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. Abstract

s Background: The detection of fabrication or error within the scientific literature is an
o important and underappreciated problem. Retraction of scientific articles is rare, but
10 retraction may also be conservative, leaving open the possiblity that many fabricated or
u erroneous findings remain in the literature as a result of lack of scrutiny. A recently statistical
12 analysis of randomized controlled trials [1] has suggested that the reported statistics form
13 these trials deviate substantially from expectation under truely random assignment, raising
14 the possiblity of fraud or error. It has also been proposed that the method used could be
15 implemented to prospectively screen research, for example by applying the method prior to

16 publication.

v Methods and Findings: To assess the properties of the method proposed in [1], I carry
18 out both theoretical and empirical evaluations of the method. Simulations suggest that the

19 method is sensitive to assumptions that could reasonably be violated in real randomized
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2 controlled trials. This suggests that deviation for expectation under this method can not
21 be used to measure the extent of fraud or error within the literature, and raises questions
2 about the utlity of the method for propsective screening. Empirically analysis of the results
3 of the method on a large set of randomized trials suggests that important assumptions may
2 plausibly be violated within this sample. Using retraction as a proxy for fraud or serious
s error, I show that the method faces serious challenges in terms of precision and sensitivity for
s the purposes of screening, and that the performance of the method as a screening tool may

a7 vary across journals and classes of retractions.

22 Conclusions: The results in [1] should not be interpreted as indicating large amount of fraud
2 or error within the literature. The use of this method for screening of the literature should
s be undertaken with great caution, and should recognize critical challenges in interpreting the

a1 results of this method.

» Introduction

13 Meta-research, a scientific endeavor aimed at studying and improving the process of science
s itself, has gained increasing interests among scientists. This interest has partially been driven
55 by theoretical [2,3] and empirical work [4,5] that suggests concerns about the validity of
s the published scientific literature. One area of the scientific process that is amenable to
» meta-research is the detection of data validity/data integrity issues within the literature.
33 Methods such as statcheck [6] and granularity testing [7] and its variants [8] have been
5 developed to identify possible data validity issues by checking summary statistics reported in
w0 published research for consistency. In some cases, it has been proposed that the method be
s applied in an automated manner at various stages of the scientific process, for instance, prior

2 to publication [6,9].

s One class of methods for the detection of data validity issues is based on detecting whether

« data or summary statistics are consistent with their expected statistical distribution [10-15].

2
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s Under this framework, large deviations from the expected distribution of reported data are
s interpreted as indication of possible data integrity issues. In several cases within the literature,
s this method has been used to flag publications that were later determined to be based on
s fabricated data [11,12]. One variation on this, developed by Carlisle [11,13], uses reported
s summary statistics on baseline variables from randomized clinical trials to score published
so trials in terms of statistical deviation from that expected if subjects were truely assigned at
s1 random to various experimental groups. Large deviations potentially suggest issues with the

s2 validity of the reported summary statistics.

53 If methods for the detection of data validity issues are to play an increasing role in the
s« scientific process, it is critical that scientists have a good understanding of the appropriate
s interpretation of these kinds of procedures. Of particular concern is that scientists may
ss interpret the fact that a study or numerical result is flagged by these methods as substantial
sz evidence of some type of flaw even when the method can sometimes flag an analysis for other
s reasons [16,17]. Especially if such methods are used to systematically screen research, it will
so be essential for scientists to have a grasp on the limitations that these methods may face.
o In order to understand these limitations, it is useful to distingiush between multiple types
s1 of numerical results that may be identified by these methods. In what follows, I make a
&2 distinction between two different threats to data validity: data fabrication and data errors.
&3 Data fabrication may be said to occur when authors of published research intentionally alter
s« data that they report in a way that is not consistent with how the data was collected or by
s reporting ficticious results about data that was never acutally collected. Data errors may be
s said to occur when authors of published research unintentionally report data in a way that is
e not consistent with what was acutally observed, for example by unintentional typographical
e errors or accidental errors in numerical calculations. Often, methods aimed at detecting
so data validity issues can be expected to flag both data fabrication and data errors, without
70 distinqgiushing between the two. In principle, this fact does not preclude the use of these

