DAN.  

 

 

Figure 7. Dynamic network interactions and clustering. (a) Example participant data from the Stroop task 

demonstrating the relationship between temporal fluctuations in FPCN interactions with the DN and DAN and mean 

weighted clustering strength. (b) Mean correlation between changes across time in clustering and between-network 

FC strength across participants. Fluctuations in FPCNA-DN FC are positively correlated with fluctuations in DN 

clustering strength, and fluctuations in FPCNB-DAN FC are positively correlated with fluctuations in DAN 

clustering strength. Error bars represent between-subject SEM.   

 

FPCN fractionation and task-related flexibility 

Prior work has shown that FPCN FC patterns exhibit a high-level of task-related flexibility
5,7,55

. 

We examined how differential coupling patterns relate to this type of flexibility. We computed a 

task-related “flexibility index” reflecting the extent to which FC patterns changed more across 

conditions than within conditions from the first half to the second half. This measure of 
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flexibility pertains to context and is different from the measure used by Bassett and colleagues 

which pertains to flexibility in the temporal domain
56

. One sample t-tests revealed that both 

subsystems exhibited a significant flexibility index, revealing task-dependent reconfiguration of 

FC patterns [FPCNA: t23 = 5.62, P < .001; FPCNB: t23 = 8.86, P < .001] (Supplementary Fig. 

8a). Interestingly, FPCNB demonstrated stronger task-related flexibility than FPCNA [paired t-

test: t23 = 2.25, P = .043]. Not only did overall FC with the DN and DAN change across 

conditions for both subsystems, but so did the magnitude of the “selectivity index”―the relative 

strength of DN to DAN connections (Supplementary Fig. 8b). Interestingly, the “selectivity 

index” was weakest during the traditional cognitive control tasks (Supplementary Fig. 8b). 

Thus, while FPCNA and FPCNB exhibited differential coupling patterns in every condition, the 

magnitude of this effect was sensitive to task demands. The right IFS/IFJ node of FPCNB 

exhibited the greatest FC flexibility (Supplementary Fig. 8c-e).   

Are FPCNA and FPCNB subsystems of the same network or extensions of the DN and 

DAN? 

To determine whether FPCNA and FPCNB should be considered subsystems within the same 

network or extensions of the DN and DAN we compared mean between-network and between-

subsystem FC patterns using paired t-tests. During the traditional cognitive control tasks, FPCNA 

and FPCNB exhibited stronger coupling with each other than with the DN (rule use: t14 = 3.21, P 

= .057, Bonferroni corrected; Stroop: t27 = 6.16, P < .001, Bonferroni corrected; 2-Back: t41 = 

4.69, P < .001, Bonferroni corrected) or DAN (rule use: t14 = 7.41, P < .001, Bonferroni 

corrected; Stroop: t27 = 7.67, p < .001, Bonferroni corrected; 2-Back: t41 = 5.05, P < .001, 

Bonferroni corrected) (Fig. 8). However, the picture is less clear during the other conditions that 

involved a range of processing demands. Coupling between FPCNA and FPCNB was weaker than 

FPCNA-DN coupling during the movie (t22 = 4.30, P < .05, Bonferroni corrected) and shopping 

conditions (t23 = 3.27, P < .05, Bonferroni corrected) but not different during the other conditions 

(P's > .05, Bonferroni corrected). Coupling between FPCNA and FPCNB was stronger than 

FPCNB-DAN coupling during rest (t23 = 9.82, P < .05, Bonferroni corrected), evaluation (t23 = 

5.15, P < .05, Bonferroni corrected), and acceptance (t23 = 7.59, P < .05, Bonferroni corrected), 

but not different during the other conditions (P's > .05, Bonferroni corrected). These findings 

suggest that the extent to which the FPCNA and FPCNB cluster together versus with the 

DN/DAN depends on current processing demands. 

 

Figure 8. Mean between-network FC in each condition.   
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Meta-analytic functional differentiation. To examine whether the FPCN subsystem 

distinctions in network architecture are functionally meaningful, we used a naive Bayes classifier 

to determine which Neurosynth topics were preferentially associated with each subsystem. We 

plotted the loading of each topic onto each subsystem along with bootstrapped 95% confidence 

intervals (Fig. 9; Supplementary Fig 9). As expected, both subsystems showed high loadings to 

executive function topics including working memory, switching, and conflict. Notably, there 

were also clear distinctions. The topics “mentalizing” and “emotion” loaded more strongly onto 

FPCNA than FPCNB. In contrast,  “attention”, “action”, “reading”, and “semantics” loaded more 

strongly onto FPCNB than FPCNA. These differences are consistent with the idea that FPCNA is 

biased toward functions that are associated with the DN, whereas FPCNB is biased toward 

functions that are associated with the DAN.  

