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Heterogeneity in strategies for survival and proliferation among the cells which constitute a tumour is
a driving force behind the evolution of resistance to cancer therapy. The rules mapping the tumour’s
strategy distribution to the fitness of individual strategies can be represented as an evolutionary game.
We develop a game assay to measure effective evolutionary games in co-cultures of alectinib-sensitive
and alectinib-resistant non-small cell lung cancer. The games are not only quantitatively different
between different environments, but targeted therapy and cancer associated fibroblasts qualitatively
switch the type of game being played by the in-vitro population from Leader to Deadlock. This
observation provides the first direct empirical confirmation of a central theoretical postulate of
evolutionary game theory in oncology: we can treat not only the player, but also the game. Although
we concentrate on measuring games played by cancer cells, the measurement methodology we develop
can be used to advance the study of games in other microscopic systems by providing a quantitative
description of non-cell-autonomous effects.

Tumours are heterogeneous, evolving ecosystems [1, 2],
comprised of sub-populations of neoplastic cells that fol-

low distinct strategies for survival and propagation [3]. The
success of a strategy employed by any single neoplastic sub-
population is dependent on the distribution of other strategies,
and on various components of the tumour microenvironment,
like cancer associated fibroblasts (CAFs) [4]. The EML4-
ALK fusion, found in approximately 5% of non-small cell lung
cancer (NSCLC) patients, leads to constitutive activation of
oncogenic tyrosine kinase activity of ALK, thereby “driving”
the disease. Inhibitors of tyrosine kinase activity of ALK
(ALK TKI) have proven to be highly clinically efficacious,
inducing tumour regression and prolonging patient survival [5,
6]. Unfortunately, virtually all of the tumours that respond
to ALK TKIs eventually relapse [7] – an outcome typical of
inhibitors of other oncogenic tyrosine kinases [8]. Resistance
to ALK TKI, like most targeted therapies, remains a major
unresolved clinical challenge. Despite significant advances
in deciphering the resultant molecular mechanisms of resis-
tance [9], the evolutionary dynamics of ALK TKI resistance
remains poorly understood. The inability of TKI therapies
to completely eliminate tumour cells has been shown to be
at least partially attributable to protection by aspects of the
tumour microenvironment [10]. CAFs are one of the main
non-malignant components of tumour microenvironment and
the interplay between them and tumour cells is a major con-
tributor to microenvironmental resistance, including cytokine
mediated protection against ALK inhibitors [11].

To study the eco-evolutionary dynamics of these various fac-
tors, we interrogated the competition between treatment naive
cells of ALK mutant NSCLC cell line H3122 – a “workhorse”

for studies of ALK+ lung cancer – and a derivative cell line in
which we developed resistance to alectinib – a highly effective
clinical ALK TKI [12] – by selection in progressively increas-
ing concentrations of the drug [13]. We aimed to come to a
quantitative understanding of how these dynamics were af-
fected by clinically relevant concentrations of alectinib (0.5µM;
see [14]) in the presence or absence of CAFs, isolated from a
lung cancer. To achieve this, we developed a novel assay for
quantifying effective games that is of independent interest to
the general study of microscopic systems.

Mono vs mixed cultures & cost of resistance

To establish baseline characteristics, we performed assays in
monotypic cultures of parental (alectinib-sensitive) and re-
sistant cell lines with and without alectinib and CAFs. To
gather temporally-resolved data for inferring growth rates, we
used time lapse microscopy to follow the expansion of therapy
resistant and parental cells, differentially labeled with stable
expression of selectively neutral GFP and mCherry fluorescent
proteins, respectively. From the time series data, we inferred
the growth rate with confidence intervals for each one of 6
experimental replicates in four different experimental condi-
tions (total of 24 data points, each with confidence intervals),
as seen in Figure 1. As expected, alectinib inhibited growth
rates of parental cells (DMSO vs Alectinib: p < .005; DMSO
+ CAF vs Alectinib + CAF: p < .005), whereas the growth
rate of the resistant cells was not affected. And, as previously
reported [11], CAFs partially rescued growth inhibition of
parental cells by Alectinib (Alectinib vs Alectinib + CAF:
p < .005; Alectinib + CAF vs DMSO: p < .005), without
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Figure 1: Monotypic culture growth rates for parental (red) and resistant (green) cells in indicated experimental conditions.
Confidence intervals on each experimental replicate is from confidence on the estimate of growth rate for that single replicate according
to the Theil-Sen estimator. Comparisons between experimental conditions (of 6 replicates each) are made using Wilcoxon rank-sum. In
addition to conditions linked by lines with reported p-values, conditions labeled by ’a’ and ’b’ are pairwise distinguishable with p < .005.

impacting growth rates of resistant cells. alk+

The classic model of resistance posits that the resistant
phenotype receives a benefit in drug (in our case: Alectinib of
Alectinib + CAF) but is neutral, or even carries an inherent
cost, in the absence of treatment (DMSO or DMSO + CAF).
For example, experimentalists frequently regard resistance
granting mutations as selectively neutral in the absence of
drug, and the modeling community often goes further by
considering explicit costs like up-regulating drug efflux pumps,
investing in other defensive strategies, or lowering growth
rate by switching to sub-optimal growth pathways [3, 15].
If we limited ourselves to these monotypic assays, then our
observations would be consistent with this classic model of
resistance.

But we did not limit ourselves to monotypic assays. Our
experience observing non-cell-autonomous biological interac-
tions [16] and modeling eco-evolutionary interactions [17–19]
in cancer led us to suspect that the heterotypic growth rates
would differ from monotypic culture. Cell-autonomous fitness
effects are ones where the benefits/costs to growth rate are
inherent to the cell: the presence of other cells are an irrele-
vant feature of the micro-environment and the growth rates
from monotypic cultures provide all the necessary information.
Non-cell-autonomous effects allow fitness to depend on a cell’s
micro-environmental context, including the frequency of other
cell types: growth rates need to be measured in competitive
fitness assays over a range of seeding frequencies. Other mi-
croscopic experimental systems in which frequency dependent
fitness effects have been considered include, but are not limited
to: Escherichia coli [20, 21], yeast [22, 23], bacterial symbionts
of hydra [24], breast cancer [16] and pancreatic cancer [25].
Hence, we continued our experiments over a range of initial
proportions of resistant and parental cells in mixed cultures
for each of the four experimental conditions.

Figure 2 shows the resulting growth rates of each cell type in
the co-culture experiments for all experimental (color, shape)
and initial conditions (opacity is parental cell proportion). In
the heterotypic culture – unlike monotypic – CAFs slightly
improved the growth rates of the parental cells, even in DMSO.
More strikingly, even in the absence of drug, resistant cells
tend to have a higher growth rate than parental cells in the

same environment (i.e. proportion of parental cells in the
co-culture). This is evident from most DMSO points being
above the dotted diagonal line (y = x) corresponding to
equal growth rate of the sub-populations (this is quantified
in figure 4b and is further discussed in section ‘Leader and
Deadlock games in NSCLC’). The higher fitness of resistant
cells in co-culture that we observe in the absence of drug is not
consistent with the classic model of resistance. This is a result
that cannot be seen from just the monotypic experiments,
which are compatible with the classic model. Although the
highest fitness of resistant cells might not surprise clinicians
as much as the biologists: in clinical experience, tumours that
have acquired resistance are often more aggressive than before
they were treated, even in the absence of drug.