n methods for screening scientific research, because both fabrication and honest errors should
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22 be detected and corrected. However, the fact that these methods can not distingiush between
73 errors and fabrication presents important interpretational challenges, since parties involved in
7 the process are likely to respond differently if they interpret a flag by one of these methods as
7 evidence of fabrication vs evidence of error. As a result, it is critical to manage expectations

7 about what these methods show and how they should be applied.

77 Potentially of more concern for the application of these methods is the possiblility that some
7 of the numerical results flagged by these methods are not erroneous, or in other words, are
7o false positives. This may happen when there are aspects of data generation or reporting
so which are entirely legitimate but which are not accounted for by the method used to detect
a1 data validity issues. For example, it has been suggested that statcheck, which focuses on
&2 p-values, may result in false positives in cases where p-values are corrected (e.g. for multiple
g3 comparisons) but this correction is not taken into account [16,18]. Numerical results that are
s flagged as a result of these types of benign issues are problematic from a screening perspective
ss because they can result in a waste of resources if all flagged analysis are investigated for
s potential data validity issues, as well as bringing unfair suspicion upon honest scientists.
&7 Understanding the relative frequencies of these different categories: fabrication, honest errors,
ss and false positives, among flagged results is essential for the proper interpretation of these

so  methods.

o Although these issues are generally applicable to methods aimed at identifying data validity
o issues, they are particularly timely in light of a recent analysis by Carlisle [1], which applied
e a data validity detection method to a large sample of randomized controlled trials. This
o3 analysis has already generated significant attention both within the scientific literature [9] as
s well as the in the press [19,20]. The importance of [1] can be seen as relating to two related

o5 1Ssues:

o First, deviation from the expected statistical distribution of results across many clinical

o7 trials has implications for the global rate of fabrication or errors within the literature. This
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% interpretation is apparent in the coverage of [1] (see [9], speculating that the results of
o [1] possibly indicate a “tsunami” of previously unrecognized fabrication in the literature,
wo or [19], addressing the possible freqency of fabrication in literature based on figures from
1 [1]). Fabrication and errors may be difficult to detect and may persist un-noticed in the
02 literature [21], leaving open the possiblity that these ocurrences are not as rare as scientists
103 might hope or desire [17,22]. This fact, combined with the observation that automated
1ws methods for error detection sometimes flag large proportions of the literature compared to
s what might be expected is potentially alarming. Certainly it appears that some observers
s have considered this interpretation [9,19,20]. The possiblity that a large proportion of of
w7 the scientific literature contains errors or fabrication would raise important question for
s the scientific community, and the suspicion that this is the case likely underlies part of the
0 recent interest in meta-research. As a result, understanding the implications of methods and
o results such as those presented by Carlisle [1] for the overall rate of data validity issues in the

m  literature is highly relevant.

2 Second, the method utilized by [1] is already being used to screen papers submitted to
1z Anaesthesia [9], the journal in which [1] was published. The appropriate interpretation of
us  methods for the detection of data validity issues in terms of screening the published literature,
us either retrospective or particularly prospectively (e.g. as a condition of publication) is an
ue essential questions that remains to be addressed in the meta-research literature. Additionally,
u7  the editors of Anaesthesia have decided [9] to contact the journals associated with trials
us flagged by the analysis in [1], suggesting the need for serious investigations into these papers
1o on the basis of the analysis in [1]. This suggests that understanding of the appropriate
1o interpretation of [1] is urgently needed. In this article, I analyze the method utilized by
1 Carlisle [1] to give insight into how it should be interpreted and what conclusions can be

122 drawn from about these two critical questions.
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» Results