 

Figure 9. Meta-analytic functional preference profile of FPCN subsystems. We trained naïve Bayes classifiers to 

predict the presence or absence of activation in each FPCN subsystem using a set of 60 psychological topics and 

plotted topics that were significantly positively associated with at least one subsystem. Strength of association is 

measured in log odds-ratio (LOR) with values greater than 0 indicating that the presence of that topic in a study 

positively predicts activity in a subsystem. Ninety-five percent confidence intervals derived using bootstrapping are 

indicated, and topics differentially associated with each system are highlighted in orange. 

 

DISCUSSION 

The current study provides novel evidence of highly reliable heterogeneity within the FPCN that 

is related to connectional patterns and functions associated with the DN and DAN―large-scale 

systems that contribute to internally-oriented thought and visuospatial perceptual attention, 

respectively. To summarize: (i) hierarchical clustering revealed a clear separation of FPCNA and 

FPCNB nodes based on intra-modular connections and inter-modular connections with the DN 
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and DAN; (ii) a linear SVM classifier was able to distinguish FPCNA and FPCNB FC patterns 

with remarkable accuracy; (iii) differential coupling patterns were replicated in three additional 

data sets; (iv) Neurosynth meta-analytic coactivation patterns revealed differential task-based 

coactivation with the DN and DAN; (v) dynamic network interactions revealed that the FPCN 

fractionation relates to temporal variation in DN and DAN clustering patterns; and (vi) there are 

differences in the task domains that predict activation in FPCNA and FPCNB. These findings 

place the organization and functions of the FPCN within the broader context of the brain's 

network architecture, and offer a novel perspective on the systems-level network circuitry 

underlying executive control. 

Functional organization of the FPCN 

Brain networks can be understood within the context of a hierarchical gradient of processing. At 

one extreme unimodal sensorimotor regions process concrete sensory and action-related 

information, while at the other extreme heteromodal regions elaborate upon such information, 

allowing for abstract thought, reasoning, and mental simulations of events
14-16

. Recently, it has 

been shown that the DN occupies a position that is further removed from sensorimotor 

processing than the DAN
14

. Our findings suggest that this distinction may be carried forward into 

the organization of the FPCN. We found that both FPCN subsystems were associated with topics 

related to core executive functions (e.g., working memory, conflict). However, FPCNA 

demonstrated a relative bias towards the DN in terms of connectivity and functions, whereas 

FPCNB demonstrated a relative bias towards the DAN in terms of connectivity and functions.  

 The DAN is activated when attention is directed in a top-down manner to task-relevant 

objects and locations, and also when intrinsically salient stimuli are detected
21-23,25,27,57,58

. Our 

findings suggest a close relationship between FPCNB and the DAN in the network topology. 

Moreover, we found that FPCNB was associated with functional domains that are known to 

activate the DAN. Specifically,  FPCNB was significantly more associated with topics related to 

attention and action than FPCNA. Prior work suggests that FPCNB contributes to cognitive 

control by flexibly encoding task-relevant information including task rules (e.g., stimulus-

response mappings) and their relationship to expected reward outcomes
2-4,6,59,60

. Notably, FPCNB 

regions including the inferior frontal junction play a causal top-down role in modulating the 

DAN and perceptual attention
61,62

. One possibility is that FPCNB represents information about 

task context in working memory and that the DAN translates this information into commands to 

guide the deployment of spatial attention to specific objects and locations
61,62

. By exerting top-

down control over the DAN, FPCNB may ensure that attention remains focused on task-relevant 

perceptual information, rather than salient, yet irrelevant stimuli, or task-irrelevant thoughts. 

Thus, the role of FPCNB in executive control may be related to the abstraction, monitoring, and 

manipulation of sensorimotor contingencies to facilitate moment-to-moment interactions with 

the environment.  

 In contrast, FPCNA regions are activated when attention is directed towards one’s own 

thoughts and away from perceptual inputs
40,63,64

, for example, during tasks that require meta-

cognitive awareness
63,65,66

, relational reasoning
67

, multi-tasking and complex task sets
43,60,68-70

, 

stimulus-independent and abstract thinking
34,41,64,71-73

, mentalizing
74

, episodic memory
55,75

, future 

planning
5
, and prospective memory

76
. Consistent with this, we found that FPCNA was 

preferentially coupled with the DN, which plays a role in bringing conceptual/associative 

knowledge to bear on current thought and perception
28-30,37,77

. Additionally, FPCNA was 
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associated with functional domains that are known to activate the DN. Specifically, FPCNA was 

significantly more associated with topics related to mentalizing and emotion than FPCNB. Thus, 

FPCNA may preferentially contribute to executive control in the context of introspective 

processes, and enable modes of thought that are relatively free from the constraints of concrete 

sensorimotor interactions with the environment. A recent framework
37

 suggests that FPCNA (in 

particular the rostrolateral prefrontal cortex), may contribute to the abstract “top-level 

management” of thought, exerting a general constraint that keeps one's focus on task-relevant 

material, yet allowing for some degree of spontaneous variability in thought. In this way, FPCNA 

may play a role in regulating internal thoughts and emotions in service of social reasoning, 

mental time travel (e.g., future goal planning), and metacognitive awareness of emotional states. 