A reductionist could rationalize our observations by saying
that we actually selected for two different qualities in our re-
sistant line: (i) a general growth advantage, and (ii) resistance
to Alectinib. This is a reasonable hypothesis, but it faces a
few challenges. First, both parental and resistant cells were
evolved for the same length of time, with escalating dosages
of DMSO for the former and Alectinib for the latter (see
Mediavilla-Varela et al. [26] and Supplementary Appendix A).
Thus, (i) cannot be due to just subculturing, but is somehow
linked to drug. Second, there is no growth rate advantage of
resistant cells in monoculture (see Figure 1); the advantage is
only revealed when parental and resistant cells are cultured
with a common proportion of parental cells. Finally, to even
make the distinction between (i) and (ii), one has to implicitly
assume that resistance has to be neutral or costly by definition.
For an oncologist, however, both (i) and (ii) would constitute
clinical resistance if they led to a tumour escaping therapeutic
control. By using a definition of clinical resistance that is
broad enough to capture both aspects, we observe resistance
that is neither neutral nor costly in DMSO co-culture.

Frequency dependence in fitness functions

Although not common in cancer biology, competitive fitness
assays are a gold standard for studying bacteria. But they
are typically conducted with a single initial ratio of the two
competing cell types. However, in Figure 2, if we view the
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Figure 2: Coculture growth rates across four experimental conditions. Each point in the main figure is a separate replicate
of a competitive fitness assay with initial proportion of parental cells represented by opacity and experimental condition represented
by shape (DMSO: circle; Alectinib: square) and colour (no CAF: blue; + CAF: magenta). Each replicate’s x-position corresponds
to the measured parental growth rate and y-position for resistant growth rate; the dotted block line corresponds to the line of equal
fitness between the two at x = y. (a,b,d,e) In each replicate, we quantify population size by fluorescent area of each cell type from 30
time-lapse microscopy images. (c,f): time-series of parental and resistant population size for two example wells. Inset x-axis is time,
y-axis is log of population size. Median growth rate and confidence intervals (omitted) were estimated for each well using the Theil-Sen
estimator, and serve as the coordinates in the main figure. See Figure 3 for growth rate confidence intervals and supplemental section B
for detailed discussion.
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Figure 3: Fitness functions for competition of parental vs. resistant NSCLC. For each plot: growth rate with confidence
intervals versus initial proportion of parental cells. This is the same data, measured in the same way, as figure 2. Red data points are
growth rates of parental cells, and green for resistant cells. Dotted lines represent the linear fitness function of the least-squares best fit;
fit error visualised in Figure 4b. The black dotted line is the gain function for parental (see Figure 4a), it is well below the y = 0 line in
the Alectinib conditions (indicating the strong advantage of resistance) and thus cut out of the figure. See supplemental section C for
more discussion and equations for lines of best fit.

initial proportion of parental to resistant cells as a variable
parameter represented by opacity then we can see a hint of
frequency dependence in both parental and resistant growth
rates. There we see an increase in fitness of both cell types
as the initial proportion of parental cells (represented by
the opacity of each point) increases. In other words, the
variance in growth rates between points within each of the
four environmental conditions is not due to just noise but can
be explained by the micro-environmental variable of initial
proportion of parental cells.

This is shown more clearly in Figure 3. In all four condi-
tions, we see that the growth rate of the resistant and parental
cell lines depends on the initial proportion of parental cells.
To capture the principle first-order part of this dependence,
we consider a line of best fit between initial proportion of
parental cells and the growth rates. See equations 1-8 in
Supplementary Appendix C (or the matrix entries in Fig-
ure 4b) for these lines of best fit. Interpretable versions
of these lines of best fit (see Supplementary Appendix D)
can be expressed as a regularized fitness function wC

S where
S ∈ {P,R} indexes the parental or resistant strategy and
C ∈ {DMSO,DMSO + CAF,Alectinib,Alectinib + CAF}
indexes the experimental condition. For a description of reg-
ularization see Supplementary Appendix D. Finally, for a
discussion of higher-order fitness functions, see Supplemental
Appendix F.

In three of the conditions, the resistant cell growth rates
increase with increased seeding proportion of parental cells,
while the parental growth rates remain relatively constant
(in the case of no CAFs) or slightly increasing (in the case
of alectinib + CAFs). For example, in DMSO, this suggests
that parental cells’ fitness is independent of resistant cells:
wDMSO

P = 0.025. Parental fitness in DMSO could be well
characterized as cell-autonomous. However, resistant cells in
monotypic culture have approximately the same fitness as
parental cells (Figure 2a), but they benefit from the parental
cells in co-culture: wDMSO

R = 0.025+0.015p (where p is the pro-
portion of parental cells). Their fitness is non-cell autonomous.

The positive coefficient in front of p suggests commensalism
between resistant and parental cells, i.e. resistant cells benefit
from the interaction with the parental cells, without exerting
positive or negative impact on them.

The DMSO + CAF case differs from the other three in that
we see a constant – although elevated wDMSO + CAF

R = 0.03 –
growth rate in resistant cells; but a linearly decreasing (in p)
growth rate of parental cells: wDMSO + CAF

P = 0.025+0.01(1−
p) (or, equivalently: wDMSO + CAF

P = 0.03 − 0.01( 1
2
− p)).

This could be interpreted as CAFs switching the direction of
commensalism between parental and resistant cells. Further,
the stable co-existence enabled by the cross in fitness functions
offers an alternative to the widely held view of pre-existent
resistance as a rare cell-autonomous binary switch. We discuss
this alternative in section ‘Treating the game & heterogeneity’.

Leader and Deadlock games in NSCLC

The tools of evolutionary game theory (EGT) are well suited
for making sense of frequency-dependent fitness [17–19, 25,
28–31]. In EGT, a game is the rule mapping the population’s
strategy distribution to the fitness of individual strategies.
Previous work has considered games like snowdrift [23], stag
hunt [24], rock-paper-scissors [20], and public goods [22, 25]
although none have been designed to measure evolutionary
games directly. Instead, prior work followed a two track
approach. They compared – usually qualitatively – the results
of experiments (track one) to numeric simulations or analytic
dynamics of these specific games (track two). We unite these
parallel tracks by defining the effective game as an assayable
hidden variable of a population and its environment. As such,
we are not aiming to test EGT as an explanation of these
particular data but rather using these data as an illustration
of how we should operationally define games. With this game
assay, we are aiming to quantitatively describe our system in
the language of EGT.

To measure the game that describes the non-cell-
autonomous interactions in NSCLC, we focus on the gain
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relative fitness of
resistant invader

p
)

where NT = NP +NR and p = NP
NT

.

(a) Replicator dynamics for parental-resistant NSCLC. (b) Two dimensional game space.

Figure 4: Measured games. (a) Replicator dynamics. Consider two strategies in a competitive co-culture: parental (P ) and
resistant (R). When a subpopulation of P interacts with P the subpopulation experiences a fitness effect A; when P interacts
with R then P experience fitness effect B and R a fitness effect C; two Rs interacting experience fitness effects D, summarized in
the matrix. This can be interpreted as a simple exponential growth model for the number of parental (NP ) and resistant (NR)

cells. The dynamics of the proportion of parental cells p = NP
NP +NR

over time is described by the replicator equation (bottom).