124 To facilate understanding of the theoretical and empirical results I present, I briefly review
15 the method utilized by Carlisle (which I refer to as the CM) [1]. For a single randomized
e controlled trial, the CM first involves manually extracting summary statistics on baseline
17 (pre-treatment) variables from all groups which are randomized. For each variable, a p-value is
18 calculated which tests the null hypothesis that the population means of the variable are equal
129 across the groups. If the groups were truely assigned at random, then the null hypothesis
130 is expected to be true for all of the variables. To combine the tests for all variables, the
1 CM as applied in [1] utilized several methods for combining p-values that test a common
122 null hypothesis, but [1] focuses on Stouffer’s method [23], which transforms the p-values
133 to z-scores and calculates their sum. Under the assumption that the p-values included are
134 independent, this sum is then compared to its own null distribution to derive a global p-value.
135 Below, I highlight several stages at which this process may go wrong, along with re-analyses

136 of the data used in [1] showing that these issues plausibly effected the analysis.

1w Calculation of variable-level p-values from summary statistics

133 The CM as implemented in [1] involves calcuating p-values for for the differences in means of
139 individual baseline variables within each trial using summary statistics, and then aggregating
1o the p-values across each trial. Issues in the calcuation of the p-value for each variable may
1w impact the validity of the downstream analysis. In order to test the ability of the method
12 used by Carlisle [1] to recalculate p-values from summary statistics, I simulate data from
3 two identically distributed groups and apply two of the p-value calculation methods used by
s Carlisle, a Monte Carlo method and ANOVA. The null hypothesis is true in these simulations,
us 5o the distribution of p-values should be uniform. Deviations from uniformity could indicate
us problems with the recalculated p-values, and could explain the deviations from uniformity

w7 that Carlisle [1] observed. To assess the robustness of these methods to assumption violations,
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us | include two potentially problematic issues as part of my simulations. First, I simulate
1o data from log-normal distributions instead of normal, as assumed in Carlisle’s analysis [1,13].

150 Second, I include rounding of reported summary statistics.

11 Fig 1 presents the distribution of simulated p-values. P-values generated from data with an
152 underlying log-normal distribution and rounding to 2 digits (Fig 1A-C) display a roughly
153 uniform distribution. Following Carlisle [1], I consider the closest p-value to 0.5 from multiple
154 methods. When the underlying distribution is log-normal with 2 digit rounding this p-value
155 has a slight excess near the center of the distribution compared to uniform. When some
155 of the p-values are subject to extreme rounding (Fig 1D-F) the distributions display large
157 excesses of p-values compared to uniform either near 1 (for ANOVA (Fig 1D)) or near 0.5
155 (for Carlisle’s Monte Carlo method (Fig 1E) or the closest to 0.5 of ANOVA and Monte Carlo
159 (Fig 1E)). The observed p-values (Fig 1G-I) from [1] display some of these properties, with
1o some large spikes of p-values near certain values, as well as possibly some excess in the center

161 of the distributions.
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163 Fig 1: Distribution of simulated (A-F) and observed (G-I) p-values. The first row shows
s simulated p-values from summary statistics generated from log-normal distributions with
155 moderate rounding for ANOVA (A) Carlisle’s Monte Carlo method (B) and the closed of
166 those two to 0.5 (C). The second row shows simulated p-values from the model with summary
167 statistics generated from a normal distribution where 90% of statistics have moderate rounding
16s and 10% have extreme rounding for ANOVA (D) Monte Carlo (E) and the closest of the two
160 t0 0.5 (F). The third row shows observed p-values from the data collected by Carlisle from
o the Journal of the American Medical Association (JAMA) for ANOVA (G) Monte Carlo (H)
i and the closest of the two to 0.5 (I). FOr all rows, the first column shows ANOVA p-values,
12 the second Monte Carlo p-values, and the third the closest of ANOVA and Monte Carlo to

