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Abstract7

Background: The detection of fabrication or error within the scientific literature is an8

important and underappreciated problem. Retraction of scientific articles is rare, but9

retraction may also be conservative, leaving open the possiblity that many fabricated or10

erroneous findings remain in the literature as a result of lack of scrutiny. A recently statistical11

analysis of randomized controlled trials [1] has suggested that the reported statistics form12

these trials deviate substantially from expectation under truely random assignment, raising13

the possiblity of fraud or error. It has also been proposed that the method used could be14

implemented to prospectively screen research, for example by applying the method prior to15

publication.16

Methods and Findings: To assess the properties of the method proposed in [1], I carry17

out both theoretical and empirical evaluations of the method. Simulations suggest that the18

method is sensitive to assumptions that could reasonably be violated in real randomized19
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controlled trials. This suggests that deviation for expectation under this method can not20

be used to measure the extent of fraud or error within the literature, and raises questions21

about the utlity of the method for propsective screening. Empirically analysis of the results22

of the method on a large set of randomized trials suggests that important assumptions may23

plausibly be violated within this sample. Using retraction as a proxy for fraud or serious24

error, I show that the method faces serious challenges in terms of precision and sensitivity for25

the purposes of screening, and that the performance of the method as a screening tool may26

vary across journals and classes of retractions.27

Conclusions: The results in [1] should not be interpreted as indicating large amount of fraud28

or error within the literature. The use of this method for screening of the literature should29

be undertaken with great caution, and should recognize critical challenges in interpreting the30

results of this method.31

Introduction32

Meta-research, a scientific endeavor aimed at studying and improving the process of science33

itself, has gained increasing interests among scientists. This interest has partially been driven34

by theoretical [2,3] and empirical work [4,5] that suggests concerns about the validity of35

the published scientific literature. One area of the scientific process that is amenable to36

meta-research is the detection of data validity/data integrity issues within the literature.37

Methods such as statcheck [6] and granularity testing [7] and its variants [8] have been38

developed to identify possible data validity issues by checking summary statistics reported in39

published research for consistency. In some cases, it has been proposed that the method be40

applied in an automated manner at various stages of the scientific process, for instance, prior41

to publication [6,9].42

One class of methods for the detection of data validity issues is based on detecting whether43

data or summary statistics are consistent with their expected statistical distribution [10–15].44
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Under this framework, large deviations from the expected distribution of reported data are45

interpreted as indication of possible data integrity issues. In several cases within the literature,46

this method has been used to flag publications that were later determined to be based on47

fabricated data [11,12]. One variation on this, developed by Carlisle [11,13], uses reported48

summary statistics on baseline variables from randomized clinical trials to score published49

trials in terms of statistical deviation from that expected if subjects were truely assigned at50

random to various experimental groups. Large deviations potentially suggest issues with the51

validity of the reported summary statistics.52

If methods for the detection of data validity issues are to play an increasing role in the53

scientific process, it is critical that scientists have a good understanding of the appropriate54

interpretation of these kinds of procedures. Of particular concern is that scientists may55

interpret the fact that a study or numerical result is flagged by these methods as substantial56

evidence of some type of flaw even when the method can sometimes flag an analysis for other57

reasons [16,17]. Especially if such methods are used to systematically screen research, it will58

be essential for scientists to have a grasp on the limitations that these methods may face.59

In order to understand these limitations, it is useful to distinqiush between multiple types60

of numerical results that may be identified by these methods. In what follows, I make a61

distinction between two different threats to data validity: data fabrication and data errors.62

Data fabrication may be said to occur when authors of published research intentionally alter63

data that they report in a way that is not consistent with how the data was collected or by64

reporting ficticious results about data that was never acutally collected. Data errors may be65

said to occur when authors of published research unintentionally report data in a way that is66

not consistent with what was acutally observed, for example by unintentional typographical67

errors or accidental errors in numerical calculations. Often, methods aimed at detecting68

data validity issues can be expected to flag both data fabrication and data errors, without69

distinqiushing between the two. In principle, this fact does not preclude the use of these70

methods for screening scientific research, because both fabrication and honest errors should71
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be detected and corrected. However, the fact that these methods can not distingiush between72

errors and fabrication presents important interpretational challenges, since parties involved in73

the process are likely to respond differently if they interpret a flag by one of these methods as74