In supplementary materials E we discuss a purely experimental interpretation based on Kaznatcheev [27]. (b) Mapping of the
four measured in vitro games into game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic
culture: C −A. The y-axis is the relative fitness of a parental focal in a resistant monotypic culture: B −D. Games measured in
our experimental system are given as specific points with error bars based on goodness of fit of linear fitness functions in Figure 3.
The games corresponding to our conditions are given as matrices (with entries multiplied by a factor of 100) by their label (see
supplemental section C for details). The game space is composed of four possible dynamical regimes, one for each quadrant. The
typical dynamics of each dynamic regime are represented as qualitative flow diagram between parental (P ) and resistant (R)
strategies: an upward red arrow corresponds to an increase in the parental subpopulation, and a downward green arrow correspond
to an increase in the green subpopulation. In the case of the two dynamic regimes observed in our NSCLC system, we also include
insets of measured dynamics (c,d): Experimental time-series of proportion of parental cells for DMSO + CAF (c) and
Alectinib + CAF (d). Each line corresponds to the time dynamics of a separate well. A line is coloured green if proportion
of resistant cells increased from start to end; red if proportion of parental cells increased; black if statistically indistinguishable
proportions at start and end (where start/end are defined as the first/last 5 time-pints (20 hours)). See Supplementary Figure 5
for proportion dynamics of all four games and Supplementary Figure 6 for density dynamics and their correspondence to the
exponential growth model from Figure 4a.
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function (see [19, 32] for a theoretical perspective): the in-
crease in growth rate that a hypothetical player would get
in ‘switching’ from being parental to resistant with all other
variables held constant. In other words, we quantify how
the difference between resistant and parental growth rates
varies with initial proportion of parental cells. The relatively
good fit of a linear dependence of growth rates on parental
seeding proportion allows us to describe the interaction as
a matrix game – a well-studied class of evolutionary games
(see a description in Figure 4a). Note that this linearity is
not guaranteed to be a good description for arbitrary exper-
imental systems. For example, the game between the two
Betaproteobacteria Curvibacter sp. AEP1.3 and Duganella
sp. C1.2 was described by a quadratic gain function [24].
For extensions of the game assay to non-matrix games, see
Supplemental Appendix F

Here, as a first step toward quantifying an evolutionary
game, we are satisfied with the first-order approximation of
interactions provided by matrix games. Two strategy matrix
games have a convenient representation in a two dimensional
game-space and can produce all possible linear gain functions.
More importantly, from a linear gain function, it is possible
to infer the corresponding matrix game. Since the game type
and resultant dynamics are invariant under constant offsets to
the columns, we can infer the game played by the cancer cells
(see the model in Figure 4a for details). This is the output of
our game assay. We plot the inferred games in a game-space
spanned by the theoretical fitness advantage a single resistant
invader would have if introduced into a parental monotypic
culture versus the fitness advantage of a parental invader in a
resistant monotypic culture; as shown in Figure 4b. In this
representation, there are four qualitatively different types of
games corresponding to the four quadrants, each of which we
illustrative with a dynamic flow. We can see that the game
corresponding to DMSO + CAF – although quantitatively
similar to DMSO – is of a qualitatively different type compared
to all three of the other combinations.

We can also convert our inferred fitness functions from
Figure 3 into a payoff matrix. We do this by having each row
correspond to a strategy’s fitness function with the column
entries as the p = 1 and p = 0 intersects of this line of best fit.
These are abstract phenomenological quantities that could be
implemented by various biological or physical processes [27].
If we look at our empirical measurements for DMSO + CAF
(upper-right quadrant Figure 4b) we see the Leader game,
and Deadlock in the other three cases (we will use DMSO to
illustrate the Deadlock game).

The Deadlock game observed in DMSO is in some ways
the opposite of the popular Prisoner’s Dilemma (PD) game
(in fact, Robinson & Goforth [33] call it the anti-PD). If
we interpret parental as cooperate and resistant as defect
then, similar to PD, each player wants to defect regardless of
what the other player does (because 4.0 > 2.5 and 2.7 > 2.4;
payoff numbers used in these examples are from the matrix
entries we measured in Figure 4) but hopes that the other
player will cooperate (because 4.0 > 2.7). However, unlike
PD, mutual cooperation does not Pareto dominate mutual
defection (because 2.5 < 2.7) but is instead strictly dominated
by it. Thus, the players are locked into defection. In our

system, this corresponds to resistant cells having an advantage
over parental in DMSO.

The Leader game observed in DMSO + CAF is one of
Rapoport [34]’s four archetypal 2 × 2 games and a social
dilemma related to the popular game known as Hawk-Dove,
Chicken, or Snowdrift (in fact, Robinson & Goforth [33] call
it Benevolent Chicken). If we interpret parental as ‘lead’ (for
Snowdrift: wait) and resistant as ‘work’ (for Snowdrift: shovel)
then similar to Snowdrift, mutual work is better than both
leading (because 3.0 > 2.6) and thus no work being done
(for Snowdrift: both waiting and thus not getting out of the
snowdrift) but each player would want to lead while the other
works (because 3.5 > 3.0). However, unlike Snowdrift, mutual
work is not better than the “sucker’s payoff” of working while
the other player leads (because 3.1 > 3.0). Rapoport [34]
sees this as a tension with a player switching from a “natural”
point of mutual work to lead and thus benefit both players
(3.5 > 3.0, 3.1 > 3.0), but if the second player also does the
same and becomes a leader then all benefit disappears (because
2.6 is the smallest payoff). In our system, this corresponds
to cells in the tumour experiencing selective pressure to lose
some but not all of its resistance in DMSO + CAF.

Note that the above intuitive stories are meant as heuristics,
and the effective games that we measure are summaries of
population level properties [27, 35]: the population is the
player and the two types of cancer cells are the strategies.
This means that the matrix entries should not be interpreted
as direct interactions between cells, but as general couplings
between subpopulations corresponding to different strategies.
The coupling term includes not only direct interactions, but
also indirect effects due to spatial structure, diffusible goods,
contact inhibition, etc.. But this does not mean that an
effective game is not interpretable. For example, the Deadlock
game captures the phenomenon of the resistant population
always being fitter than parental (for example, in DMSO). We
noted this effect intuitively in Figure 2 (also see section Mono
vs mixed cultures & cost of resistance) from replicates being
above the y = x diagonal. Measuring a Deadlock game for
DMSO with confidence intervals that do not extend outside
the bottom right quadrant of the game space in figure 4b allows
us to show the statistical significance of our prior intuitive
understanding. Effective games allow us to quantify frequency-
dependent differences in growth rates.

Treating the game & heterogeneity

To our knowledge, neither of the Leader and Deadlock games
are considered in the prior theoretical EGT literature in on-
cology. Given that the Deadlock of drug-resistant over drug-
sensitive cells is a challenge for classic models of resistance –
as discussed in section Leader and Deadlock games in NSCLC
– we would be particularly interested in theoretical models
of resistance that produce the Deadlock game. In addition
to challenging theorists by adding two new entries to the
catalogue of games that cancers play, our results also sup-
port existing theoretical work in mathematical oncology that
considers treatment (or other environmental differences) as
changes between qualitatively different game regimes [17–19,
31]. In this framework, treatment has the goal not to directly
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target cells in the tumour, but instead to perturb the game
they are playing and allow evolution to drive down or control
unwanted cancer subclones through competition. Before this
study, this possibility has been largely taken as a theoretical
postulate. In our system, we can view an untreated tumour
as similar to DMSO + CAF and thus following the Leader
game. Treating with alectinib (move to Alectinib + CAF) or
eliminating CAFs through a stromal directed therapy (move
to DMSO), moves the game into the lower-right quadrant of
Figure 4b, and the game becomes a Deadlock game. This
switch allows us to show that this theoretical construct of
EGT – that treatment can qualitatively change the type of
game – has an experimental implementation. Unfortunately,
our system is in vitro and even if it generalized to in vivo: nei-
ther of the games leads to a therapeutically desirable outcome
for the patient.

