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Heterogeneity in strategies for survival and propagation among the cells that constitute a tumour is a
driving force behind the evolution of resistance to cancer treatment. The rules mapping the tumour’s
strategy distribution to the fitness of individual strategies can be represented as an evolutionary game.
We develop a game assay to measure this property in co-culures of alectinib-sensitive and alectinib-
resistant non-small cell lung cancer. The games are not only quantitatively di↵erent between di↵erent
environments, but targeted therapy and cancer associated fibroblasts qualitatively switch the type
of game being played from Leader to Deadlock. This provides the first empirical confirmation of
a central theoretical postulate of evolutionary game theory in oncology: we can treat not just the
player, but also the game. Although we concentrate on measuring games played by cancer cells,
the measurement methodology we develop can be used to advance the study of games in other
microscopic systems.

Tumors are heterogeneous, evolving ecosystems (1 , 2 ), com-
posed of sub-populations of neoplastic cells that follow

distinct strategies for survival and propagation (3 ). The suc-
cess of a strategy defining any single neoplastic sub-population
is dependent on the distribution of other strategies, and on
various components of the tumour microenvironment, like
cancer associated fibroblasts (CAFs) (4 ). The EML4-ALK fu-
sion, found in approximately 5% of non-small cell lung cancer
(NSCLC) patients, leads to constitutive activation of onco-
genic tyrosine kinase activity of ALK, thereby “driving” the
disease. Inhibitors of tyrosine kinase activity of ALK (ALK
TKI) proved to be highly clinically e�cacious, inducing tumor
shrinkage and prolonging patient survival (5 ). Unfortunately,
virtually all of the tumors that respond to ALK TKIs eventu-
ally relapse (6 ) which is an outcome typical of other oncogenic
tyrosine kinases (7 ), and resistance to ALK TKI remains a ma-
jor unresolved clinical challenge. Despite significant advances
in deciphering molecular mechanisms of resistance (8 ), the
evolutionary dynamics of ALK TKI resistance remains poorly
understood. The inability of TKI therapies to completely
eliminate tumor cells has been shown to be at least partially
attributable to microenvironmental protection (9 ). CAFs are
one of the main non-malignant components of tumor microen-
vironment and the interplay between them and tumor cells is a
major contributor to microenvironmental resistance, including
cytokine mediated protection against ALK inhibitors (10 ).

To study the eco-evolutionary dynamics of this interplay, we
interrogated the competition between treatment naive H3122
cells and a derivative cell line in which we developed alectinib
– a highly e↵ective clinical ALK TKI (11 ) – resistance by selec-
tion in progressively increasing concentrations of the drug (12 ).

We aimed to come to a quantitative understanding of how
these dynamics were a↵ected by clinically relevant concentra-
tions of alectinib (0.5µM; see (13 )) in the presence or absence
of CAFs. To achieve this, we developed a novel assay for
quantifying eco-evolutionary dynamics that is of independent
interest to the general study of microscopic systems.

Mono vs mixed cultures & cost of resistance

To establish baseline characteristics, we performed assays in
monotypic cultures of parental (alectinib-sensitive) and re-
sistant cell lines with and without alectinib and CAFs. To
determine the growth rate, which we use as a proxy for fitness,
we grew parental and resistant cells in a time lapse microscope
system (see Supplementary Methods for details). From the
time series data, we inferred the growth rate of each cell type
from 6 experimental replicates of each experimental condition,
as seen in Figure 1. As expected, alectinib inhibited growth
rates of parental cells, whereas the growth rate of the resistant
cells was not a↵ected. And as previously reported (10 ), we ob-
served stromal protection against ALK TKI: CAFs provided a
more significant growth advantage in the presence of alectinib.

If we limited ourselves to these monotypic assays then our
observations would be consistent with the classic model of re-
sistance which holds that in the absence of treatment (DMSO
or DMSO + CAF) the resistant phenotype is neutral or even
carries some inherent cost. For example, the experimental com-
munity assumes that the resistance granting mutation might
have absolutely no e↵ect in the absence of drug, and the mod-
eling community considers explicit costs like the up-regulating
pumps to remove the drug, investing in other defensive strate-
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Figure 1: Monotypic culture growth rates for parental (red) and resistant (green) cells in indicated experimental conditions.
Comparisons are made using Wilcoxon rank-sum.

gies, or lowering growth rate by switching to sub-optimal
growth pathways (3 , 14 ). Finally, in the presence of drug, ac-
cording to the classic model of resistance, resistance provides
a relative benefit from increased survival or drug tolerance
which – for modelers – o↵sets the cost.