evidence of fabrication vs evidence of error. As a result, it is critical to manage expectations75

about what these methods show and how they should be applied.76

Potentially of more concern for the application of these methods is the possiblility that some77

of the numerical results flagged by these methods are not erroneous, or in other words, are78

false positives. This may happen when there are aspects of data generation or reporting79

which are entirely legitimate but which are not accounted for by the method used to detect80

data validity issues. For example, it has been suggested that statcheck, which focuses on81

p-values, may result in false positives in cases where p-values are corrected (e.g. for multiple82

comparisons) but this correction is not taken into account [16,18]. Numerical results that are83

flagged as a result of these types of benign issues are problematic from a screening perspective84

because they can result in a waste of resources if all flagged analysis are investigated for85

potential data validity issues, as well as bringing unfair suspicion upon honest scientists.86

Understanding the relative frequencies of these different categories: fabrication, honest errors,87

and false positives, among flagged results is essential for the proper interpretation of these88

methods.89

Although these issues are generally applicable to methods aimed at identifying data validity90

issues, they are particularly timely in light of a recent analysis by Carlisle [1], which applied91

a data validity detection method to a large sample of randomized controlled trials. This92

analysis has already generated significant attention both within the scientific literature [9] as93

well as the in the press [19,20]. The importance of [1] can be seen as relating to two related94

issues:95

First, deviation from the expected statistical distribution of results across many clinical96

trials has implications for the global rate of fabrication or errors within the literature. This97
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interpretation is apparent in the coverage of [1] (see [9], speculating that the results of98

[1] possibly indicate a “tsunami” of previously unrecognized fabrication in the literature,99

or [19], addressing the possible freqency of fabrication in literature based on figures from100

[1]). Fabrication and errors may be difficult to detect and may persist un-noticed in the101

literature [21], leaving open the possiblity that these ocurrences are not as rare as scientists102

might hope or desire [17,22]. This fact, combined with the observation that automated103

methods for error detection sometimes flag large proportions of the literature compared to104

what might be expected is potentially alarming. Certainly it appears that some observers105

have considered this interpretation [9,19,20]. The possiblity that a large proportion of of106

the scientific literature contains errors or fabrication would raise important question for107

the scientific community, and the suspicion that this is the case likely underlies part of the108

recent interest in meta-research. As a result, understanding the implications of methods and109

results such as those presented by Carlisle [1] for the overall rate of data validity issues in the110

literature is highly relevant.111

Second, the method utilized by [1] is already being used to screen papers submitted to112

Anaesthesia [9], the journal in which [1] was published. The appropriate interpretation of113

methods for the detection of data validity issues in terms of screening the published literature,114

either retrospective or particularly prospectively (e.g. as a condition of publication) is an115

essential questions that remains to be addressed in the meta-research literature. Additionally,116

the editors of Anaesthesia have decided [9] to contact the journals associated with trials117

flagged by the analysis in [1], suggesting the need for serious investigations into these papers118

on the basis of the analysis in [1]. This suggests that understanding of the appropriate119

interpretation of [1] is urgently needed. In this article, I analyze the method utilized by120

Carlisle [1] to give insight into how it should be interpreted and what conclusions can be121

drawn from about these two critical questions.122
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Results123

To facilate understanding of the theoretical and empirical results I present, I briefly review124

the method utilized by Carlisle (which I refer to as the CM) [1]. For a single randomized125

controlled trial, the CM first involves manually extracting summary statistics on baseline126

(pre-treatment) variables from all groups which are randomized. For each variable, a p-value is127

calculated which tests the null hypothesis that the population means of the variable are equal128

across the groups. If the groups were truely assigned at random, then the null hypothesis129

is expected to be true for all of the variables. To combine the tests for all variables, the130

CM as applied in [1] utilized several methods for combining p-values that test a common131

null hypothesis, but [1] focuses on Stouffer’s method [23], which transforms the p-values132

to z-scores and calculates their sum. Under the assumption that the p-values included are133

independent, this sum is then compared to its own null distribution to derive a global p-value.134

Below, I highlight several stages at which this process may go wrong, along with re-analyses135

of the data used in [1] showing that these issues plausibly effected the analysis.136