It may also contribute to the performance of traditional cognitive control tasks by allowing 

representations of abstract task rules and temporally extended contexts to guide the 

implementation of more concrete rules and actions
42,43,78,79

.  

 In every condition, including demanding cognitive control tasks (rule use, Stroop, 2-

Back), we found robust coupling between FPCNA and the DN. Consistent with this, a recent 

study found encoding of task-relevant information by the DN and increased activation during 

demanding rule switches, suggesting that it may contribute to some forms of cognitive control 

that involve activating different cognitive contexts
80

. We did find, however, that the magnitude 

of FPCNA-DN coupling was reduced during the cognitive control tasks relative to other 

conditions, and was significantly lower than FPCNA-FPCNB coupling. FPCNA was strongly 

aligned with the DN across the six conditions in the primary data set which were designed to 

elicit mental states that resemble those frequently experienced in everyday life. Thus, the 

diminished relationship with the DN during the traditional cognitive control tasks may represent 

the exception rather than the rule. FPCNA may typically operate as an extension of the DN, but 

become co-opted by FPCNB when it is necessary to perform highly complex perceptually-

focused tasks. Thus, while FPCNB may have evolved as an extension of the DAN processing 

stream to allow for the regulation of visuospatial perception and action during physical 

interactions with the environment (e.g., tool use), FPCNA may have evolved as an extension of 

the DN processing stream to allow for the regulation of introspective processes such as complex 

social reasoning. This proposal aligns with suggestion that there is an intimate relationship 

between brain evolution, including expansion of the anterior prefrontal cortex in humans
81

, and 

the emergence of complex social life
82

. However, the functional distinction suggested here is just 

a starting point; a more elaborate theoretical framework will be required as work on the FPCN 

progresses.  

Relation to other models of executive control and frontoparietal organization 

According to one model, the FPCN is critical for trial-by-trial adjustments in control, whereas a 

cingulo-opercular network is critical for the maintenance of task-goals across trials, supporting a 

balance between flexibility and stability
1
. Rapid adjustments in control may occur via flexible 

task-dependent shifts in FPCN coupling patterns
5,7,55

. Another model suggests that the “salience” 

network initiates shifts in modes of information processing related to the FPCN and DN
83

. Our 

findings suggest an orthogonal dimension of executive control, with different zones within the 

FPCN involved in visuospatial attention and more abstract thought processes, respectively. This 

division of labor between subsystems of the FPCN is broadly compatible with the idea of a 

rostro-caudal gradient in the lateral PFC based on abstractness of representational content
40-46

. 
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Here, we extend this idea to the large-scale network organization within which the lateral PFC is 

embedded. Recent work suggests a “distance from sensory-motor processing” organizational 

principle, with more complex and abstract processing occurring in regions that are physically 

remote from primary sensory and motor cortices
14,16

. Our findings suggest that FPCNA may be 

further removed from sensory-motor processing than FPCNB. Consistent with this, we observed 

that FPCNA but not FPCNB nodes were negatively correlated with primary sensory-motor 

regions (Supplementary Fig. 5). Thus, a general principle of functional organization may apply 

across different brain networks
14

 and within the FPCN itself.  

 Other work has emphasized that the FPCN is a flexible hub that coordinates processing 

across other networks in a task-dependent manner
5,7,84

. In the current study, we found that 

although FPCNA and FPCNB were aligned with the DN and DAN, respectively, there was 

evidence that FC patterns flexibly adapted to task demands. There were overall shifts in FPCNA 

and FPCNB coupling patterns, as well as shifts in the relative “preference” of coupling with the 

DN versus DAN. Thus, while FPCNA can be distinguished from FPCNB, this reflects a relative 

and flexible difference in FC patterns rather than an absolute and fixed aspect of network 

architecture. The organization noted here is thus fully compatible with findings of task-

dependent reconfiguration of FPCN FC patterns. Interestingly, we observed a weaker “selectivity 

index” for FPCNB, yet greater task-related flexibility across the task conditions examined here. 