A particularly important difference between Leader and
Deadlock dynamics is the existence of an internal fixed point
in Leader but not in Deadlock. Fixed points are a property
of equilibrium dynamics: in the most general case, even on
very long timescales these fixed points might not be realized
due to the evolutionary constraints of population size [36] or
computation [37, 38]. Thus, it is important to check to what
extent this qualitative difference can translate to a quantitative
difference in finite time horizons. In our system, we can see a
quantitative difference in the convergence towards the fixed
point in the DMSO + CAF condition of Figure 4c, and no such
convergence in the other three cases (Figure 4d for Alectinib +
CAF; Supplementary Figure 5). Since the strength of selection
(magnitude of the gain function) is small near a fixed point,
the change in p also slows in the DMSO + CAF condition.
We provide a more robust analysis of this in Supplemental
Appendices C and F by focusing on a fixed region of finite
width instead of just a fixed point.

Since the DMSO + CAF condition is our closest to an
untreated patient, it might have important consequences for
latent resistance. Many classical models of resistance assume
a rare preexistent mutant taking over the population after the
introduction of drug. In our experimental system, however, if
the resistant strategy is preexistent then negative frequency
dependent selection will push the population towards a stable
polyclonal tumour of resistant and sensitive cells before the
introduction of drug. This allows for much higher levels of
preexisting heterogeneity in resistance than predicted by the
classical picture. If similar games occur in vivo then such
preexisting heterogeneity could be a possible evolutionary
mechanism behind the speed and robustness of treatment
resistance to targeted therapies in patients.

Conclusion

Drug-sensitive (parental) and resistant cells interact not
only with alectinib, but also with each other and micro-
environmental factors like CAFs. The relative fitness ad-
vantage of resistant over parental cells is a function of the
initial proportion of sensitive cells – the gain function charac-
terizing replicator dynamics. In co-culture, resistant cells have
an advantage over parental cells even in DMSO. Measuring
a linear gain function has enabled us to develop an assay

that represents the inter-dependence between parental and
resistant cells as a matrix game. Not only are these games
quantitatively different among the four environmental condi-
tions – see Figure 4b – but they are also of two qualitatively
different types: a Leader game in the case of DMSO + CAF
and Deadlock in the other three cases.

This ability of treatment to qualitatively change the type
of game being played provides the first direct experimental
demonstration of the principal “don’t treat the player, treat
the game”. This principle is often used in theoretic work when
various treatments (or environmental differences) are modeled
as changes in a game’s parameters that allow evolution to
steer the tumour towards a more desirable result (for examples,
see [17–19, 31, 39, 40]). Empirically, this principle has inspired
or built support for interventions like buffer therapy [41], vas-
cular renormalization therapy [42], or adaptive therapy [43]
that target the micro-environment and interactions instead of
just attacking the cancer cell population. But so far, the evo-
lutionary games have not been measured directly but followed
the two track approach: the games were prescribed based on
biological or clinical intuition and then affirmed by qualitative
agreement with clinical or experimental observations. The
success of the Zhang et al. [43] trial suggests that therapeu-
tic strategies based on modulating competition dynamics are
feasible. This highlights the need for a formal experimental
method like our game assay that directly measures the games
that cancer plays.

Unfortunately, the Leader and Deadlock games that we
measured are understudied in mathematical oncology, and we
hope that our observation of them will motivate theorists to
explore them in more detail. One difference between these
game types is already clear: in the case of Leader there is
negative frequency dependence selection toward a coexistence
of parental and resistant cells – which we confirm for DMSO
+ CAF in Figure 4c – while for Deadlock there is selection
towards a completely resistant tumour. Since DMSO + CAF is
the closest analogue to a pre-treatment patient in our in vitro
system, this suggests that there might be much higher levels
of initial heterogeneity in drug resistance than prior theory
would suggest. As such, we urge theorists to reconsider the
assumption of the rare pre-existing resistant clone. Of course,
our results are for a single in vitro system. But if similar
results hold in vivo and/or for other cancers, it could help
explain the ubiquity and speed of resistance that undermines
our abilities to cure patients or control their disease in the long
term. We will not know this unless we set out to quantify the
non-cell autonomous processes in cancer. Building a catalogue
of the games cancers play – by adopting our game assay in
other cancers, and other experimental contexts – can help
resolve this and other questions.
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Appendices

In these supplementary appendices, we develop and discuss the tools used to define and measure our
game assay. The structure is as follows:

A Description of materials used, the experimental method, and time-lapse microscopy.

B Basic quantification of experimental images and how growth rates and associated error are measured
within each well. This is the definition of fitness used throughout our text. Explains Figures 1 and 2
from the main text.

C Defines parental proportions (p) and contrasts the evolutionary dynamics of proportions (Supple-
mentary Figure 5) with the ecological dynamics of densities (Supplementary Figure 6). Defines the
fitness functions based on lines of best between fitness and proportion from Figure 3 and presents
the actual lines of best fit as equations 1-8. Explains how the linear fitness functions are converted
into gain functions and games; and how those games are plotted in Figure 4b. Justifies the use of
linear functions in terms of explanatory value and presents the model residuals in Supplementary
Figure 7.

D Presentation of interpretable fitness functions wC
S from section ‘Frequency dependence in fitness

functions’ of the main text in the context of regularization. As a visual check of the regularization,
Supplementary Figure 8 shows what the games would look like if based on the regularized fitness
functions wC

S instead of the unregularized fitness functions ŵC
S shown in Figure 4b.

E Experimental interpretation of replicator dynamics as an alternative to exponential model of Figure 4a.

F Generalization of game assay to non-linear fitness functions. Provides the 3rd order fitness functions
(Supplemental Figure 9) or independent mixed order fitness functions (Supplemental Figure 11)
that would be selected by information criteria (Supplemental Figure 10) if one treats the game
assay not as a definition of games but as a model selection problem for parameter fitting. As a
qualitative check, Supplementary Figure 12 shows the agreement in game space between the higher
order games and our measured matrix games.

A Materials and experimental method

Cell lines H3122 cell line was obtained from Dr. Haura (Moffitt Cancer Center). Cell line identity
was validated by the Moffitt Cancer Center Molecular Genetics core facility using short tandem repeats
(STR) analysis. Primary lung cancer associated fibroblasts were obtained from S. Antonia lab (Moffitt
Cancer Center), following the protocols approved by the USF Institutional Review Board. CAFs were
isolated as previously described in Mediavilla-Varela et al. [26] and expanded for 3-10 passages prior to
the experiments. The alectinib resistant derivative cell line was obtained through escalating inhibitor
concentration protocol, as described in Dhawan et al. [13]. Alectinib sensitive parental H3122 cells were
cultured in DMSO for the same length of time, as the alectinib resistant derivate.