Calculation of variable-level p-values from summary statistics137

The CM as implemented in [1] involves calcuating p-values for for the differences in means of138

individual baseline variables within each trial using summary statistics, and then aggregating139

the p-values across each trial. Issues in the calcuation of the p-value for each variable may140

impact the validity of the downstream analysis. In order to test the ability of the method141

used by Carlisle [1] to recalculate p-values from summary statistics, I simulate data from142

two identically distributed groups and apply two of the p-value calculation methods used by143

Carlisle, a Monte Carlo method and ANOVA. The null hypothesis is true in these simulations,144

so the distribution of p-values should be uniform. Deviations from uniformity could indicate145

problems with the recalculated p-values, and could explain the deviations from uniformity146

that Carlisle [1] observed. To assess the robustness of these methods to assumption violations,147
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I include two potentially problematic issues as part of my simulations. First, I simulate148

data from log-normal distributions instead of normal, as assumed in Carlisle’s analysis [1,13].149

Second, I include rounding of reported summary statistics.150

Fig 1 presents the distribution of simulated p-values. P-values generated from data with an151

underlying log-normal distribution and rounding to 2 digits (Fig 1A-C) display a roughly152

uniform distribution. Following Carlisle [1], I consider the closest p-value to 0.5 from multiple153

methods. When the underlying distribution is log-normal with 2 digit rounding this p-value154

has a slight excess near the center of the distribution compared to uniform. When some155

of the p-values are subject to extreme rounding (Fig 1D-F) the distributions display large156

excesses of p-values compared to uniform either near 1 (for ANOVA (Fig 1D)) or near 0.5157

(for Carlisle’s Monte Carlo method (Fig 1E) or the closest to 0.5 of ANOVA and Monte Carlo158

(Fig 1E)). The observed p-values (Fig 1G-I) from [1] display some of these properties, with159

some large spikes of p-values near certain values, as well as possibly some excess in the center160

of the distributions.161

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

A

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

D

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

G

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

B

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

E

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

H

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

C

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

F

0.0
0.5
1.0
1.5
2.0

0.00 0.25 0.50 0.75 1.00

I

162

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/179135doi: bioRxiv preprint 

https://doi.org/10.1101/179135
http://creativecommons.org/licenses/by/4.0/


Fig 1: Distribution of simulated (A-F) and observed (G-I) p-values. The first row shows163

simulated p-values from summary statistics generated from log-normal distributions with164

moderate rounding for ANOVA (A) Carlisle’s Monte Carlo method (B) and the closed of165

those two to 0.5 (C). The second row shows simulated p-values from the model with summary166

statistics generated from a normal distribution where 90% of statistics have moderate rounding167

and 10% have extreme rounding for ANOVA (D) Monte Carlo (E) and the closest of the two168

to 0.5 (F). The third row shows observed p-values from the data collected by Carlisle from169

the Journal of the American Medical Association (JAMA) for ANOVA (G) Monte Carlo (H)170

and the closest of the two to 0.5 (I). FOr all rows, the first column shows ANOVA p-values,171

the second Monte Carlo p-values, and the third the closest of ANOVA and Monte Carlo to172

0.5.173

Factors effecting trial-level p-values174

Even if the variable-level p-values are validly calculated, issues may arise when multiple175

variable p-values are aggregated at the level of each trial. In Fig 2 I present simulations176

showing deviation from the expected null distribution of aggegated p-values (Fig 2A) under177

three conditions unrelated to data validity (Fig 2B-D). Fig 2B shows the distribution of178

trial p-values when the baseline variables that are aggregated are correlated with each other.179

The p-values show a pattern of excess p-values near 0 and 1, just as [1] observed. Fig 2C180

shows the distribution of p-values when there is imperfect randomization, resulting in residual181

confounding influence of the baseline variables. In this case, the p-values are right-skewed.182

Fig 2D shows the distribution of p-values when treatment assignment is randomized within183

strata that are associated with the baseline variables, resulting in left-skewed p-values. In184

all three cases, the p-value distributions have an excess of extreme p-values relative the the185

expected uniform distribution. If the CM is applied to a study for the purposes of screening,186

and one of these factors is application to the study, the CM may produce produce an extreme187
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p-value for that study as a result of one of these factors rather than as a result of data188

validity issues. Likewise, for the global assessment of the prevalence of data validity issues189

in randomized control trials, deviations like those observed in [1] may be the result of a190

combination of these factors rather than a high prevalence of data validity issues.191
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Fig 2: Histograms of p-values simulated from four different models. Null, with an expected193

uniform distribution (A) correlated baseline variables (B) imperfect randomization (C) and194

stratification (D).195

The Carlisle analysis is plausibly impacted by these issues196

To determine if these issues plausibly played a role in the analysis conducted by Carlisle in [1],197