i3 0.9,

= Factors effecting trial-level p-values

s Even if the variable-level p-values are validly calculated, issues may arise when multiple
e variable p-values are aggregated at the level of each trial. In Fig 2 I present simulations
177 showing deviation from the expected null distribution of aggegated p-values (Fig 2A) under
s three conditions unrelated to data validity (Fig 2B-D). Fig 2B shows the distribution of
9 trial p-values when the baseline variables that are aggregated are correlated with each other.
10 The p-values show a pattern of excess p-values near 0 and 1, just as [1] observed. Fig 2C
111 shows the distribution of p-values when there is imperfect randomization, resulting in residual
12 confounding influence of the baseline variables. In this case, the p-values are right-skewed.
13 Fig 2D shows the distribution of p-values when treatment assignment is randomized within
184 strata that are associated with the baseline variables, resulting in left-skewed p-values. In
15 all three cases, the p-value distributions have an excess of extreme p-values relative the the
186 expected uniform distribution. If the CM is applied to a study for the purposes of screening,

17 and one of these factors is application to the study, the CM may produce produce an extreme
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188 p-value for that study as a result of one of these factors rather than as a result of data
1o validity issues. Likewise, for the global assessment of the prevalence of data validity issues
wo in randomized control trials, deviations like those observed in [1] may be the result of a

11 combination of these factors rather than a high prevalence of data validity issues.
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13 Fig 2: Histograms of p-values simulated from four different models. Null, with an expected
s uniform distribution (A) correlated baseline variables (B) imperfect randomization (C) and

s stratification (D).

ws The Carlisle analysis is plausibly impacted by these issues

w7 To determine if these issues plausibly played a role in the analysis conducted by Carlisle in [1],
s I reanalyzed the data from the supplement of [1]. Fig 3 compared theoretical distributions
1w derived from simulations (Fig 3A and B, top row) with p-values from [1] (Fig 3C and D,

20 bottom row). Fig 3A and B give the simulation distributions for null p-values and correlated
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200 baseline variable p-values, respectively. Fig 3C shows the distribution of p-values for all trials
200 in [1], aggregated by Stouffer’s method. As Carlisle [1] notes, this distibution has an excess of
203 p-values near 1 and 0 relative to the null (Fig 3A). However, this distribution is remarkably
200 similar to the simulated distribution with correlated baseline variables (Fig 3B), suggesting

205 that correlated variables could plausibly explain the deviations for uniformity.
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27 Fig 3: Distribtution of trial-level p-values for simulated null distribution (A), simulated
208 p-values with correlated variables (B), observed trial-level p-values (C), and observed p-values

20 for the first variable in each trial (D).

210 One objection to this is that the similarity between Fig 3B and C is sensitive to the simulation
an parameters. Indeed, I chose the parameters for the simulation intentionally to make the
212 point that correlation can result in a similar p-value distribution. Other parameter settings
213 can produce distributions which are less similar. In general, it is difficult to assess how
a1 realistic the simulation parameters are. For example, it could be argued that the correlation

25 1 used in this simulation (0.33) is higher than generally expected. On the other hand, this

10
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26 does not preclude correlation as an explanation for the results observed by Carlisle [1]. For
217 instance, I assume all trials report 5 baseline variables. Trials that report more variables
218 can have extreme deviations from uniform with lower correlations. Likewise, even if most
210 correlations are lower, there may be some trials with extremely high correlation, or it could
20 be that multiple factors (correlated variables, stratification, confounding) combine to form

21 the observed distribution.