This suggests that FPCNB may have access to information from both the DN and DAN, and may 

be positioned to flexibly mediate interactions between more concrete visuospatial and more 

abstract information. It could be the case that task-related flexibility was lower for FPCNA 

because it is exclusively interconnected with multimodal regions that process highly abstract 

information, and may not be equipped to interact with many regions. However, a different 

battery of tasks could potentially reveal greater FC flexibility in FPCNA than FPCNB.      

Limitations 

One of the challenges in examining heterogeneity within the FPCN it how to define this network 

to begin with. Rather than select a single method, we used nodes based on three different 

parcellations (Yeo, Gordon, and Power) that identified the FPCN as a functional unit on the level 

of other functional systems (e.g., visual and somatomotor networks). We then looked for finer-

grained heterogeneity within this system. Notably, although the FPCN was defined slightly 

differently across parcellations, we observed a fractionation in each case. A second issue is that 

our range of tasks was not exhaustive making it possible that different network interactions could 

be observed in some contexts (e.g., positive coupling between the FPCNA and DAN). One 

instance may be perceptual metacognition, which is known to rely on parts of the FPCNA 

including the rostrolateral prefrontal cortex
65

. Additionally, it is possible that the FPCN may not 

fractionate, but rather, function as a domain general resource during demanding tasks that require 

considerable effort
4
. However, our findings do suggest that a FPCN fractionation can be 

observed in many diverse contexts. Finally, our analysis is limited by the reliance on pre-defined 

network boundaries and the assumption of discrete brain clusters/networks. Any brain 

parcellation is a dimensionality reduction on a complex space, and should be viewed as a general 

guiding principle rather than a set of fixed and precise brain network demarcations. Moreover, 

the network affiliation of a given brain region can shift across time and context
56,85

. That being 

said, our results provide evidence that spatially distinct parts of the FPCN―as defined using 
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three different parcellations―are differentially coupled with the DN and DAN across a range of 

contexts.    

Conclusions  

Executive control processes are multifaceted and likely rely on multiple interacting, yet distinct 

neural systems. The current work makes a step forward in discerning the network basis of 

executive control and may offer new predictions about clinical deficits in control functions. For 

example, altered connectivity between the FPCNA and DN may interfere with regulating abstract 

information (e.g., self-referential thoughts) in conditions such as depression, whereas altered 

connectivity between the FPCNB and DAN may interfere with regulating visuospatial attention 

(e.g., focusing on goal-relevant objects) in conditions such as ADHD. More broadly, our results 

are consistent with the notion that brain network organziation may, in part, reflect a gradient of 

representational abstraction.   

 

METHODS 

Participants. Participants in the primary data set were 24 healthy adults (Mean age = 30.33, SD 

= 4.80; 10 female; 22 right handed), with no history of head trauma or psychological conditions. 

The sample size was chosen based on norms in fMRI research. The ability to detect true effects 

was assessed using independent data sets (see below for details). This study was approved by the 

UBC clinical research ethics board, and all participants provided written informed consent, and 

received payment ($20/hour) for their participation. Due to a technical error, data for the movie 

and acceptance-based introspection conditions were not collected for one participant. At the end 

of scanning, one participant reported experiencing physical discomfort throughout the scan. 

Similar results were obtained with or without inclusion of this participant's data, so they were 

included in the final analysis. 

Experimental task conditions. The primary data set included six ecologically valid task 

conditions in separate six-minute fMRI runs. Each task condition was designed to elicit a 

continuous mental state and did not require any responses. (1) Resting state. Participants lay in 

the scanner with their eyes closed and were instructed to relax and stay awake, and to allow their 

thoughts to flow naturally. (2) Movie watching. Participants watched a clip from the movie Star 

Wars: Return of the Jedi and were instructed to pay attention to the actions of the characters, and 

also to what they may be thinking and feeling. (3) Artwork analysis. Participants viewed four 

pieces of artwork in the scanner, each for 90 seconds. These pieces were pre-selected by 

participants, and during scanning, they were instructed to pay attention to the perceptual details 

of the art, their inner experience (i.e., thoughts and feelings), and what each image meant to them 

personally. (4) Shopping task. While in the scanner, participants viewed a pre-recorded video 

shot from a first-person perspective of items within several stores in a shopping mall. They were 

told to imagine themselves going through the mall in order to find a birthday gift for a friend, 

and to analyze each in terms of whether it would be a suitable birthday gift based on the 

preferences of their friend. (5) Evaluation-based introspection. Participants were asked to think 

about a mildly upsetting issue involving a specific person in their life (e.g., a friend, roommate, 

sibling, or partner), and asked to reflect on what the person and situation means to them, what 

has happened in the past and may happen in the future, and to analyze everything that is good or 
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bad about the situation. (6) Acceptance-based introspection. Participants were asked to reflect on 

the same upsetting issue as in the previous case, but this time were instructed to focus on 

moment-to-moment viscero-somatic sensation, and to accept these sensations without any 

judgment or elaborative mental analysis.  

