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Tumors are heterogeneous, evolving ecosystems [1, 2],

composed of sub-populations of neoplastic cells that

follow distinct strategies for survival and propaga-

tion [3]. The success of a strategy defining any single

neoplastic sub-population is dependent on the distri-

bution of other strategies, and on various components

of the tumour microenvironment like cancer associ-

ated fibroblasts (CAFs) [4]. The rules mapping the

population’s strategy distribution to the fitness of in-

dividual strategies can be represented as an evolution-

ary game [5–12]. In four di↵erent environments, we

measure the games between treatment naive (Alec-

tinib therapy sensitive) cells and a derivative line in

which resistance was previously evolved [13]. We find

that the games are not only qualitatively di↵erent be-

tween di↵erent environments, but that targeted ther-

apy and the presence of CAFs qualitatively switch the

type of game being played. This provides the first

empirical confirmation for the theoretical postulate

of evolutionary game theory (EGT) in mathematical

oncology that we can treat not just the player, but

also the game. Although we concentrate on measur-

ing games played by cancer cells, the measurement

methodology we develop can be used to advance the

study of games in other microscopic systems.

The EML4-ALK fusion, found in approximately 5% of
NSCLC patients, leads to constitutive activation of onco-
genic tyrosine kinase activity of ALK, therefore “driving” the
disease. Inhibitors of tyrosine kinase activity of ALK (ALK
- TKI) proved to be highly clinically e�cacious, inducing
tumor shrinkage and prolonging patient survival [14]. Un-
fortunately, virtually all of the tumors that respond to ALK
TKIs eventually relapse [15] which is a typical outcome of
other oncognic tyrosine kinases [16], resistance to ALK-TKI
remains a major unresolved clinical challenge. Despite sig-
nificant advances in deciphering molecular mechanisms of
resistance [17], the evolutionary dynamics of the ALK TKI
resistance remains poorly understood. The inability of TKI
therapies to completely eliminate tumor cells has been shown
to be at least partially attributable to microenvironmental
protection [18]. CAFs are one of the main non-malignant com-
ponents of tumor microenvironment and a major contributor

to microenvironmental resistance, including cytokine medi-
ated protection against ALK inhibitors [19]. To study these
eco-evolutionary dynamics, we interrogated the competition
between treatment naive H3122 cells and a derivative cell line
in which we developed alectinib (a highly e↵ective clinical
ALK TKI) resistance by selection in progressively increasing
concentrations of the drug [13]. Through these interrogations,
we aimed to come to a quantitative understanding of how these
dynamics were a↵ected by clinically relevant concentrations
of alectinib (0.5µM) in the presence or absence of CAFs.

Due to our interest in frequency-dependent biological in-
teractions, we performed these experiments over a range of
initial proportions of resistant and parental cells for each of the
four environments. Other microscopic experimental systems in
which frequency dependent fitness has been considered include,
but are not limited to: E. coli [20, 21], yeast [22], bacterial
symbionts of hydra [23], and pancreatic cancer [11], though
none has been designed to measure evolutionary games di-
rectly. We used time lapse microscopy to follow the expansion
of therapy resistant and parental cells, di↵erentially labeled
with stable expression of selectively neutral GFP and mCherry
fluorescent proteins, respectively.

To establish baseline characteristics, we performed assays
in monotypic cultures. From the time series data, we inferred
the growth rate of both the parental and resistant cells for
each of 6 replicates of each experimental condition, as seen in
Figure 1A. As expected, alectinib inhibited growth rates of
parental cells, whereas the growth rate of the resistant cells
was not a↵ected. And as previously reported [19], we observed
stromal protection against ALK TKI: CAFs provided a more
significant growth advantage in the presence of alectinib.

While the results of the monotypic culture matched expec-
tations, we observed a number of non-intuitive nuances in our
co-culture experiments. Figure 1B shows the resulting growth
rates of each cell type in the co-culture experiments for all
experimental (color, shape) and initial conditions (opacity
is parental cell proportion). In the co-culture – unlike the
monoculture – CAFs slightly improved the growth rates of
the parental cells even in DMSO. More strikingly, even in the
absence of drug, resistant cells tend to have a higher growth
rate that parental cells. This is evident from most points
being above the dotted diagonal line corresponding to equal
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Figure 1: Coculture changes the fitness of cells in vitro. (a) Growth rates of the resistant and parental cells in indicated
experimental conditions in monotypic cultures. Comparisons with Wilcoxon rank-sum. (b) Growth rates of resistant and parental cells
for each well in four di↵erent conditions in coculture with varying seeding proportions of parental cells. See Figure 2 for growth rate
confidence intervals. (c,d): indicated data points were generated by measuring red and green fluorescent area over time, and fitting an
exponential growth model.
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Figure 2: Fitness functions for competition of parental vs. resistant NSCLC. For each plot: growth rate with confidence
intervals versus initial proportion of parental cells. Red data points are growth rates of parental cells, and green for resistant cells.
Dotted lines represent the linear fitness function of best fit, and the yellow dotted line is the gain function for parental (see Figure 3a);
fit error visualized in Figure 3b.