22 In general, it is difficult to definitively identify the cause of the deviation from uniformity
223 using simulations alone. To overcome this, I examined the distribution of the first p-value for
24 each trial (Fig 3D). Some causes of deviation from uniformity, such as fabrication or error, are
25 expected to manifest on the level of individual variable-level p-values. Other causes, such as
26 correlated variables, are expected to manifest when the p-values are aggregated. Comparison
27 of the first variable p-values (Fig 3D) with the aggregated p-values (Fig 3C) can suggest
28 what effects these different sets of explanations may have. The first variable p-values have a
29 qualitatively different appearance compared to the aggregated p-values, lacking the excess
20 of p-values near 0 and 1. This raises the possiblity that the excess extreme p-values are
2n due to some issue with the aggregation process, rather than with the individual p-values
2 themselves. The first variable p-values also display an excess of p-values in the center of
233 the distribution relative to uniform. This may result from issues with the calculation of the

2. individual p-values, as discussed above.

»s Kvalutation of the ability of the CM to identify retracted trials

26 The above analysis suggests that extreme trial-level p-values derived from the CM don not
237 nessesarily indicate data validity errors. However, this does not nessearily preclude the
238 usefulness of the CM for the detection of data fabrication and data errors. If the CM can
230 identify known cases of fabrication or error in practice, then that empirical usefulness could

20 form the basis for interpretation of the CM. Indeed, Carlisle analyzed retracted trials and

11
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2 showed that the CM p-values for retractions are more extreme compared to unretracted trials
22 [1]. T extend this analysis by evaluation the distribtuions of the trial-level p-values from [1]

23 across several retraction categories (Fig 4A and E).

24 Using information contained in the supplemental materials of [1], I place each trial in one
x5 of four categories, based on it retraction status. I first divide the trials into those that
2s  have been retracted vs those that have not. I futher divide the retracted trials into three
a7 categories, starting by dividing them based on mention of fabrication in text descriptions of
28 the retractions extracted by Carlisle. For those trials where fabrication is mentioned (and for
210 which it is likely the reason for the retraction), I categorize the trials based on the presence
0 of certain author names in the retraction descriptions. The CM has previously been used by
1 Carlisle [11,13,15] to identify studies by several authors as potentially fraudulent. Several
2 of these sets of studies are highlighted in the text of [1]. I seperately classify putatively
»3  fraud-based retractions based on the presence of these authors or other known authors of
4 prominent anesthesia-related fraud cases to assess the possiblity that the association of

5 trial-level p-values and retraction status differs between these groups.

12
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7 Fig 4: Assessment of the association between both one-sided (A-D, top row) and two-sided
s (E-H, bottom row) p-values with retraction status. Violin plots of one-sided (A) and two-sided
20 (E) p-values for each of four trial catgories. Horizontal lines represent 25th, 50th, and 75th
20 percentiles. The categories represent unretracted trials (“U”, green), trials retracted without
261 indication of fabrication (“O”, blue), trials likely retracted for fabrication that were prominent
22 examples known in the anesthesia community based on author names (“K”, grey), and trials
»3  likely retracted for fabrication that were not prominent examples known in the anesthesia
264 community (“N”, orange). Panels B-D plot precision-recall curves for one-sided trial p-values
s for all trials (B), for trials in the journal Anesthesia and Analgesia (C), and for trials in the
26 Journal of the American Medical Association (D). Panels E-G plot precision-recall curves
27 for the inverse of the two-sided trial p-values (1 - p) for all trials (F), for trials in the
s journal Anesthesia and Analgesia (G), and for trials in the Journal of the American Medical

260 Association (H). Color of the points in the precision recall curves indicate the threshold value

13
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270 used.

on Fig 4 shows the distribution of trial-level p-values across these four groups. Fig 4A shows the
o2 distribution of one-sided p-values, while fig 4E shows two-sided p-values. Consistent with
o3 the observations by Carlisle [1], trials by previously suspected anesthesiology-related authors
xa (based on author name) (“K”, grey), and to a lesser extent trials retracted for putatively
s non-retraction related reasons both have abnormal p-value distributions, with the one-side
zs  p-values displaying an excess of p-values near 1 and a smaller excess near 0 (Fig 4A), and
o the two-sided p-values shifted toward 0 (Fig 4E). Both unretracted trials (“U”, green), and
s trials putatively retracted for fabrication that were not prominently known in the anesthesia

20 community (“N”, orange) have p-value distributions much closer to uniform.