fMRI data acquisition. fMRI data were collected using a 3.0-Tesla Philips Intera MRI scanner 

(Best, Netherlands) with an 8-channel phased array head coil with parallel imaging capability 

(SENSE).  Head movement was restricted using foam padding around the head.  T2*-weighted 

functional images were acquired parallel to the anterior commissure/posterior commissure 

(AC/PC) line using a single shot gradient echo-planar sequence (repetition time, TR = 2 s; TE = 

30 ms; flip angle, FA = 90°; field of view, FOV = 240 mm; matrix size = 80 × 80; SENSE factor 

= 1.0).  Thirty-six interleaved axial slices covering the whole brain were acquired (3-mm thick 

with 1-mm skip).  Each session was six minutes in length, during which 180 functional volumes 

were acquired. Data collected during the first 4 TRs were discarded to allow for T1 equilibration 

effects. Before functional imaging, a high resolution T1-weighted structural image was acquired 

(170 axial slices; TR = 7.7 ms; TE = 3.6 ms; FOV = 256 mm; matrix size = 256 × 256; voxel 

size = 1 x 1 x 1 mm; FA = 8°). Total scan time was ~ 60 minutes. Head motion was minimized 

using a pillow, and scanner noise was minimized with earplugs.  

Preprocessing. Image preprocessing and analysis were conducted with Statistical Parametric 

Mapping (SPM8, University College London, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8). The time-series data were slice-time corrected 

(to the middle slice), realigned to the first volume to correct for between-scan motion (using a 6 

parameter rigid body transformation), and coregistered with the T1-weighted structural image. 

The T1 image was bias-corrected and segmented using template (ICBM) tissue probability maps 

for gray/white matter and CSF.  Parameters obtained from this step were subsequently applied to 

the functional (re-sampled to 3 mm
3
 voxels) and structural (re-sampled to 1 mm

3
 voxels) data 

during normalization to MNI space. The data were spatially-smoothed using an 8-mm
3
 full-width 

at half-maximum Gaussian kernel to reduce the impact of inter-subject variability in brain 

anatomy.   

 To address the spurious correlations in resting-state networks caused by head motion, we 

identified problematic time points during the scan using Artifact Detection Tools (ART, 

www.nitrc.org/projects/artifact_detect/). Images were specified as outliers according to the 

following criteria: translational head displacement greater than 0.5 mm from the previous frame, 

or rotational displacement greater than .02 radians from the previous frame, or global signal 

intensity > 4 standard deviations above the mean signal for that session. The mean number of 

identified outliers was 4.93 (range: 0 - 15) and did not differ across conditions (F < 1). Each 

participant had at least 5.3 minutes of non-outlier time points. Outlier images were not deleted 

from the time series, but rather, modeled in the first level general linear model (GLM) in order to 

keep intact the temporal structure of the data. Each outlier was represented by a single regressor 

in the GLM, with a 1 for the outlier time point and 0 elsewhere.  

 Using CONN software
49

, physiological and other spurious sources of noise were 

estimated and regressed out using the anatomical CompCor method 
86

. Global signal regression 

was not used due to fact that it mathematically introduces negative correlations (Murphy et al., 

2009). The normalized anatomical image for each participant was segmented into white matter 

(WM), gray matter, and CSF masks using SPM8. To minimize partial voluming with gray 
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matter, the WM and CSF masks were eroded by one voxel. The eroded WM and CSF masks 

were then used as noise ROIs. Signals from the WM and CSF noise ROIs were extracted from 

the unsmoothed functional volumes to avoid additional risk of contaminating WM and CSF 

signals with gray matter signals. The following nuisance variables were regressed out: three 

principal components of the signals from the WM and CSF noise ROIs; head motion parameters 

(three rotation and three translation parameters) along with their first-order temporal derivatives; 

each artifact outlier image; linear trends. A band-pass filter (0.009 Hz < f < 0.10 Hz) was 

simultaneously applied to the BOLD time series during this step.  

Definition of networks and nodes. The nodes for most of our analyses were anatomical regions 

of interest (ROIs) created by Yeo and colleagues
87,88

 based on their 17-network parcellation 
12

. 