growth rate of the sub-populations (y = x). This is somewhat
counter to standard considerations as while the emergence
of therapeutic resistance is inevitable, it is broadly assumed
that in the absence of treatment the resistant phenotype is
neutral or even carries some inherent cost. For example, the
experimental community assumes that the resistance granting
mutation might have absolutely no e↵ect in the absence of
drug and the modeling community considers explicit costs like
the up-regulating pumps to remove the drug, investing in other
defensive strategies, or lowering growth rate by switching to
sub-optimal growth pathways [3, 24]. In the presence of drug,
resistance provides a relative benefit from increases survival
or drug tolerance which – for modelers – o↵sets the cost. The
higher fitness of resistant cells in our data throws in question
this classic model of resistance, and is incompatible with a
widely held assumption that resistance arises simply from
selection of pre-existant sub-populations, which have been
converted to resistance with a binary mutational switch [25].

Further, frequency dependence of both the parental and
resistant cell growth rates is hinted at in Figure 1 where
we see an increase in fitness of both cell types as the initial
proportion of parental cells – represented by the opacity of
each point – increases. This is shown more clearly in Figure 2.
In all four conditions, we see that the growth rate of the
resistant and parental cell lines depends linearly on the initial
proportion of parental cells. In three of the conditions, the
resistant cell growth rates increase with increased seeding
proportion of parental cells, while the parental growth rates
remain relatively constant (in the case of no CAFs) or slightly
increasing (in the case of alectinib + CAFs). For example, in
DMSO, this suggests that parental cells’ fitness is independent
of resistant cells: wDMSO

P = 0.025. 1 However, resistant cells
in monotypic culture have approximately the same fitness as
parental cells (Figure 1a), but they benefit from the parental
cells: w

DMSO
R = 0.025 + 0.015p (where p is the proportion

of parental cells). 2 This suggests commensalism between
resistant and parental cells, i.e. resistant cells benefit from the

1
The actual line of best fit is ŵDMSO

P = 0.025�0.001p. This empirical

fit has uncertainty, and wDMSO
P is within the error-bars of ŵDMSO

P .

2
The empirical line of best fit is ŵDMSO

R = 0.027 + 0.013p. But

wDMSO
R is within error of ŵDMSO

R .

interaction with the parental cells, without exerting positive
or negative impact on them. The DMSO + CAF case di↵ers
from the other three in that we see a constant growth rate
in resistant cells, but a linearly decreasing (in p) growth
rate of parental cells: w

DMSO + CAF
P = 0.025 + 0.01(1 � p).3

This could be interpreted as CAFs switching the direction of
commensalism between parental and resistant cells.

The tools of evolutionary game theory are well suited for
making sense of such frequency-dependent fitness. In measur-
ing the game that describes this interaction, it is important
to focus on the gain function (see [12, 26] for a theoretical
perspective): the increase in growth rate that a hypothetical
player would get in ‘switching’ from being parental to resistant
with all other variables held constant. In other words, we need
to look at how the di↵erence between resistant and parental
growth rates varies with initial proportion of parental cells.
The relatively good fit of a linear dependence of growth rates
on parental seeding proportion allows us to model the interac-
tion as a matrix game – a well-studied class of evolutionary
games (see model in Figure 3a). Note that this linearity is not
guaranteed for arbitrary experimental systems. For example,
the game between the two Betaproteobacteria Curvibacter sp.
AEP1.3 and Duganella sp. C1.2 was described by a quadratic
gain function [23].

Two strategy matrix games have a convenient representation
in a two dimensional game-space and can produce all possible
linear gain functions. More importantly, from a linear gain
function, it is possible to infer the corresponding matrix game,
up-to constant o↵sets on each column. Since the game type
and resultant dynamics are invariant under constant o↵sets
to the columns, this means we can infer the game played
by the cancer cells (see the model in Figure 3a for details).
We plot the inferred games in a game-space spanned by the
theoretical fitness advantage a single resistant invader would
have if introduced into a parental monotypic culture versus the
fitness advantage of a parental invader in a resistant monotypic
culture; as shown in Figure 3b. In this representation, there
are four qualitatively di↵erent types of games corresponding
to the four quadrants with an illustrative dynamic flow inset

3
The empirical line of best fit is ŵDMSO + CAF

P = 0.035 � 0.009p.