20 1 also evaluate the ability of the trial p-values to identify retracted trials in terms of the
21 precision (also called positive predictive value) and recall (also called sensitivity) of the
22 p-values at various thresholds. I plot the results in precision-recall curves (Fig 4B-D and
3 F-H), which displays precision-recall pairs when a p-value threshold is used to classify trials
24 as retracted vs unretracted, for many different thresholds. The two-sided p-values (Fig 4 F-H,
25 bottom row) show generally poor performance that is inferior to the one-sided p-values (Fig
25 4B-D, top row), so I focus further discussion on the one-sided p-values. As Loadsman and
267 McCulloch [9] note in their commentary on [1], high recall (sensitivity) is not achieved without
23 sacrificing precision. For all trials (Fig 4B, second column), precision is moderate, with the
20 maximum slightly in excess of 0.5. Precision is also low at the highest p-values, suggesting
200 that, while the retracted p-values are shifted towards 1, there are still unretracted trials that
201 have high p-values as well. I also identified variability in the performance of the trial p-values
202 across journals. For example, trials published in the jounrnal Anesthesia and Analgesia (Fig
203 4C) had precision near 1 for the highest p-values thresholds, while trials published in the
204 Journal of the American Medical Association (Fig 4D) had poorer performance compared
205 to the aggregate of all trials. The vast majority of trials are not retracted, which means

206 that related to classification such as precision and recall can sometimes be based on small
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27 numbers of trials within particular categories. As a result, the results I present here should
28 be considered with caution. Never the less, I beleive that these analyses raise important
200 issues with regard to the applicability of the CM. The variablity in classification properties
w0 in different journals, along with the observed differences between fabrication previously
;o0 identified by Carlisle vs new instances of fabrication, raises important questions about the

sz generalizability of the CM, an issue which I dicuss more in depth below.

w DDiscussion

. Implications for global error rates

s0s | first address the implications of the results I present here for the issue of global error rates.
w5 Readers of [1] may be concerned by the results presented there if they interpret the analysis
7 to suggest that fraud or error are rampant in the literature, a possiblity that has already
23 been aluded to by some observers [9,19,20]. The analysis that I have presented here indicates
w0 that the analysis by Carlisle [1] is not informative of the rate of data validity issues (either
50 fabrication or error) within the literature. The pattern observed by Carlisle [1] in the global
su  distribution of trial-level p-values can plausibly arise for benign reasons. When considering
sz only a single p-values per trial, which avoids some of the problematic assumptions made in
n3 [1], the p-value distribution does not display the pattern that Carlisle identifies as potentially

s indicative of error, suggesting that this critique is not simply speculation.

25 Implications for use of the CM for screening

s The theoretical arguments I give also have implications for the use of the CM in screening.
siz In particular, my theoretical results suggest that screening should not rely on probability

us  statements based on the CM. For example, in [1], Carlisle sometimes thresholds the trial-level
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a0 p-values (e.g. p < 1/10000). If the p-values produced by the CM were valid p-values, then it
20 would be tempting to make statements like “p < 1/10000 would only happen once in 10,000
;1 trials, if the trials were truely randomized”. My results suggest that these types of statements
sz are not valid. For instance, using simulated p-values from correlated variables, 0.0024% of
33 p-values are less than le-04, a 24 fold increase over the nominal rate.