I reanalyzed the data from the supplement of [1]. Fig 3 compared theoretical distributions198

derived from simulations (Fig 3A and B, top row) with p-values from [1] (Fig 3C and D,199

bottom row). Fig 3A and B give the simulation distributions for null p-values and correlated200
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baseline variable p-values, respectively. Fig 3C shows the distribution of p-values for all trials201

in [1], aggregated by Stouffer’s method. As Carlisle [1] notes, this distibution has an excess of202

p-values near 1 and 0 relative to the null (Fig 3A). However, this distribution is remarkably203

similar to the simulated distribution with correlated baseline variables (Fig 3B), suggesting204

that correlated variables could plausibly explain the deviations for uniformity.205
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Fig 3: Distribtution of trial-level p-values for simulated null distribution (A), simulated207

p-values with correlated variables (B), observed trial-level p-values (C), and observed p-values208

for the first variable in each trial (D).209

One objection to this is that the similarity between Fig 3B and C is sensitive to the simulation210

parameters. Indeed, I chose the parameters for the simulation intentionally to make the211

point that correlation can result in a similar p-value distribution. Other parameter settings212

can produce distributions which are less similar. In general, it is difficult to assess how213

realistic the simulation parameters are. For example, it could be argued that the correlation214

I used in this simulation (0.33) is higher than generally expected. On the other hand, this215
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does not preclude correlation as an explanation for the results observed by Carlisle [1]. For216

instance, I assume all trials report 5 baseline variables. Trials that report more variables217

can have extreme deviations from uniform with lower correlations. Likewise, even if most218

correlations are lower, there may be some trials with extremely high correlation, or it could219

be that multiple factors (correlated variables, stratification, confounding) combine to form220

the observed distribution.221

In general, it is difficult to definitively identify the cause of the deviation from uniformity222

using simulations alone. To overcome this, I examined the distribution of the first p-value for223

each trial (Fig 3D). Some causes of deviation from uniformity, such as fabrication or error, are224

expected to manifest on the level of individual variable-level p-values. Other causes, such as225

correlated variables, are expected to manifest when the p-values are aggregated. Comparison226

of the first variable p-values (Fig 3D) with the aggregated p-values (Fig 3C) can suggest227

what effects these different sets of explanations may have. The first variable p-values have a228

qualitatively different appearance compared to the aggregated p-values, lacking the excess229

of p-values near 0 and 1. This raises the possiblity that the excess extreme p-values are230

due to some issue with the aggregation process, rather than with the individual p-values231

themselves. The first variable p-values also display an excess of p-values in the center of232

the distribution relative to uniform. This may result from issues with the calculation of the233

individual p-values, as discussed above.234

Evalutation of the ability of the CM to identify retracted trials235

The above analysis suggests that extreme trial-level p-values derived from the CM don not236

nessesarily indicate data validity errors. However, this does not nessearily preclude the237

usefulness of the CM for the detection of data fabrication and data errors. If the CM can238

identify known cases of fabrication or error in practice, then that empirical usefulness could239

form the basis for interpretation of the CM. Indeed, Carlisle analyzed retracted trials and240
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showed that the CM p-values for retractions are more extreme compared to unretracted trials241

[1]. I extend this analysis by evaluation the distribtuions of the trial-level p-values from [1]242

across several retraction categories (Fig 4A and E).243

Using information contained in the supplemental materials of [1], I place each trial in one244

of four categories, based on it retraction status. I first divide the trials into those that245

have been retracted vs those that have not. I futher divide the retracted trials into three246

categories, starting by dividing them based on mention of fabrication in text descriptions of247

the retractions extracted by Carlisle. For those trials where fabrication is mentioned (and for248

which it is likely the reason for the retraction), I categorize the trials based on the presence249

of certain author names in the retraction descriptions. The CM has previously been used by250