Stable GFP and mCherry expressing derivative cell H3122 cell lines were obtained through lentiviral
transduction with pLVX-AcGFP (Clontech) and mCherry (obtained from K. Mitsiades, DFCI) vectors,
respectively. We cultured both H3122 cells and CAFs in RPMI media (Gibco brand from Thermo
Scientific), supplemented with 10% FBS (purchased from Serum Source, Charlotte, NC). Regular tests
for mycoplasma contamination were performed with MycoScope PCR based kit from GenLantis, San
Diego, CA.

Experimental set-up. The cells were harvested upon reaching 70% confluence and counted using
Countess II automatic cell counter (Invitrogen). CAFs were counted manually to avoid segmentation
artifacts. Mixtures of parental and resistant H3122 cells were prepared at 8 different ratios: all-resistant,
9:1 resistant to parental, 4:1, 3:2, 2:3, 1:4, 1:9, and all-parental. For the determination of competitive
growth rates, 2,000 H3122 cells from the 8 mixtures were seeded with or without 500 CAF cells
in 50 µL RPMI media per well into 384 well plates (Corning, catalogue #7200655), with different
ratios of differentially labelled parental and alectinib resistant variants: with 6 wells used for each
resistant:parental ratio in each of the 4 conditions. 20 hours after seeding, alectinib – purchased from
ChemieTek (Indianapolis, IN) – or DMSO vehicle control, diluted in 20 µL RPMI was added to each
well, to achieve final alectinib concentration of 500 nM/L [14]. Time lapse microscopy measurements
were performed every 4 hours in white light, as well as green and red fluorescent channels using Incucyte
Zoom system from Essen Bioscience.
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B Measuring population sizes and fitnesses

Fluorescent area as units of population size We measured fluorescent area from time-lapse
images via python code using the OpenCV package and used this as our units of size for populations.
See Kaznatcheev [27] for a discussion of fitness and replicator dynamics under various definition of
population size. We cleaned images by renormalizing them (GFP and mCherry intensities vary over
different orders of magnitude), removed vignetting with CLAHE, and finally thresholded to identify
fluorescent regions. We eliminated salt-and-pepper noise from the thresholded images with the opening
morphological transform. See Figures 2a,b,d,e for examples of the image analysis. The resultant area is
then taken as a measure of population size for the purposes of computing fitnesses.

Growth rate as fitness. We use growth rate as our measure of fitness. In order to minimise the
impact of growth inhibition by confluency, we analyzed the competitive dynamics during the first 5
days of culture, when the cell population was expanding exponentially. See section E for a discussion of
the impact of measurement length. We learned growth rate along with a confidence interval from the
time-series of population size in each well using the Theil-Sen estimator [44, 45]. Since the Theil-Sen
estimator is a rank-based median method (unlike least-squares, which is a numeric-based mean method),
it is more robust to noise and does not need to choose between a linear or log representation for
computing the error-term (since log transforms do not change rank orders). The robustness to rare but
large magnitude noise is useful for our purposes because such errors do not reflect biological function or
noise but are more likely to be due to errors in image processing, for example in response to sudden
condensation on the well plate. See Figures 2c,f for examples of fitting.

The learned parental growth rate and resistant growth rate of each well are used as the y coordinates
in the monoculture experiments of Figure 1 (along with errors on the growth rate) and as the x and y
coordinates of the main part of Figure 2. Due to too much information content, the errors on the growth
rates are omitted in Figure 2, but they are shown explicitly as error-bars in Figure 3. Note that this
means that each point in Figure 1 and the main part of Figure 2 and each pair of points in Figure 3
(one green and one red at the same x-position) correspond to one biological replicate, with the error
term coming from the confidence interval on the growth-rate estimate from the 30 time-series points
that we recorded for each biological replicate (see section E on how this relates to the accuracy-precision
trade-off). Thus, each of the 6 wells corresponding to a given resistant:parental ratio (in each of the
4 conditions) has its own independent growth rate with associated error. The wells are not averaged
together: each acts as its own data point (with noise) for later analysis (that propagates the noise).

Figure 2 as map of analysis flow. Along with showing all the data, Figure 2 serves as a map to
the above analysis pipeline. The inset subfigures and figure can be understood in the following order:

[a,b,d,e] Within each image from the series generated by time-lapse microscopy: identify the fluorescent
regions for GFP and mCherry and calculate their areas to serve as units of population size (GFA
and CFA).

[c,f] For parental (mCherry) and resistant (GFP) plot the population sizes from each image in the
series on a semilog grid as population vs. time. Find the slope of the two lines to serve as parental
and resistant fitness.

[main] Use the parental fitness as x value and resistant as y value to plot each well as a data-point
according to the above process, and color the point according to its experimental condition (with
opacity for initial parental proportion; see Section C). For ease of viewing: put a convex hull binding
polygon around each well data-point dependent on their experimental condition.

Given the complexity of Figure 2, it is tempting to ask for a simple summary statistic of the data in
the main figure. But it is not reasonable to ask of the “average” growth rate in Figure 2 because each
point differes not only along the four experimental conditions of the environment, but also along the
micro-environmental conditions of the initial parental proportion (represented by the opacity that is
explained in SA C). Averaging over this information would be akin to assuming that the growth rates are
cell-autonomous. It would be attributing the variance in growth rates to noise instead of the independent
variable or initial parental proportion. As such, the game assay developed in rest of the paper can be
viewed as a method for summarizing Figure 2 when the underlying process is non-cell-autonomous. And
the games derived through Figure 3 and presented in Figure 4b are the summary of the data in the main
part of Figure 2.
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Supplementary Figure 5: Evolutionary dynamics of proportion of parental cells versus time for
competition of parental vs. resistant NSCLC. Each line corresponds to the time dynamics of a separate
well. A line is coloured green if proportion of resistant cells increased from start (time step 3 to 8) to end (time
step 24 to 29); red if proportion of parental cells increased; black if statistically indistinguishable proportions at
start and end.

Supplementary Figure 6: Dynamics of population sizes of resistant cells versus parental cells. Axis
are fold change in CNU normalized from the seeding proportion of each well, with x-axis for parental and y-axis
for resistant. Foreground: raw data. Each line corresponds to the time dynamics of a separate well. A line
is coloured green if proportion of resistant cells increased from start to end; red if proportion of parental cells
increased; black if statistically indistinguishable proportions at start and end (using the same conventions as
Figure 5). Background: flow diagram for model from Figure 4a. Each coloured point shows the proportion
of parental-resistant (red-green) at that point. Arrow going from red to green indicates parental proportion
increased, if from green to red then resistant proportion increased.

C Measuring fitness functions and games

Proportions. Since raw population sizes have different units (GFP Fluorescent Area (GFA) vs
mCherry Fluorescent Area (RFA)), we converted them to common cell-number-units (CNU) by learning
the linear transform that scales GFA and RFA into CNU. We defined proportions based on this common
CNU as p = NP /(NP +NR) where N{P,R} is the CNU size of parental and resistant populations. The
transform of GFA to RFA into CNU is associated with an error that is propagated to measures of p as σp.
Thus, although we used 8 different ratios of resistant to parental cells with 6 wells per condition seeded
at each of the ratios, we do not average over these 6 wells but associated each with its own proportion
p± σp from the initial image. This helps us control for systemic noise from field of view and our image
processing algorithm. The time dynamics of p can be seen in the insets of Figure 4b for DMSO and
DMSO+CAF or in Supplementary Figure 5 for all conditions.