»e If certain trials are particularly susceptible to these types of issues (e.g. a subset of studies
»s  with highly correlated variables, extreme rounding, strong stratification) this inflation could
16 be exacerbated, without nessecarily being obvious to the user of the CM. Likewise, if multiple
27 CM p-values are used together, as Carlisle [1] suggests could be done using multiple trials
28 from the same author, the inflation of error rates compared to their nominal values could
19 be further increased. For example, using correlated p-values, a single p-value of 0.01 has
130 a p-value under correlation of 0.0291, a 2.91 fold inflation, while for two p-values of 0.01
s combined by multplication, the inflation is 8.47 fold. This suggests that the p-values produced
sz by the CM have a problem in terms of calibration. If users of the CM target a particular
;3 confidence level, in the presense of assumptions violations the p-values produced by the CM
s may not nessearily meet their nominal rates. In addition, extreme assumption violation may
15 produce extreme p-values, so using conservative thresholds does not nessearily alleviate this

336 problern.

;7 In additional to problems with calibration, my analysis raises issues with the empirical
18 performance of the CM in terms of its ability to classify known instances of error or misconduct.
130 A global analysis, aggregating across types of retractions and across journals, indicates that
10 when applying the CM there is a strong trade-off between precision and recall (sensitivity)
s as others [9] have speculated. This suggests that acceptable precision will result in low
sz recall, suggesting that screening initiatives that utilize the CM may not result in significant
sz proportions of errors being identified. If the CM generally identifies few errors, its benefits as
ss @ screening tool may be modest. In addition, even the optimal precision achieved by the CM

us in the full sample of trials is moderate. Retraction are rare, so a moderate precision does
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s not imply that the CM is uninformative. However, there are important implications for the
sz use of CM for screening. First, moderate precision warrants caution in the interpretation of
us  results from the CM. Users should be aware that even at “conservative” thresholds, many
s of the flagged trials may not be erroneous or fraudulent. Second, parties that may consider
0 using the CM for screening may consider false positives to be associated with increased costs
i1 of using the method, such as increased effort need to evaluate flagged trials or the potential

2 of delaying publication of valid research over a false postive.

;3 My analysis also reveals heterogeneity in the performance of the CM across categories of
4 retractions and across journals. I discuss three possible explanations for this, all plausible.
35 First, It may be that this heterogeneity arises from heterogeniety in the behavior of researchers
16 who submit to different journals. If the processes by which error or fabrication occur tend
7 to be different across the different journals and retraction categories, this could explain the

s observed heterogeneity.

0 Second, heterogeneity in precision-recall curves may arise due to issues in the detection
w0 of errors. Not all erroneous publications are retracted, and it may be that retractions are
1 generally a conservative marker of error, such that there are many potentially erroneous
w2 trials within the literature that could go un-retracted. If this is, than the precision and
w3 recall rates calculated based on retraction could give a pessimistic picture of the CM. This is
s particually the case if several of the un-retracted trials that have extreme CM p-values are
35 erroneous but undetected, which might be expected if the CM is an effective measure of error.
36 Assuming this is the case, precision and recall using retraction as a metric may underestimate
s7 the values that would be obtained using the unseen labels of true error. Under this model,
8 heterogeneity in precision and recall performance is really due to heterogeneity in the extent
w0 to which retraction detects error. This suggests the possiblity that the journals where the
s CM performs well are more indicative of the true performance of the CM, while the journals
sn where it performs poorly simply underestimate performance because the trials with extreme

sz p-values that remain un-retracted truely are erroneous, but simply have not been detected as
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sr3 such. Deeper looks at trials that produce extreme CM p-values are warranted to assess this

st possiblity.

ss  Finally, it is possible the performance of the CM is overestimated in in the journals where
we it performs best. The journals where the CM performs well tend to be anesthesia journals
sz that also contain retractions that may have been known to Carlisle during the development
srs of the CM, and in some cases the journals contain retractions that occurred directly as a
s result of being identified by the CM. Retractions in this category show more extreme CM
10 p-values compared to other fabrication-related retractions (Fig 4A and E). This suggests
ss1 the possiblity that the CM may be “overfit” to these particular trials. If the CM was used
2 to identify some retracte trials, it may be that erroroneous trials that have extreme CM
;3 p-values were more likely to be identified, while erroroneous trials that have less extreme CM
;s p-values received less scrutiny within this sample, and therefore remain un-retracted. This
;s may result in inflated recall values, due to the existence of un-retracted trials with moderate

s CM p—values.