The 17-network parcellation was split into a set of 114 cortical regions composed of roughly 

symmetric territories in the left and right hemispheres, and were defined in relation to network 

boundaries, sulcal patterns, and confidence maps. For each network, spatially connected regions 

were combined to form a single ROI, whereas spatially disconnected regions became separate 

ROIs. Vertices near between-network boundaries were peeled back. The current analysis focused 

on 37 ROIs spanning the DN specifically the DN Core subsystem
29

, DAN, and FPCN. For each 

participant, we extracted the mean timeseries from participants' unsmoothed data, to minimize 

the chance of signal contamination across ROIs. The residual timeseries (following nuisance 

regression) for each ROI was used to compute condition-specific correlation matrices. Where 

noted, we also analyzed data using DN, DAN, and FPCN nodes from the Gordon and Power 

parcellations, using the same preprocessing methods. For the analysis with the Gordon nodes 

(obtained from: http://www.nil.wustl.edu/labs/petersen/Resources.html), we derived the network 

structure empirically by submitting the group averaged correlation matrix (333 x 333 nodes) 

during rest to the Louvain community detection algorithm as implemented by the Brain 

Connectivity Toolbox
48

. The algorithm was run 1000 times, with the resolution parameter, 

gamma, set to 2.1. We then we computed a co-classification matrix reflecting the probability that 

each pair of nodes were assigned to the same module across iterations. We then ran the 

community detection algorithm on this co-classification matrix to determine the final modular 

structure, which resulted in a 9-network parcellation with 139 nodes spanning our networks of 

interest. For the analysis with the Power nodes, we used the nodes corresponding to DN, DAN, 

and FPCN in their network parcellation
53

 (94 ROIs; 5mm spheres created around MNI space 

coordinates, obtained from: http://www.jonathanpower.net/2011-neuron-bigbrain.html).  

Hierarchical clustering analysis. We used hierarchical clustering to organize nodes into a tree 

structure based on the similarity of their FC profiles, such that the nodes within each cluster are 

as similar as possible, and different clusters are as dissimilar as possible. We first created a 

group-averaged correlation matrix reflecting mean FC across all six conditions in the primary 

data set. We then extracted the subgraph composed of within-FPCN FC values and the subgraph 

composed of FPCN connections with the DN and DAN. These subgraphs were submitted to the 

hierarchical clustering algorithm (Cluster v3.0, 1988, Stanford University) which used the 

average linkage method to cluster nodes. In this method, the distance between two clusters is 

defined as the average distance between each point in one cluster to every point in the other 

cluster. Spearman correlation was used to determine distance. Cluster graphs were viewed with 

Java TreeView (v1.1.6r4 http://jtreeview.sourceforge.net).  
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SVM classification analysis. We used a support vector machine (SVM) classifier to discern 

whether differences in FPCNA and FPCNB FC patterns were generalizable across participants. 

This analysis used nodes from the Yeo parcellation, and FPCN nodes were labeled as subsystem 

A or B based on the results of the intra-modular hierarchical clustering analysis. This analysis 

was not designed to test the strength of group level results with respect to FPCN FC patterns; 

rather it was designed to test consistency across participants (i.e., the extent to which FC patterns 

in a subset of participants would generalize to a different subset). The SVM classifier was 

implemented with RapidMiner software
89

. The cost parameter, C, was set to 1, and the 

convergence epsilon was set to .001. Our main analysis used a linear kernel, however, we also 

report results with an ANOVA kernel to demonstrate the robustness of our results 

(Supplementary Figs. 2 and 4). For each individual, we created a vector consisting of FPCNA 

correlations with all FPCN nodes (excluding self connections), and a vector consisting of FPCNB 

correlations with all FPCN nodes (excluding self connections), for the intra-modular analysis. 

For the inter-modular analysis we created a vector consisting of correlations between FPCNA 

nodes and DN and DAN nodes, and a vector consisting of correlations between FPCNB nodes 

and DN and DAN nodes. We excluded interhemispheric correlations which are likely to reflect 

indirect functional interactions. Additionally, we did not include correlation values for one 

FPCNA region (pre-SMA), so that the FPCNA and FPCNB FC vectors would be equal in length. 

The correlation vectors served as input features (73 for the intra-modular analysis, and 76 for the 

inter-modular analysis) and were assigned a value of 1 or −1 to specify the FPCN subsystem to 

which they belonged. We tested the accuracy of the classifier using 4-fold cross-validation. The 

data were split into 4 equal-sized groups, with 75% of the data used for training the classifier, 

and the left-out 25% used for testing the classifier. This process was repeated 4 times until every 

participant was used in the testing set once. Participants’ data could not appear in both the testing 

and training set in the same iteration, and we did not perform any type of iterative optimization 

or feature selection. Thus, our analysis method should minimize the chance of overfitting
90

. 

Notably, when performing the classification analysis 50 times with network labels randomly re-

shuffled, mean classification accuracy was at chance level in every condition for the intra-

modular analysis (Rest: 50.5%; Movie: 50.0%; Artwork: 49.4%; Shopping: 49.1%; Evaluation: 

49.3%; Acceptance: 48.4%) and for the inter-network analysis (Rest: 50.7%; Movie: 51.2%; 

Artwork: 48.3%; Shopping: 49.4%; Evaluation: 47.4%; Acceptance: 49.6%). 