But wDMSO + CAF
P is within error of ŵDMSO + CAF

P .
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(a) Replicator dynamics for parental-resistant NSCLC. (b) Two dimensional game space.

Figure 3: Measured games. (a) Consider two strategies in a cancer cell co-culture: parental (P ) and resistant (R). When P
encounters P then each experience a fitness e↵ect A; when P encounters R thenP experience fitness e↵ect B and R fitness e↵ect C;
two Rs interaction experience fitness e↵ects D. This is summarized in the matrix above, where the focal agent selects row and
alter selects column; the matrix entry is then the fitness e↵ect for the focal. This can be translated into a simple exponential
growth model for the number of parental NP and number of resistant NR cells. The dynamics of the proportion of parental cells

p = NP
NP+NR

over time is described by the replicator equation (bottom). (b) We plot the four games measured in vitro. The games

corresponding to our conditions are given as matrices (with entries multiplied by a factor of 100) by their label. The x-axis is
the relative fitness of a resistant focal in a parental monotypic culture: C � A. The y-axis is the relative fitness of a parental
focal in a resistant monotypic culture: B � D. This game space is divided into four possible dynamical regimes, one for each
quadrant, represented as qualitative flow diagram between parental (P ) and resistant (R) strategies (inset). Games measured in our
experimental system are given as specific points with error bars based on goodness of fit of linear fitness functions in Figure 2.

in the corner of each quadrant. We can see that the game
corresponding to DMSO + CAF – although quantitatively
similar to DMSO – is of a qualitatively di↵erent type compared
to all three of the other combinations.

Existing theoretical work considers treatment (or other
environmental di↵erences) as changes between qualitatively
di↵erent game regimes [8–10, 12], with the goal not to directly
target the cells, but instead perturb the game they are playing
and allow evolution to drive unwanted cancer subclones to
extinction through competition. This has been largely taken
as a theoretical postulate. If we look at our emperical measure-
ments for the untreated case with CAFs (upper-right quadrant
Figure 3b) we see the Leader game. However, either treating
with alectinib or eliminating CAFs through a stromal directed
therapy, moves the game into the lower-right quadrant of
Figure 3b, and the game becomes a Deadlock game. To our
knowledge, neither of these games is considered in the prior
theoretical EGT literature in oncology. This switch allows us
to show that a popular theoretical construct of EGT in math-
ematical oncology – that treatment can qualitative change the
type of game – has an experimental implementation.

A particularly important di↵erence between Leader and
Deadlock dynamics is the existence of an internal fixed point
in Leader but not in Deadlock. We can see convergence
towards this fixed point in the top-right panel (DMSO +
CAF) of Figure 4, and no such convergence in the other three
cases. Since the DMSO + CAF condition is our closest to an
untreated patient, it has important consequences for latent

resistance. Classical models of resistance assume a rare or de
novo mutant taking over the population after the introduction
of drug. In our experimental system, however, it is possible for
negative frequency dependent selection to push the population
towards a stable polyclonal tumour of resistant and sensitive
cells before the introduction of drug. This allows for a much
higher levels of pre-existing heterogeneity in resistance than
predicted by the classical picture of costly drug resistance
in the tumour prior to treatment. With this pre-existing
heterogeneity, tumour resistance can emerge faster and more
robustly; helping us to better understand why all patients
eventually develop resistance to Alectinib.

Drug-sensitive (parental) and resistant cells interact not
only with alectinib, but also with each other and micro-
environmental factors like CAFs. We showed that the relative
fitness advantage of resistant over parental cells – the gain
function characterizing replicator dynamics – is a linear func-
tion of the initial proportion of sensitive cells. Surprisingly,
resistant cells have an advantage over parental cells even in
DMSO, throwing into question the common theoretical postu-
late that resistance comes at a cost that has to be o↵set by a
benefit only present in drug. Measuring the gain function has
enabled us to represent the inter-dependence between parental
and resistant cells as a matrix game. Not only are these games
quantitatively di↵erent among the four environmental condi-
tions – see Figure 3b – but they are also of two qualitatively
di↵erent types: a Leader game in the case of DMSO + CAF
and Deadlock in the other three cases.
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Figure 4: Proportion of parental cells versus time for competition of parental vs. resistant NSCLC. Each line corresponds
to the time dynamics of a separate well. A line is coloured green if proportion of resistant cells increased from start to end; red if
proportion of parental cells increased; black if statistically indistinguishable proportions at start and end.