Carlisle [11,13,15] to identify studies by several authors as potentially fraudulent. Several251

of these sets of studies are highlighted in the text of [1]. I seperately classify putatively252

fraud-based retractions based on the presence of these authors or other known authors of253

prominent anesthesia-related fraud cases to assess the possiblity that the association of254

trial-level p-values and retraction status differs between these groups.255
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Fig 4: Assessment of the association between both one-sided (A-D, top row) and two-sided257

(E-H, bottom row) p-values with retraction status. Violin plots of one-sided (A) and two-sided258

(E) p-values for each of four trial catgories. Horizontal lines represent 25th, 50th, and 75th259

percentiles. The categories represent unretracted trials (“U”, green), trials retracted without260

indication of fabrication (“O”, blue), trials likely retracted for fabrication that were prominent261

examples known in the anesthesia community based on author names (“K”, grey), and trials262

likely retracted for fabrication that were not prominent examples known in the anesthesia263

community (“N”, orange). Panels B-D plot precision-recall curves for one-sided trial p-values264

for all trials (B), for trials in the journal Anesthesia and Analgesia (C), and for trials in the265

Journal of the American Medical Association (D). Panels E-G plot precision-recall curves266

for the inverse of the two-sided trial p-values (1 - p) for all trials (F), for trials in the267

journal Anesthesia and Analgesia (G), and for trials in the Journal of the American Medical268

Association (H). Color of the points in the precision recall curves indicate the threshold value269
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used.270

Fig 4 shows the distribution of trial-level p-values across these four groups. Fig 4A shows the271

distribution of one-sided p-values, while fig 4E shows two-sided p-values. Consistent with272

the observations by Carlisle [1], trials by previously suspected anesthesiology-related authors273

(based on author name) (“K”, grey), and to a lesser extent trials retracted for putatively274

non-retraction related reasons both have abnormal p-value distributions, with the one-side275

p-values displaying an excess of p-values near 1 and a smaller excess near 0 (Fig 4A), and276

the two-sided p-values shifted toward 0 (Fig 4E). Both unretracted trials (“U”, green), and277

trials putatively retracted for fabrication that were not prominently known in the anesthesia278

community (“N”, orange) have p-value distributions much closer to uniform.279

I also evaluate the ability of the trial p-values to identify retracted trials in terms of the280

precision (also called positive predictive value) and recall (also called sensitivity) of the281

p-values at various thresholds. I plot the results in precision-recall curves (Fig 4B-D and282

F-H), which displays precision-recall pairs when a p-value threshold is used to classify trials283

as retracted vs unretracted, for many different thresholds. The two-sided p-values (Fig 4 F-H,284

bottom row) show generally poor performance that is inferior to the one-sided p-values (Fig285

4B-D, top row), so I focus further discussion on the one-sided p-values. As Loadsman and286

McCulloch [9] note in their commentary on [1], high recall (sensitivity) is not achieved without287

sacrificing precision. For all trials (Fig 4B, second column), precision is moderate, with the288

maximum slightly in excess of 0.5. Precision is also low at the highest p-values, suggesting289

that, while the retracted p-values are shifted towards 1, there are still unretracted trials that290

have high p-values as well. I also identified variability in the performance of the trial p-values291

across journals. For example, trials published in the jounrnal Anesthesia and Analgesia (Fig292

4C) had precision near 1 for the highest p-values thresholds, while trials published in the293

Journal of the American Medical Association (Fig 4D) had poorer performance compared294

to the aggregate of all trials. The vast majority of trials are not retracted, which means295

that related to classification such as precision and recall can sometimes be based on small296
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numbers of trials within particular categories. As a result, the results I present here should297

be considered with caution. Never the less, I beleive that these analyses raise important298

issues with regard to the applicability of the CM. The variablity in classification properties299

in different journals, along with the observed differences between fabrication previously300

identified by Carlisle vs new instances of fabrication, raises important questions about the301

generalizability of the CM, an issue which I dicuss more in depth below.302

Discussion303

Implications for global error rates304

I first address the implications of the results I present here for the issue of global error rates.305

Readers of [1] may be concerned by the results presented there if they interpret the analysis306

to suggest that fraud or error are rampant in the literature, a possiblity that has already307

been aluded to by some observers [9,19,20]. The analysis that I have presented here indicates308

that the analysis by Carlisle [1] is not informative of the rate of data validity issues (either309

fabrication or error) within the literature. The pattern observed by Carlisle [1] in the global310

distribution of trial-level p-values can plausibly arise for benign reasons. When considering311

only a single p-values per trial, which avoids some of the problematic assumptions made in312