Due to our interest in non-cell-autonomous biological inter-
actions in cancer (15 ), we did not stop at monotypic assays.
We continued our experiments over a range of initial pro-
portions of resistant and parental cells for each of the four
experimental conditions tested in monotypic culture. Other
microscopic experimental systems in which frequency depen-
dent fitness has been considered include, but are not limited to:
Escherichia coli (16 , 17 ), yeast (18 , 19 ), bacterial symbionts
of hydra (20 ), breast cancer (15 ) and pancreatic cancer (21 );
though none has been designed to measure evolutionary games
directly. We used time lapse microscopy to follow the ex-
pansion of therapy resistant and parental cells, di↵erentially
labeled with stable expression of selectively neutral GFP and
mCherry fluorescent proteins, respectively.

While the results of the monotypic culture matched expecta-
tions, we made a number of non-intuitive observations in our
co-culture experiments. Figure 2 shows the resulting growth
rates of each cell type in the co-culture experiments for all
experimental (color, shape) and initial conditions (opacity
is parental cell proportion). In the co-culture – unlike the
monoculture – CAFs slightly improved the growth rates of
the parental cells even in DMSO. More strikingly, even in the
absence of drug, resistant cells tend to have a higher growth
rate than parental cells. This is evident from most points
being above the dotted diagonal line corresponding to equal
growth rate of the sub-populations (y = x). The higher fitness
of resistant cells we observe in the absence of drug throws in
question the classic model of resistance.

Frequency dependence in fitness functions

Frequency dependence of both the parental and resistant
growth rates is hinted at in Figure 2 where we see an increase
in fitness of both cell types as the initial proportion of parental
cells – represented by the opacity of each point – increases.
This is shown more clearly in Figure 3. In all four conditions,
we see that the growth rate of the resistant and parental cell
lines depends linearly on the initial proportion of parental

cells. In three of the conditions, the resistant cell growth rates
increase with increased seeding proportion of parental cells,
while the parental growth rates remain relatively constant
(in the case of no CAFs) or slightly increasing (in the case
of alectinib + CAFs). For example, in DMSO, this suggests
that parental cells’ fitness is independent of resistant cells:
w

DMSO
P = 0.025. 1 However, resistant cells in monotypic

culture have approximately the same fitness as parental cells
(Figure 2a), but they benefit from the parental cells in co-
culture: wDMSO

R = 0.025 + 0.015p (where p is the proportion
of parental cells). 2 This suggests commensalism between
resistant and parental cells, i.e. resistant cells benefit from the
interaction with the parental cells, without exerting positive
or negative impact on them.

The DMSO + CAF case di↵ers from the other three in that
we see a constant growth rate in resistant cells, but a linearly
decreasing (in p) growth rate of parental cells: wDMSO + CAF

P =
0.025 + 0.01(1 � p).3 This could be interpreted as CAFs
switching the direction of commensalism between parental
and resistant cells. Further, the stable co-existence enabled by
the cross in fitness functions calls into question a widely held
assumption that pre-existent resistance is a cell-autonomous
binary switch to higher fitness (22 ).

Leader and Deadlock games in NSCLC

The tools of evolutionary game theory (EGT) are well suited
for making sense of such frequency-dependent fitness (21 , 23–
29 ). EGT defines a game as the rules mapping the pop-
ulation’s strategy distribution to the fitness of individual
strategies. Experimental EGT has used this to compare –
usually qualitatively – the results of experiments to numeric
simulations or analytic dynamics of specific games. Previous
work has considered games like snowdrift (19 ), stag hunt (20 ),
rock-paper-scissors (16 ), and public goods (18 , 21 ). We unite
these parallel tracks by treating the game as an assayable
hidden variable of a population and its environment.

1
The actual line of best fit is ŵDMSO

P = 0.025�0.001p. This empirical

fit has uncertainty, and wDMSO
P is within the error-bars of ŵDMSO

P .

2
The empirical line of best fit is ŵDMSO

R = 0.027 + 0.013p. But

wDMSO
R is within error of ŵDMSO

R .

3
The empirical line of best fit is ŵDMSO + CAF

P = 0.035 � 0.009p.