This ability of treatment to qualitative change the type
of game being played provides the first empirical demonstra-
tion of the principal: don’t treat the player, treat the game.
Our hope is that this empirical connection allows for poten-
tial translations of existing oncologic EGT literature to the
clinic. Unfortunately, the Leader and Deadlock games are
understudied in mathematical oncology, and we hope that
our observation of them will motivate theorists to explore
them in more detail. One di↵erence between these game types
is already clear: in the case of Leader there is a predicted
negative frequency dependence selection toward a coexistence
of parental and resistant cells – which we confirm for DMSO
+ CAF in Figure 4 – while for Deadlock there is selection
towards a completely resistant tumour. Since the DMSO +
CAF is the closest analog to a pre-treatment patient in our in
vitro system, this suggests that there might be much higher
levels of initial heterogeneity in drug resistance than prior
theory would suggest. and throws into question the concept
of rare pre-existent resistant clones. If this result holds in
vivo and/or for other cancers it will help explain the ubiquity
and speed of resistance that undermines our abilities to cure
patients or control their disease. Building a catalog of the
games cancers play – by adopting our methodology in other
cancers, and other experimental contexts – can help resolve
this and others questions, and allow for a new strategy in
cancer therapy: treating the game.
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Methods

H3122 cell line was purchased from ATCC (Manassas, Vir-
ginia). Identity of cell lines was confirmed by short tandem
repeats (STR) analysis, performed at Mo�tt Cancer Cen-
ter Molecular Genetics core facility. Primary lung cancer

associated fibroblasts were obtained from S. Antonia lab (Mof-
fitt Cancer Center). The cells were isolated as previously
described [27] and expanded for 3-10 passages prior to the
experiments. All human tissue was collected using protocols
approved by the USF Institutional Review Board. Alectinib
resistant derivative cell line was obtained through escalating
inhibitor concentration protocol, as described in Dhawan et
al. [13]. Stable GFP and mCherry expressing derivative cell
H3122 cell lines were obtained through lentiviral transduction
with pLVX-AcGFP (Clontech) and mCherry (obtained from
K. Mitsiades, DFCI) respectively. Both H3122 cells and CAFs
were cultured in RPMI media (Gibco brand from Thermo
Scientific), supplemented with 10% FBS, (purchased from
Serum Source, Charlotte, NC). Regular tests for mycoplasma
contamination were performed with MycoScope PCR based
kit from GenLantis, San Diego, CA.

The cells were harvested upon reaching 70% confluence
and counted using Countess II automatic cell counter (Invitro-
gen). For the determination of competitive growth rates, 2,000
H3122 cells were seeded with or without 500 CAF cells in 50
ul RPMI media per well into 384 well plates (Corning, cata-
logue #7200655), with di↵erent proportions of di↵erentially
labelled parental and alectinib resistant variants. 20 hours
after seeding, Alectinib – that was purchased from ChemieTek
(Indianapolis, IN) – or DMSO vehicle control, diluted in 20
ul RPMI were added to each well, to achieve final Alectinib
concentration of 500 nM/l. Time lapse microscopy measure-
ments were performed every 4 hours in white light, as well
as green and red fluorescent channels using Incucyte Zoom
system from Essen Bioscience.

Units of size for populations was fluorescent area, measured
from timelapse images via python code using the OpenCV
package. We cleaned images by renormalizing them (GFP and
mCherry intensities vary over di↵erent orders of magnitude),
removing vignetting with CLAHE, and thresholding to iden-
tify fluorescent regions. We eliminate salt-and-pepper noise
from the thresholded images with the opening morphological
transform. The resultant area is then taken as measure of
population size for the purposes of computing fitnesses. In
order to minimize the impact of growth inhibition by conflu-
ency, we analyzed the competitive dynamics during the first
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5 days of culture, when the cell population was expanding
exponentially. We use growth rate as our measure of fitness.
We learn growth rate along with a confidence interval from the
time-series of population size in each well using the Theil-Sen
estimator. The above is summarized in 1c,d.

Since raw population sizes have di↵erent units (GFP Fluo-
rescent Area (GFA) vs mCherry Fluorescent Area (CFA)), we
converted them to common cell-number units by learning the
linear transform that scales GFA and CFA into cell-number.
In Figure 2, to measure the fitness functions we plotted in
fitness of each cell-type in each well vs seeding proportion (p)
of parental cells – computed from the first time-point. We
estimated the line of best-fit and error on parameters for this
data using least-squares. The p = 0 and p = 1 intercepts of
the fitness functions serve as the entries of the game matrices
in Figure 3b. The game point are calculated from the matrices,
and the error is propagated from the error estimates on fitness
function’s parameters.

Code and data are available on request.
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