Network visualization. For each task, the group averaged FC matrix was thresholded to retain 

connections with z(r) > .15, and then submitted to the Kamada–Kawai energy algorithm, 

implemented in Pajek software. This algorithm produces spring-embedded layouts that minimize 

the geometric distances of nodes based on their topological distances in the graph. Well-

connected nodes are pulled towards each other, whereas weakly-connected nodes are pushed 

apart in a manner that minimizes the total energy of the system.  

Comparing mean between-network FC. After Fisher r-to-z transforming the correlation 

values, we averaged the z(r) values reflecting pairwise connections between the frontoparietal 

networks and the DAN and the DN, using Yeo parcellation nodes. We calculated average FC 

separately for the left and right hemispheres, and then collapsed across hemisphere, given the 

lack of statistical difference (i.e., there was no effect of hemisphere within any condition; all P's 

> .05).  
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Replication analyses. In all cases, data were analyzed using the same preprocessing methods as 

noted earlier. Rule-based cognitive control task. This data set (N = 15) has been described in full 

elsewhere
3
. Participants used one of two rules (male/female face discrimination or 

abstract/concrete word meaning discrimination) to respond to visual stimuli on each trial. On 

some trials subjects could earn money by responding quickly and accurately. The rules switched 

from trial to trial requiring participants to actively represent and flexibly switch between the 

different rules. Data from a single run (run 1 of 6) were analyzed. Stroop Task. This data set (N = 

28) was acquired from the OpenfMRI database (accession number ds000164)
91

. Participants 

performed the color-word version of the Stroop task with three conditions (congruent, 

incongruent, and neutral) and were instructed to ignore the meaning of the printed word and 

respond to the ink color in which the word was printed. Data were acquired in a single run. N-

Back working memory task. This data set (N = 41) was acquired from the OpenfMRI database 

(accession number ds000115)
92

. We analyzed the data from the task period during the 2-Back 

block in control participants. The task was to determine whether each letter was the same as the 

letter shown two trials previously.    

Neurosynth meta-analytic analyses. For the following two analyses, we used Neurosynth 

(www.github.com/neurosynth/neurosynth-data; version 0.6)―a diverse meta-analytic database 

of 11,406 fMRI studies spanning a wide range of published neuroimaging studies. Each study in 

the database is recorded as a set of peak activations in MNI coordinates, in addition to 

normalized frequencies of each word used in the abstract. Jupyter notebooks with analysis code 

and data are available at: https://github.com/adelavega/fpcn_fractionation. The analysis methods 

used here are similar to those introduced in two previous publications
93,94

, albeit with masks of 

each FPCN subsystem based on the Yeo 17-network parcellation, which was replicated in our 

data set using hierarchical clustering on the FPCN nodes.  

 Meta-analytic co-activation maps. To identify differential co-activation patterns across 

the brain between the two FPCN sub-networks, we performed a meta-analytic contrast between 

studies that activated FPCNA and studies that activated FPCNB. The resulting images identify 

regions of the brain that were more likely to co-activate with one subsystem or the other. To 

determine statistical significance, we performed a two-way χ
2
test, and used the False Discovery 

Rate (q < 0.05) to threshold the resulting images. For display purposes, the resulting images were 

binarized and visualized using the pysurfer Python library (https://pysurfer.github.io/).  

 Meta-analytic functional preference profiles. We generated multivariate functional 

profiles for each FPCN subsystem by determining which psychological functions best predicted 

activity for each. We employed a set of 60 topics—which concisely and robustly represent the 

semantic information in Neurosynth—derived using latent dirichlet allocation (LDA) topic-

modeling
95,96

. For each FPCN subsystem, we selected a set of studies that activated at least 5% 

of voxels within its mask, and a set of studies that did not. We then trained a naives Bayes 

classifier to differentiate the two sets of studies based on loading of each topic onto each study in 

the database. From the fitted classifiers, we extracted the log odds-ratio (LOR) of a topic being 

present in activate studies versus inactive studies. In other words, we calculated how useful each 

semantic topic was in determining if a study reported activation within a given FPCN subsystem. 

We determined the 95% confidence interval of the LOR for each topic using bootstrapping, by 

sampling with replacement from the full set of studies 1000 times. This allowed us to determine 
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(in a post-hoc, exploratory analysis) if topics were significantly associated with each network, 

and if these associations differed between FPCNA and FPCNB. 