But wDMSO + CAF
P is within error of ŵDMSO + CAF

P .
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Figure 2: Coculture growth rates across four experimental conditions. Each point in the main figure is a separate well with
initial proportion of parental cells represented by opacity and experimental condition represented by shape (DMSO: circle; Alectinib;
square) and colour (no CAF: blue; + CAF: magenta). Each well’s x-position corresponds to parental growth rate and y-position for
resistant growth rate; dotted block line corresponds to the line of equal fitness at x = y. (a,b,d,e) In each well, we quantify population
size by fluorescent area of each cell type from 30 time-lapse microscopy images. (c,f): time-series of parental and resistant population
size for two example wells. Inset x-axis is time, y-axis is log of population size. Median growth rate and confidence intervals (omitted)
were estimated for each well using the Theil-Sen estimator, and serve as the coordinates in the main figure. See Figure 3 for growth rate
confidence intervals.
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Figure 3: Fitness functions for competition of parental vs. resistant NSCLC. For each plot: growth rate with confidence
intervals versus initial proportion of parental cells. Red data points are growth rates of parental cells, and green for resistant cells.
Dotted lines represent the linear fitness function of best fit, and the yellow dotted line is the gain function for parental (see Figure 4a);
fit error visualised in Figure 4b.

To measure the game that describes these interactions, it is
important to focus on the gain function (see (29 , 30 ) for a
theoretical perspective): the increase in growth rate that a hy-
pothetical player would get in ‘switching’ from being parental
to resistant with all other variables held constant. In other
words, we need to look at how the di↵erence between resistant
and parental growth rates varies with initial proportion of
parental cells. The relatively good fit of a linear dependence
of growth rates on parental seeding proportion allows us to
model the interaction as a matrix game – a well-studied class
of evolutionary games (see model in Figure 4a). Note that this
linearity is not guaranteed for arbitrary experimental systems.
For example, the game between the two Betaproteobacteria
Curvibacter sp. AEP1.3 and Duganella sp. C1.2 was described
by a quadratic gain function (20 ). Future work can extend
our assay to non-matrix games.

Two strategy matrix games have a convenient representation
in a two dimensional game-space and can produce all possible
linear gain functions. More importantly, from a linear gain
function, it is possible to infer the corresponding matrix game,
up-to constant o↵sets on each column. Since the game type
and resultant dynamics are invariant under constant o↵sets
to the columns, this means we can infer the game played by
the cancer cells (see the model in Figure 4a for details). This
is the output of our game assay. We plot the inferred games
in a game-space spanned by the theoretical fitness advantage
a single resistant invader would have if introduced into a
parental monotypic culture versus the fitness advantage of a
parental invader in a resistant monotypic culture; as shown in
Figure 4b. In this representation, there are four qualitatively
di↵erent types of games corresponding to the four quadrants
with an illustrative dynamic flow inset in the corner of each
quadrant. We can see that the game corresponding to DMSO
+ CAF – although quantitatively similar to DMSO – is of a
qualitatively di↵erent type compared to all three of the other
combinations.

We can also convert our inferred fitness functions from Fig-
ure 3 into a payo↵ matrix. We do this by having each row
correspond to a strategy’s fitness function with the column
entries as the p = 1 and p = 0 intersects of this line of best fit.
If we look at our empirical measurements for DMSO + CAF

(upper-right quadrant Figure 4b) we see the Leader game, and
Deadlock in the other three cases. To our knowledge, neither
of these games is considered in the prior theoretical EGT
literature in oncology. In addition to adding two new entries
to the catalogue of games that cancers play, our results also
support existing theoretical work in mathematical oncology
that considers treatment (or other environmental di↵erences)
as changes between qualitatively di↵erent game regimes (26–
29 ). In this framework, treatment has the goal not to directly
target the cells, but instead perturb the game they are playing
and allow evolution to drive unwanted cancer subclones to
extinction through competition. Before this study, this possi-
bility has been largely taken as a theoretical postulate. In our
system, we can view an untreated tumour as similar to DMSO
+ CAF and thus following the Leader game. Treating with
alectinib (move to Alectinib + CAF) or eliminating CAFs
through a stromal directed therapy (move to DMSO), moves
the game into the lower-right quadrant of Figure 4b, and the
game becomes a Deadlock game. This switch allows us to
show that this theoretical construct of EGT – that treatment
can qualitative change the type of game – has an experimental
implementation.

A particularly important di↵erence between Leader and
Deadlock dynamics is the existence of an internal fixed point in
Leader but not in Deadlock. We can see convergence towards
this fixed point in the DMSO + CAF condition of Figure 4c,
and no such convergence in the other three cases (Figure 4d
for Alectinib + CAF; Supplementary Figure 5). Since the
DMSO + CAF condition is our closest to an untreated patient,
it has important consequences for latent resistance. Classical
models of resistance assume a rare or de novo mutant taking
over the population after the introduction of drug. In our
experimental system, however, it is possible for negative fre-
quency dependent selection to push the population towards a
stable polyclonal tumour of resistant and sensitive cells before
the introduction of drug. This allows for much higher levels
of pre-existing heterogeneity in resistance than predicted by
the classical picture.With this pre-existing heterogeneity, tu-
mour resistance can emerge faster and more robustly; helping
us to better understand why all patients eventually develop
resistance to targeted therapies like alectinib.
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(a) Replicator dynamics for parental-resistant NSCLC. (b) Two dimensional game space.