Neglecting ecological dynamics. Throughout this report, we focus on evolutionary dynamics:
changes in proportion of strategies. However, one could also consider the ecological dynamics: changes
in densities of strategies. It is not only proportions that are changing in our experimental system but
also the densities. These ecological dynamics are not the focus of our report, but we present them in
Supplementary Figure 6 for completeness. Here, we also compare the prediction of the model based on
our measured games and the exponential growth interpretation in Figure 4a to the observed data. There
is overall agreement between data and model. But this is based on the traditional two track approach
on qualitative agreement. Instead, we prefer to focus on the single track measurement of evolutionary
dynamics described in the rest of these supplementary materials. Future work can aim to extend our
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Supplementary Figure 7: Residuals for the fitness functions. The x-axis is proportion and y-axis is
residuals of the lines of best fit from Figure 3 for parental (Red,Top) and resistant (Green,Bottom).

approach to also include ecological dynamics.

Lines of best fit as fitness functions. To measure the fitness functions we plotted fitness of each
cell-type in each well vs seeding proportion (p) of parental cells in Figure 3. The x-axis proportion of
parental cells (p) was computed from the first time-point: see section E for an interpretation of this as a
measurement of dp/dt or as a series of competitive fitness assays. We estimated the line of best-fit and
error on parameters for this data using least-squares weighted by the inverse of the error on each data
point (i.e. weightp,w = 1/

√
σ2
p + σ2

w). This provides the error estimates on the line’s parameters that
we use later. The lines of best fit (with coefficients rounded to the thousandths for presentation) from
weighted least-squares are:

ŵDMSO
P = 0.025− 0.001(1− p) = 0.025p+ 0.024(1− p) (1)

ŵDMSO
R = 0.027 + 0.013p = 0.04p+ 0.027(1− p) (2)

ŵDMSO + CAF
P = 0.026 + 0.009(1− p) = 0.026p+ 0.035(1− p) (3)

ŵDMSO + CAF
R = 0.03 + 0.001p = 0.031p+ 0.03(1− p) (4)

ŵAlectinib
P = −0.01− 0.002(1− p) = −0.01p− 0.013(1− p) (5)

ŵAlectinib
R = 0.023 + 0.02p = 0.043p+ 0.023(1− p) (6)

ŵAlectinib + CAF
P = 0.005− 0.009(1− p) = 0.005p− 0.004(1− p) (7)

ŵAlectinib + CAF
R = 0.024 + 0.014p = 0.038p+ 0.024(1− p) (8)

Summarizing fitness functions as games. For the final column of our presentation of ŵC
S in

equations 1-8, we rewrote the fitness functions in a suggestive form of ŵC
P = Ap + B(1 − p) and

ŵC
R = Cp+D(1− p). This is done to show at a glance where the matrix entries in Figure 4b come from.

This is because the p = 0 and p = 1 intercepts of the fitness functions serve as the entries of the game
matrices. Note that in Figure 4b, we multiplied the entries by 100 for easier presentation. The game
point are calculated from the matrices as x := C −A and y := B −D, and the error is propagated from
the error estimates on fitness function’s parameters.

Gain functions, game space, and fixed points A particularly important equation for studying two
strategy games is the gain function. This represents the relative fitness difference between two strategies.
Thus, it is a measure of selection strength and a proxy for the rate of evolution. The parental gain
function (i.e. gain function for p in Figure 4a and equation 23) is given by ĝCP (p) = ŵC

P (p)− ŵC
R(p); and

the resistant gain function (i.e. gain function for q = 1−p) is ĝCR(q) = ŵC
R(1−p)−ŵC

P (1−p) = −ĝCP (1−p).
The end-points of this gain function determine the game coordinates in the game space of Figure 4b with
(x, y) := (ĝCR(0), ĝCP (0)) = (−ĝCP (1), ĝCP (0)). These points can be interpreted as the idealized quantities of
relative fitness of a resistant invader in parental monoculture (ĝCP (0)) and relative fitness of a parental
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invader in resistant monoculture (ĝCR(0) = −ĝCP (1)). If these two coordinates have the same sign then
the gain function has to cross 0 in getting from p = 0 to p = 1 and thus the dynamics have a fixed
point. If the two coordinates are both positive (top right quadrant of Figure 4b) then the fixed point is
stable, if both are negative (bottom left quadrant of Figure 4b) then the fixed point is unstable. In our
experimental system, only the DMSO + CAF condition has a fixed point at 0.53± 0.14 (rounded to the
nearest percent).

Width and height of fixed regions. Since we propagate the errors on our measurement from the
image all the way to the game, we find it more helpful to think of an experimental fixed point not as a
point but as a fixed region p ∈ (0.39, 0.67) of finite width. This can provide an alternative explanation
for the apparent slowness of convergence to the fixed point in Figure 5. Some of the fixed region’s width
is noise in measurement, but some could be due to true variance between wells: in particular, even if the
reductive game is the same, the spatial structure will be slightly different in each well and thus there
will be a slightly different effective game. As such, apparent slowness in Figure 5 might be from different
lines being very close to slightly different fixed points that are all within the fixed region’s width. An
alternative view to width is in terms of height: a fixed region corresponds not just to the point where
ĝDMSO + CAF
P crosses 0 but to the region where the gain function crosses 0 ± 0.0014 (rounded to the

nearest thousandth). We call this the fixed region’s height (and use it in section F). This height is due
to propagation of error and can be interpreted as our measurement not being able to distinguish relative
growth rates in (−0.0014, 0.0014) from zero. In the case of the other three conditions (DMSO, Alectinib,
and Alectinib + CAF), in going from p = 0 to p = 1, the gain function do not pass within their fixed
region height of zero, and thus no fixed regions exist.

Lines and matrix games. Although slight deviations from a linear fit – that might not be attributable
to noise alone – might be present in the data (see Supplementary Figure 7), we do not think that they
justify considering higher-order fitness functions (although we discuss higher-order functions in section F
for completeness). This is due to the higher explanatory value of linear models and our hope to influence
the well-established study of matrix games in microscopic systems. Some good EGT work has recently
been done on non-linear games [24, 25, 31], but this is very little compared to the immense literature on
matrix games. More importantly, we think that our focus on matrix games is better viewed not from
the perspective of model selection but rather as an operational definition of effective games. We are not
aiming to provide the best or most predictive account of non-small-cell lung cancer in the petri dish, but
rather a method for measuring (matrix) games. If the error of the measured (matrix) games ends up
very high – which is not the case from the error bars in Figure 4b – then we know that this first order
approximation of interactions is not sufficient and higher orders should be pursued. However, we will
not know this unless we first have a robust method for measuring the lower order terms.

D Regularization and interpretable fitness functions

Regularization is a machine learning technique for reducing over-fitting by biasing towards more succinct
models. It is the use of a priori knowledge on what constitutes a simpler or more likely model to
anchor our inference. A classic example of this is preferring lower-order over higher-order polynomials
for describing data unless there is overwhelming evidence otherwise. Of course, what constitutes
overwhelming evidence depends on the goals of the scientists. If the only goal is prediction then
cross-validation is a good way to test how heavily inference should be regularized. But if the goal is
explanation then accordance with existing theory is another important factor to consider.