[1], the p-value distribution does not display the pattern that Carlisle identifies as potentially313

indicative of error, suggesting that this critique is not simply speculation.314

Implications for use of the CM for screening315

The theoretical arguments I give also have implications for the use of the CM in screening.316

In particular, my theoretical results suggest that screening should not rely on probability317

statements based on the CM. For example, in [1], Carlisle sometimes thresholds the trial-level318
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p-values (e.g. p < 1/10000). If the p-values produced by the CM were valid p-values, then it319

would be tempting to make statements like “p < 1/10000 would only happen once in 10,000320

trials, if the trials were truely randomized”. My results suggest that these types of statements321

are not valid. For instance, using simulated p-values from correlated variables, 0.0024% of322

p-values are less than 1e-04, a 24 fold increase over the nominal rate.323

If certain trials are particularly susceptible to these types of issues (e.g. a subset of studies324

with highly correlated variables, extreme rounding, strong stratification) this inflation could325

be exacerbated, without nessecarily being obvious to the user of the CM. Likewise, if multiple326

CM p-values are used together, as Carlisle [1] suggests could be done using multiple trials327

from the same author, the inflation of error rates compared to their nominal values could328

be further increased. For example, using correlated p-values, a single p-value of 0.01 has329

a p-value under correlation of 0.0291, a 2.91 fold inflation, while for two p-values of 0.01330

combined by multplication, the inflation is 8.47 fold. This suggests that the p-values produced331

by the CM have a problem in terms of calibration. If users of the CM target a particular332

confidence level, in the presense of assumptions violations the p-values produced by the CM333

may not nessearily meet their nominal rates. In addition, extreme assumption violation may334

produce extreme p-values, so using conservative thresholds does not nessearily alleviate this335

problem.336

In additional to problems with calibration, my analysis raises issues with the empirical337

performance of the CM in terms of its ability to classify known instances of error or misconduct.338

A global analysis, aggregating across types of retractions and across journals, indicates that339

when applying the CM there is a strong trade-off between precision and recall (sensitivity)340

as others [9] have speculated. This suggests that acceptable precision will result in low341

recall, suggesting that screening initiatives that utilize the CM may not result in significant342

proportions of errors being identified. If the CM generally identifies few errors, its benefits as343

a screening tool may be modest. In addition, even the optimal precision achieved by the CM344

in the full sample of trials is moderate. Retraction are rare, so a moderate precision does345
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not imply that the CM is uninformative. However, there are important implications for the346

use of CM for screening. First, moderate precision warrants caution in the interpretation of347

results from the CM. Users should be aware that even at “conservative” thresholds, many348

of the flagged trials may not be erroneous or fraudulent. Second, parties that may consider349

using the CM for screening may consider false positives to be associated with increased costs350

of using the method, such as increased effort need to evaluate flagged trials or the potential351

of delaying publication of valid research over a false postive.352

My analysis also reveals heterogeneity in the performance of the CM across categories of353

retractions and across journals. I discuss three possible explanations for this, all plausible.354

First, It may be that this heterogeneity arises from heterogeniety in the behavior of researchers355

who submit to different journals. If the processes by which error or fabrication occur tend356

to be different across the different journals and retraction categories, this could explain the357

observed heterogeneity.358

Second, heterogeneity in precision-recall curves may arise due to issues in the detection359

of errors. Not all erroneous publications are retracted, and it may be that retractions are360

generally a conservative marker of error, such that there are many potentially erroneous361

trials within the literature that could go un-retracted. If this is, than the precision and362

recall rates calculated based on retraction could give a pessimistic picture of the CM. This is363

particually the case if several of the un-retracted trials that have extreme CM p-values are364

erroneous but undetected, which might be expected if the CM is an effective measure of error.365

Assuming this is the case, precision and recall using retraction as a metric may underestimate366

the values that would be obtained using the unseen labels of true error. Under this model,367

heterogeneity in precision and recall performance is really due to heterogeneity in the extent368

to which retraction detects error. This suggests the possiblity that the journals where the369