Figure 4: Measured games. (a) Consider two strategies in a cancer cell co-culture: parental (P ) and resistant (R). When
subpopulation of P interacts with P then each experience a fitness e↵ect A; when P encounters R then P experience fitness e↵ect
B and R fitness e↵ect C; two Rs interaction experience fitness e↵ects D. This is summarised in the matrix above, where the focal
agent selects row and alter selects column; the matrix entry is then the fitness e↵ect for the focal. This can be translated into a
simple exponential growth model for the number of parental NP and number of resistant NR cells. The dynamics of the proportion

of parental cells p = NP
NP+NR

over time is described by the replicator equation (bottom). Notice that for a matrix game, the gain

function can be an arbitrary linear function of p. (b) We plot the four games measured in vitro. The x-axis is the relative fitness of
a resistant focal in a parental monotypic culture: C�A. The y-axis is the relative fitness of a parental focal in a resistant monotypic
culture: B �D. Games measured in our experimental system are given as specific points with error bars based on goodness of fit of
linear fitness functions in Figure 3. The games corresponding to our conditions are given as matrices (with entries multiplied by a
factor of 100) by their label. The game space is composed of four possible dynamical regimes, one for each quadrant. The typical
dynamics of each dynamic regime are represented as qualitative flow diagram between parental (P ) and resistant (R) strategies:
an upward red arrow corresponds to an increase in the parental subpopulation, and a downward green arrow correspond to an
increase in the green subpopulation. In the case of the two dynamic regimes observed in our NSCLC system, (c,d) inset shows the
experimental time-series of proportion of parental cells for DMSO + CAF (c) and Alectinib + CAF (d). Each line corresponds to
the time dynamics of a separate well. A line is coloured green if proportion of resistant cells increased from start to end; red if
proportion of parental cells increased; black if statistically indistinguishable proportions at start and end. Inset x-axis is time, and
y-axis is proportion of parental cells as measured from time-lapse microscopy. See Supplementary Figure 5 for proportion dynamics
of all four games. See Supplementary Figure 6 for density dynamics and their correspondence to the exponential growth model from
Figure 4a.
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Conclusion

Drug-sensitive (parental) and resistant cells interact not
only with alectinib, but also with each other and micro-
environmental factors like CAFs. We showed that the relative
fitness advantage of resistant over parental cells – the gain func-
tion characterizing replicator dynamics – is a linear function of
the initial proportion of sensitive cells. Surprisingly, resistant
cells have an advantage over parental cells even in DMSO,
throwing into question the common theoretical postulate that
resistance is neutral or comes at a cost. Measuring the gain
function has enabled us to develop an assay that represents
the inter-dependence between parental and resistant cells as a
matrix game. Not only are these games quantitatively di↵er-
ent among the four environmental conditions – see Figure 4b –
but they are also of two qualitatively di↵erent types: a Leader
game in the case of DMSO + CAF and Deadlock in the other
three cases.

This ability of treatment to qualitative change the type
of game being played provides the first empirical demonstra-
tion of the principal “don’t treat the player, treat the game.”
Our hope is that this empirical connection allows for poten-
tial translations of existing oncologic EGT literature to the
clinic. Unfortunately, the Leader and Deadlock games are
understudied in mathematical oncology, and we hope that our
observation of them will motivate theorists to explore them
in more detail. One di↵erence between these game types is
already clear: in the case of Leader there is negative frequency
dependence selection toward a coexistence of parental and re-
sistant cells – which we confirm for DMSO + CAF in Figure 4c
– while for Deadlock there is selection towards a completely
resistant tumour. Since DMSO + CAF is the closest analogue
to a pre-treatment patient in our in vitro system, this suggests
that there might be much higher levels of initial heterogeneity
in drug resistance than prior theory would suggest and throws
into question the concept of rare pre-existing resistant clones.
If this result holds in vivo and/or for other cancers it will help
explain the ubiquity and speed of resistance that undermines
our abilities to cure patients or control their disease. Building
a catalogue of the games cancers play – by adopting our game
assay in other cancers, and other experimental contexts – can
help resolve this and others questions, and serve as foundation
for a new strategy in cancer therapy: treating the game.
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