As such, our choice of focusing on linear fitness function in section C and Figure 3 can be seen as a form
of regularization. In particular, we can see our inference procedure as either restricted to the hypothesis
class of linear functions, or as considering the hypothesis class of all polynomials but with prohibitively
high costs for non-zero components (l0 regularization) on orders beyond linear. But we prefer to think
of it in terms of operationalization. By introducing a game assay, we are defining the hidden variable of
(matrix) games in terms of the measurement procedure that we described in sections B and C.

Interpretable fitness functions. An uncontroversial case of regularization in our report is the
presentation of wC

S in section ‘Frequency dependence in fitness functions’. There, we restrict beyond
linear fitness functions to focus on conceptually simple ones. In particular, we favor cell-autonomous
functions over frequency dependent ones (i.e. l0 regularization on the fitness function coefficients) and
we favor coefficients that are shared between different S and C. This results in the following regularized
fitness functions:
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Supplementary Figure 8: Mapping of the regularized fitness functions for the four conditions into
game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic culture: C −A. The
y-axis is the relative fitness of a parental focal in a resistant monotypic culture: B −D. Games measured in our
experimental system are specified by the bounding boxes corresponding to the range of their errors. The games
corresponding to the regularized fitness functions in equations 9-16 are given as points.

wDMSO
P = 0.025 (9)

wDMSO
R = 0.025 + 0.015p (10)

wDMSO + CAF
P = 0.025 + 0.01(1− p) (or 0.03− 0.01(

1

2
− p)) (11)

wDMSO + CAF
R = 0.03 (12)

wAlectinib
P = −0.010 (13)

wAlectinib
R = 0.025 + 0.018p (14)

wAlectinib + CAF
P = 0.005− 0.009(1− p) (or 0.009(

1

2
− p)) (15)

wAlectinib + CAF
R = 0.025 + 0.013p (16)

Note that for both P and R strategies, we used the proportion of the other strategy (1− p, p) as the
parameter that captures the non-cell-autonomous contribution. In equations 11,15, we also consider the
parameter 1

2
− p because of the elegant form it provides.

We can compare these regularized fitness functions wC
S to the non-regularized ŵC

S in equations 1-8.
As can be seen, all wC

S are close to their respective ŵC
S and are actually within the error estimates

on ŵC
S . We can see the regularization in action with a push towards a constant base fitness of 0.025

shared by wDMSO
{P,R} ,wDMSO + CAF

P , and w
{Aletinib,Alectinib + CAF}
R . The absence of frequency dependent

perturbation terms for w
{DMSO,Alectinib}
P and wDMSO + CAF

R suggests that these strategies can be explained
in terms of cell-autonomous processes. However, the other strategies in the other contexts ask for a
non-cell-autonomous explanation.

Games from interpretable fitness functions. For a visual confirmation that the regularization of
wC

S in equations 9-16 are reasonable, we can transform them into regularized games. We do this in the
same way as we did for transforming the non-regularized ŵC

S in equations 1-8 into the game-points of
figure 4b. The results are in Supplementary Figure 8. The regularized games (points) are within the
confidence rectangles of the measured games (boxes), with the exception of DMSO which is just outside
its box. This is reasonable given that the boxes correspond to error: i.e. around 2/3rds confidence.
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E Experimental definition of replicator dynamics

Consider a well that is seeded with an initial number NI
P of parental and NI

R of resistance cells; total
number NI = NI

P +NI
R. Let NF

{P,R} be the number of {parental,resistant} cells after being grown for
an amount of time ∆t. From this, the experimental growth rate can be defined based on fold change as:

w{P,R} :=
NF

{P,R} −NI
{P,R}

NI
{P,R}∆t

(17)

this can be rotated into a mapping NI 7→ NF given by NF
{P,R} = NI

{P,R}(1 + w{P,R}∆t).

By defining the initial and final proportion of parental cells as p{I,F} = N
{I,F}
P /N{I,F}, we can find

the mapping:

pF =
NF

P

NF
= pI

1 + wP ∆t

1 + 〈w〉∆t (18)

where 〈w〉 = pIwP + (1− pI)wR. This is the discrete-time replicator equation.
We can approximate this discrete process with a continuous one by defining p(t) = pI , p(t+ ∆t) = pF

and looking at the limit as ∆t gets very small:

ṗ = lim
∆t→0

p(t+ ∆t)− p(t)
∆t

(19)

= lim
∆t→0

pI

∆t
(

1 + wP ∆t

1 + 〈w〉∆t − 1) (20)

= lim
∆t→0

p
wP − 〈w〉
1 + 〈w〉∆t (21)

= p(wP − 〈w〉) (22)

= p(1− p) (wP − wR)︸ ︷︷ ︸
gain f’n for p

(23)

Thus, we recover replicator dynamics as an explicit experimental interpretation for all of our theoretical
terms. Note that we did not make any assumptions about if things are inviscid or spatial; if we are talking
about individual or inclusive fitness; or, if we have growing populations in log phase or static populations
with replacement. All of these microdynamical details are buried in the definition of experimental fitness.
This allows us to focus on effective games [27] and avoid potential confusions over aspects like spatial
structure [35].

Better estimates of w. The problem with the definition of w in equation 17 is that it depends on
just two time points, and thus not good for quantifying error. In our experimental system, we are able
to peek inside the system with time-lapse microscopy. This allows us to get more than just the initial
and final population sizes and replace fold-change by the more specific measurements of inferred growth
rates for w{P,R} that we describe in section B. An advantage of this approach is that the goodness-of-fit
of the exponential growth model provides a good estimate of the error associated with each measurement
of w. Thus, we are able to quantify error within each well and not just between experimental replicates
in different wells with similar initial conditions.

Accounting for finite ∆t. The small time definition of the derivative can be thought of as a way
to approximate a function by local linearizations. It is why for simulations, modelers often use the
discrete time replicator dynamics to represent continuous time replicator dynamics: effectively using
the discretization as a simple ODE solver/plotter. In the limit of ∆t going to 0, this linearization
recapitulates the function. Unfortunately in practice, our experimental system cannot take the limit
as ∆t goes to 0 because of a precision-accuracy trade-off. Accuracy increases as ∆t decreases because
the continuous dynamics is approximated by more and more, shorter and shorter straight lines. But –
from an experimentalist’s perspective – the precision decreases because any measurement is noisy: if we
measure growth rate over a shorter period of time then we are less certain whether our measurement
reflects reality or noise. For very short measurements, we might get higher accuracy (assuming biological
factors like time from seeding to adherence could be ignored) but would have incredibly low precision
(due to only one, two or three time points from which to calculate growth rate). As we increase the time
of the experiment, the accuracy might decrease but the precision will tend to increase. This is a classic
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Supplementary Figure 9: Cubic Fitness functions for competition of parental vs. resistant NSCLC.
For each plot: growth rate with confidence intervals versus initial proportion of parental cells. This is the same
data as Figure 3. Red data points are growth rates of parental cells, and green for resistant cells. Dotted lines
represent the 3rd-order (cubic) fitness function of the least-squares best fit. The black dotted line is the gain
function for parental (see Figure 4a), it is well below the y = 0 line in the Alectinib conditions (indicating the
strong advantage of resistance) and thus cut out of the figure.

trade off between random noise (low precision) and systematic noise (linearization being progressively
less accurate over larger ∆t). Since each of our growth rate measurements has an associated error term
(see section B), we quantify the random and systematic noise together and propogate it throughout our
analysis. Given the biological constraints of our system, we judged that 5 days was a good trade-off
point. This will most likely be different for other experimental systems.