CM performs well are more indicative of the true performance of the CM, while the journals370

where it performs poorly simply underestimate performance because the trials with extreme371

p-values that remain un-retracted truely are erroneous, but simply have not been detected as372
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such. Deeper looks at trials that produce extreme CM p-values are warranted to assess this373

possiblity.374

Finally, it is possible the performance of the CM is overestimated in in the journals where375

it performs best. The journals where the CM performs well tend to be anesthesia journals376

that also contain retractions that may have been known to Carlisle during the development377

of the CM, and in some cases the journals contain retractions that occurred directly as a378

result of being identified by the CM. Retractions in this category show more extreme CM379

p-values compared to other fabrication-related retractions (Fig 4A and E). This suggests380

the possiblity that the CM may be “overfit” to these particular trials. If the CM was used381

to identify some retracte trials, it may be that erroroneous trials that have extreme CM382

p-values were more likely to be identified, while erroroneous trials that have less extreme CM383

p-values received less scrutiny within this sample, and therefore remain un-retracted. This384

may result in inflated recall values, due to the existence of un-retracted trials with moderate385

CM p-values.386

This third possiblity may work synergistically with the first. For instance, if by chance the387

anesthesiology field happened to have several prominent examples of fabrication that display388

the property targeted in the CM, then it is possible that methods similar to the CM were389

more likely to emerge within this field. As a result, tests of these methods might be more390

likely to include anesthesia trials from this period, which happened to have an excess of391

trials displaying these properties, thus resulting in overestimation of the performance of these392

methods.393

Taken together, this analysis suggests that caution is warranted if the CM is to be used for394

screening. Notably, some of the assumptions made my Carlisle are nessesitated by the fact395

that the analysis in [1] by nessessity was based on summary statistics. This significantly396

complicates the application for the CM. For example, addressing correlation among baseline397

variables would be very difficult using only summary statistics, but could be facilitated398
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by analysis of the raw data. If journals choose to implement screening procedures prior399

to publication, authors of papers would be able to respond to the results of the CM by400

reanalyzing the raw data, thus potentially giving more definitive answers as to the validity of401

certain assumptions made by the CM. Critically, in order for this stategy to function well,402

authors, reviewers, and editors need to have a solid understanding of how various assumptions403

can impact the results of the CM. This paper can serve as a starting point for members of the404

scientific community who need to interpret results in this context. Likewise, when insitutions405

such as funders or journals consider whether or how the CM could play a role in decision406

making, the results presented here can give insight into the possible costs and benefits of407

various implementations.408

Methods409

P-value calculations410

I recalculated p-values from summary statistics using the “anovaSummarized” command411

in the package “CarletonStats” [24], as well as a custom Monte-Carlo method used by412

Carlisle in [1]. To replicate the method used by Carlisle in my own simulations, I modified413

code provided by Carlisle in the comments at (http://steamtraen.blogspot.com/2017/06/414

exploring-john-carlisles-bombshell.html). I used the “metap” [25] package for combining415

p-values by Stouffer’s method [23] using the “sumz” function.416

Carlisle data417

I obtained Data from the supplemental tables [1], and loaded the data into R using the418

“readxl” [26] package.419
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Precision/recall analysis420

I computed precision/recall curves using the package “PRROC” [27], with the CM p-value421

was the metric and a binary indictor of retraction (1 = retracted, 0 otherwise) as the target.422

Categorization of retractions423

Table S1 of [1] contains notes by Carlisle with information about individual trials, including424

details of retractions. I Categorize the trials by detecting the presence of certain terms or425

word stems within these notes. I categorize a trial as having been retracted by the presence426

of “RETRACTED” within these notes, and un-retracted otherwise. I categorize a retraction427

as coming from a prominent anesthesia related author that is known for fabrication based428

on the presence of one of four names in the notes. I use the names “Sato”, “Boldt”, “Fujii”429

and “Reuben”. I catgorize a retracted trial that lacks one of these names as having been430

caused by fabrication based on the presence of “fabricat” in the notes. All other retracted431

trial I categorize as having ocurred for reasons other than fabrication. For one trial, manual432

review suggested that the note mentions “fabricat” but without definitively attributing the433

trial to fabrication. As a result, I label this trial as having occurred for reasons other than434

fabrication.435

Computational analysis436

I conducted all analyses in R [28] version 3.3.2. I used the package “ggplot2” [29] for437

visualization.438

Reproducibilty and computational details439

Code used to generate the analyses and figures included in this article are available at440

https://github.com/ScottWPiraino/carlisle_reanalysis.441
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