sz This third possiblity may work synergistically with the first. For instance, if by chance the
;s anesthesiology field happened to have several prominent examples of fabrication that display
;0 the property targeted in the CM, then it is possible that methods similar to the CM were
s0 more likely to emerge within this field. As a result, tests of these methods might be more
;1 likely to include anesthesia trials from this period, which happened to have an excess of
s trials displaying these properties, thus resulting in overestimation of the performance of these

303 methods.

s Taken together, this analysis suggests that caution is warranted if the CM is to be used for
35 screening. Notably, some of the assumptions made my Carlisle are nessesitated by the fact
16 that the analysis in [1] by nessessity was based on summary statistics. This significantly
s7  complicates the application for the CM. For example, addressing correlation among baseline

;e variables would be very difficult using only summary statistics, but could be facilitated

18


https://doi.org/10.1101/179135
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/179135; this version posted August 22, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

0 by analysis of the raw data. If journals choose to implement screening procedures prior
wo to publication, authors of papers would be able to respond to the results of the CM by
w1 reanalyzing the raw data, thus potentially giving more definitive answers as to the validity of
w2 certain assumptions made by the CM. Critically, in order for this stategy to function well,
w03 authors, reviewers, and editors need to have a solid understanding of how various assumptions
s0s can impact the results of the CM. This paper can serve as a starting point for members of the
a5 scientific community who need to interpret results in this context. Likewise, when insitutions
ws such as funders or journals consider whether or how the CM could play a role in decision
w7 making, the results presented here can give insight into the possible costs and benefits of

w08 various implementations.

« Methods

a0 P-value calculations

m | recalculated p-values from summary statistics using the “anovaSummarized” command
a2 in the package “CarletonStats” [24], as well as a custom Monte-Carlo method used by
a3 Carlisle in [1]. To replicate the method used by Carlisle in my own simulations, I modified
ss  code provided by Carlisle in the comments at (http://steamtraen.blogspot.com/2017/06/
a5 exploring-john-carlisles-bombshell.html). T used the “metap” [25] package for combining

a6 p-values by Stouffer’s method [23] using the “sumz” function.

a7 Carlisle data

ss | obtained Data from the supplemental tables [1], and loaded the data into R using the

no “readxl” [26] package.
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= Precision/recall analysis

a1 1 computed precision/recall curves using the package “PRROC” [27], with the CM p-value

22 was the metric and a binary indictor of retraction (1 = retracted, 0 otherwise) as the target.

» Categorization of retractions

2¢ Table S1 of [1] contains notes by Carlisle with information about individual trials, including
w5 details of retractions. I Categorize the trials by detecting the presence of certain terms or
»6 word stems within these notes. I categorize a trial as having been retracted by the presence
w27 of “TRETRACTED” within these notes, and un-retracted otherwise. I categorize a retraction
w28 as coming from a prominent anesthesia related author that is known for fabrication based
a0 on the presence of one of four names in the notes. I use the names “Sato”, “Boldt”, “Fujii”
a0 and “Reuben”. I catgorize a retracted trial that lacks one of these names as having been
a1 caused by fabrication based on the presence of “fabricat” in the notes. All other retracted
.2 trial I categorize as having ocurred for reasons other than fabrication. For one trial, manual
a3 review suggested that the note mentions “fabricat” but without definitively attributing the

w trial to fabrication. As a result, I label this trial as having occurred for reasons other than

sss  fabrication.

= Computational analysis

s I conducted all analyses in R [28] version 3.3.2. I used the package “ggplot2” [29] for
a8 visualization.

= Reproducibilty and computational details

a0 Code used to generate the analyses and figures included in this article are available at

s https://github.com/ScottWPiraino/carlisle_reanalysis.
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