Task-related flexibility. The flexibility index was computed as the similarity of FC patterns 

within a given condition (from the first half to the second half) minus the similarity of FC 

patterns between conditions. A larger difference implies that FC patterns changed more across 

than within conditions, implying task-related flexibility. For each participant and condition, we 

extracted and vectorized FC values (Fisher transformed correlation values) reflecting FPCNA 

correlations with DN and DAN nodes, and values reflecting FPCNB correlations with DN and 

DAN nodes. We used the Pearson correlation as a measure of the similarity of the FC vectors for 

each pair of conditions. These correlation values were Fisher transformed and averaged, to arrive 

at a single value reflecting the similarity of FC across conditions for the FPCNA and a single 

similarity value for the FPCNB. We additionally computed the similarity of FC patterns within 

each condition from the first half (first three minutes) to the second half (last three minutes) of 

each condition. By subtracting between-condition from within-condition similarity values, this 

provides a selective measure of the effect of condition on FC patterns―our measure of 

flexibility. Notably, this is a conservative estimate of flexibility given that less data was used in 

calculating within-context FC values, likely resulting in less reliable and lower similarity values. 

To determine the flexibility of FC for each FPCN ROI, we computed the variability (SD) of FC 

across contexts with each DN and DAN node, and then averaged across these values.  

Dynamic FC analysis. We conducted a novel dynamic FC analysis to examine the possibility of 

a FPCN fractionation within the context of dynamic network interactions. Prior work has shown 

that functionally-relevant connectivity patterns can be isolated from ~ 60 seconds of data. To 

examine time-varying connectivity patterns, the data were filtered (0.0167 Hz < f < 0.10 Hz) 

based on the window size of 60-seconds in order to limit the possibility of detecting spurious 

temporal fluctuations in FC
97

. Within each window, we computed the mean strength of between-

network FC for each pair of networks, thus providing time-series of between-network FC values, 

and we also computed the mean weighted clustering coefficient for the DN and DAN, providing 

a time-series of clustering values. The weighted clustering coefficient,   , quantifies the 

potential for communication within the immediate neighborhood of a node, and is defined as the 

proportion of neighbors around node i that are also interconnected, normalized by the average 

“intensity” of connections. It is computed as:  

   
 

 
 

   
 

        
   

 

where   
  is the number of triangles around node i (i.e., a set of three nodes that are all 

interconnected), normalized by their intensity (edge weight), and    is the degree (total number 

of connections) of node i. We modified the computation of the weighted clustering coefficient so 

that only within-network nodes were considered. This served two purposes: (i) it allowed for a 

meaningful interpretation of resulting clustering values; and (ii) the standard clustering 

coefficient would have resulted in an artificial correlation between dynamic interactions and 

changes in clustering strength. For example, because DN nodes are connected with FPCNA 

nodes, they would normally be included in the computation of the clustering coefficient for each 

DN node. However, this would create a spurious positive correlation between DN clustering and 

FPCNA-DN FC strength. Thus, to compute our modified weighted clustering coefficient, we 
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extracted relevant within-network connections; set self-connections and negative FC values to 0; 

normalized all connections by the strongest weight (from the set of all matrices) such that weight 

magnitudes were rescaled to the range [0,1]; computed the weighted clustering coefficient for 

each node using the Brain Connectivity Toolbox; averaged clustering values across nodes within 

a given network. Mean weighted clustering was computed for each window. For each 

participant, we then calculated the correlation between the time-series of between-network FC 

values and clustering coefficient values. We then fisher r-to-z transformed these correlations to 

allow for statistical testing at the group level.  

Statistical Analyses. For all analyses, reported P-values were two-tailed and corrected for 

multiple comparisons as noted. In the machine learning analyses we emphasized classification 

accuracy which is easily interpreted since baseline accuracy was 50% (with a balanced class 

size), and did not compute statistical significance. To test for differential coupling patterns, we 

submitted mean FC values to repeated measures ANOVAs and follow-up paired t-tests with P-

values that corrected for the number of comparisons (6 with respect to the DN and 6 with respect 

to the DAN). Accordingly, P-values reported as statistically significant at P < .05 Bonferroni 

corrected were below the threshold of P = .008. For the coactivation analysis, images were 

whole-brain corrected using a false discovery rate of q = 0.05. For the dynamic FC analysis, we 

used paired t-tests to compare FPCNA and FPCNB relationships. In this case there were 9 

comparisons relevant to the DN and 9 comparisons relevant to the DAN, so P-values reported as 

statistically significant at P < .05 Bonferroni corrected were below the threshold of P = .005. To 

examine flexibility across contexts, flexibility index values for each subsystem were assessed 

using one-sample t-tests relative to 0. To examine whether FPCNA and FPCNB were more 

coupled with each other or the DN/DAN we submitted FC values to paired t-tests (FPCNA- 

FPCNB FC versus FPCNA-DN FC or FPCNA- FPCNB FC versus FPCNB-DAN FC) and report P-

values that were Bonferroni corrected for the 9 comparisons.   
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