Given that w are defined over a finite range of time, we need to pick a particular time-point to
associate each measurement with. As is common for discrete time process, we attribute the value of
the growth rate to the initial point. In particular, this means that when we make w{P,R} a function of
p in the main text, then the values of growth rate are attributed to the initial proportion of parental
cells and not the final one. This customary choice is further reinforced by the fact that we have a less
noisy estimate of initial proportions of cells than of the final, and so other definitions would lead to less
precise measurements. Finally, our procedure can be viewed as standard competitive fitness assays but
with initial ratio of the two types as a varied experimental parameter. Thus, for consistency with both
theoretical and experimental literature, we associated the growth rates with the initial – more controlled
– seeding proportion.

F Generalizing the game assay to non-linear fitness functions

The game assay that we presented above is more interpretable and its output more easily plotted for
matrix games with linear fitness functions. And in the case of our experimental system, the linear fitness
functions provide an adequate fit for our purposes. However, that does not mean that the game assay
has to be used only for linear games. Whereas section C used linear functions as the hypothesis class for
fitting the growth-rate vs. proportion, one could use any other class of functions. An obvious candidate is
polynomial fitness functions of orders higher than 1. We provide an example in Supplementary Figure 9
of a 3rd-order (cubic) fit. Visually, the cubic provides a better fit than the linear one in Figure 3, which
is to be expected from the extra degrees of freedom. But qualitatively it provides the same interpretation
as the linear fitness functions, including the same number of fixed points. In particular, DMSO + CAF
has a single fixed point at p = 0.52 and (using the fixed region height from section C) a single fixed
region for p ∈ (0.04, 0.668). This is much like the linear fit, but the fixed point region is expanded. The
other three conditions (DMSO, Alectinib, and Alectinib + CAF) have no fixed points and no fixed
regions.

Information criteria for non-linear fits. If we treat the game assay not as a measurement and
definition of games but as a model selection problem for parameter fitting then it becomes important to
quantify the trade-off between the goodness of fit and model simplicity. For this, we can use techniques
like the Akaike information criterion (AIC), its small-sample size correction (AICc), or the Bayesian
information criterion (BIC) – or any other statistical model selection procedure. Given that (i) a
polynomial of degree d has k = d + 2 degrees of freedom as a statistical model (+1 for zeroth order
term, +1 for noise term); the eight models (4 conditions, 2 fitness functions per condition) are trained
on n = 42 data points each; and AIC/BIC only works reasonablely when n >> d. For example, given
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Supplementary Figure 10: AICs and BICs for best polynomial fits of a given degree (up to additive
offset). In red are AIC and BIC values for models parental cell fitness functions, while in green are AIC and
BIC values for models of resistant cell fitness functions. Circles surround the minimum of AIC and BIC.

Supplementary Figure 11: Fitness functions for competition of parental vs. resistant NSCLC as
selected by BIC. For each plot: growth rate with confidence intervals versus initial proportion of parental cells.
This is the same data as Figure 3. Red data points are growth rates of parental cells, and green for resistant cells.
Dotted lines represent the fitness function of the least-squares best fit for models selected by BIC. These are a
linear model for resistant fitness function in Alectinib + CAF; quadratic models for parental fitness function in
Alectinib + CAF, resistant fitness function in Alectinib, and both fitness functions in DMSO; cubic The black
dotted line is the gain function for parental (see Figure 4a), it is identical with the y = 0 line in the DMSO
+ CAF condition (indication equal fitness for the two strategies) and well below it in the Alectinib conditions
(indicating the strong advantage of resistance) and thus not visible in the figure.

our relatively small dataset for each model, Burnham & Anderson [46] would advocate to always prefer
AICc over AIC (they suggest n/k < 40 as the cut off). Hence, we show the results of all three of AIC,
AICc and BIC for polynomial fitness functions for degree d ≤ 6 in Supplemental Figure 10. In this
figure, a better model corresponds to a lower AIC, AICc or BIC value (lower on the y-axis). Since
constant offsets in the information criteria do not matter for model selection, the axes are set so that the
linear model has ∆{AIC,AICc,BIC} = 0. The leftmost column of Supplemental Figure 10 considers the
joint product model where each fitness function has the same degree – for the d = 1 model, this would
correspond to the linear game assay as presented in section C. Both AICc and BIC select the 3rd-degree
polynomial model that we discussed above. AIC doesn’t differentiate strongly between the 3rd, 4th,
5th and 6th degree, but prefers slightly the 5th degree. Too much emphasis should not be placed on
AIC however, given the number of parameters compared to sample size [46]. The four right columns
of Supplemental Figure 10 consider independent models for each of the fitness functions across the 4
different conditions – so a total of 8 models. At the cost of extra researcher degrees of freedom, it is
possible to look at the fits where the model for each of the 8 fitness functions is selected independently.
Such a fit, as selected by BIC, is shown in Supplemental Figure 11. Note the two extra crossings of zero
by the gain function in the DMSO + CAF case.
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Supplementary Figure 12: Mapping of the AIC and BIC selected fitness functions for the four
conditions into game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic
culture. The y-axis is the relative fitness of a parental focal in a resistant monotypic culture. Games measured in
our experimental system are specified by the bounding boxes corresponding to the range of their errors. The
games corresponding to the AIC and BIC selected models are given as points.

Plotting nonlinear games. Just like with the linear games, it is possible to plot nonlinear games
in our 2D game space based on the p = 0 and p = 1 endpoints of the gain function. We do this in
Supplemental Figure 12 with each point labeled by the degree of the corresponding polynomial fitness
functions. Unsurprisingly, at a brief glance there is broad qualitative agreement – all (but one) points are
in the same quadrant as the linear model – although little quantitative agreement with the linear game
assay – most points are outside of the error-box corresponding to the linear game. However for a general
nonlinear game, unlike with linear games, two points in the same quadrant might not correspond to the
same qualitative kind of dynamic. In particular, for a general nonlinear game, a quadrant only tells
us the parity of the number of roots in (0, 1) – where roots are counted by their multiplicity – and the
order of alternations on the flow. For more on discrete flow alternation representation of gain functions,
see Peña et al. [32].

Fortunately, for our particular experimental system the above generality is not realized. In particular,
for all degrees of the DMSO, Alectinib, and Alectinib + CAF games the gain functions have no fixed
points – just like the linear case. For DMSO + CAF, degrees d = {1, 2, 3} have one fixed point and
d = {5, 6} have 3 fixed points (although only two fixed regions: p ∈ {(0.07, 0.25), (0.38, 0.46)} for d = 5
and p ∈ {(0.09, 0.31), (0.44, 0.50)} for d = 6. For d = 0 it is impossible for any model to be in the top
right or bottom left quadrant – since no constant line can be both negative and positive – and there is
no fixed point, but the fitness difference for DMSO is so tiny that there is a single fixed region for the
whole space p ∈ (0, 1). The real outlier for DMSO is d = 4 since it has two fixed points (and is thus in
the bottom right quadrant) and two fixed regions at p ∈ {(0.07, 0.11), (0.29, 040)}. Thus, the existence
of fixed point(s) in DMSO + CAF and absence of fixed points in the other conditions is robust across
the nonlinear models. The exact position of the fixed point(s) in DMSO + CAF, however, is not as
robust to model choice.
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