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Heterogeneity in strategies for survival and proliferation among the cells which constitute a tumour is
a driving force behind the evolution of resistance to cancer therapy. The rules mapping the tumour’s
strategy distribution to the fitness of individual strategies can be represented as an evolutionary

game.

We develop a game assay to measure effective evolutionary games in co-cultures of non-

small cell lung cancer cells which are sensitive and resistant to the anaplastic lymphoma kinase
inhibitor Alectinib. The games are not only quantitatively different between different environments,
but targeted therapy and cancer associated fibroblasts qualitatively switch the type of game being
played by the in-vitro population from Leader to Deadlock. This observation provides empirical
confirmation of a central theoretical postulate of evolutionary game theory in oncology: we can
treat not only the player, but also the game. Although we concentrate on measuring games played
by cancer cells, the measurement methodology we develop can be used to advance the study of
games in other microscopic systems by providing a quantitative description of non-cell-autonomous

effects.

Tumours are heterogeneous, evolving ecosystems |[1} [2],
comprised of sub-populations of neoplastic cells that fol-
low distinct strategies for survival and propagation [3]. The
success of a strategy employed by any single neoplastic sub-
population is dependent on the distribution of other strategies,
and on various components of the tumour microenvironment,
like cancer associated fibroblasts (CAFs) [4]. The EML4-
ALK fusion, found in approximately 5% of non-small cell lung
cancer (NSCLC) patients, leads to constitutive activation of
oncogenic tyrosine kinase activity of ALK, thereby “driving”
the disease. Inhibitors of tyrosine kinase activity of ALK
(ALK TKI) have proven to be highly clinically efficacious,
inducing tumour regression and prolonging patient survival |5,
6]. Unfortunately, virtually all of the tumours that respond
to ALK TKIs eventually relapse [7] — an outcome typical of
inhibitors of other oncogenic tyrosine kinases [§]. Resistance
to ALK TKI, like most targeted therapies, remains a major
unresolved clinical challenge. Despite significant advances
in deciphering the resultant molecular mechanisms of resis-
tance [9], the evolutionary dynamics of ALK TKI resistance
remains poorly understood. The inability of TKI therapies
to completely eliminate tumour cells has been shown to be
at least partially attributable to protection by aspects of the
tumour microenvironment [10]. CAFSs are one of the main
non-malignant components of tumour microenvironment and
the interplay between them and tumour cells is a major con-
tributor to microenvironmental resistance, including cytokine
mediated protection against ALK inhibitors [11].

To study the eco-evolutionary dynamics of these various fac-

cells of ALK mutant NSCLC cell line H3122 — a “workhorse”
for studies of ALK+ lung cancer — and a derivative cell line in
which we developed resistance to Alectinib — a highly effective
clinical ALK TKI |12] — by selection in progressively increasing
concentrations of the drug [13]. We aimed to come to a quan-
titative understanding of how these dynamics were affected by
clinically relevant concentrations of Alectinib (0.5uM; see [14])
in the presence or absence of CAFs isolated from a lung cancer.
To achieve this, we developed an assay for quantifying effective
games |15} 16| that is of independent interest to the general
study of microscopic systems.

Results

Monotypic vs mixed cultures

To establish baseline characteristics, we performed assays in
monotypic cultures of parental (Alectinib-sensitive) and re-
sistant cell lines with and without Alectinib and CAFs. To
gather temporally-resolved data for inferring growth rates, we
used time lapse microscopy to follow the expansion of therapy
resistant and parental cells, differentially labeled with stable
expression of selectively neutral GFP and mCherry fluorescent
proteins, respectively. From the time series data, we inferred
the growth rate with confidence intervals for each one of 6
experimental replicates in four different experimental condi-
tions (total of 24 data points, each with confidence intervals),
as seen in Figure[l}] As expected, alectinib inhibited growth
rates of parental cells (DMSO vs Alectinib: p < .005; DMSO

tors, we interrogated the competition between treatment naive + CAF vs Alectinib + CAF: p < .005), whereas the growth
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Figure 1: Monotypic culture exponential growth rates for parental (cyan) and resistant (magenta) cells in indicated experimental
conditions. Confidence intervals on each experimental replicate is from confidence on the estimate of growth rate for that single replicate
according to the Theil-Sen estimator. Comparisons between experimental conditions (of 6 replicates each) are made using Wilcoxon
rank-sum. In addition to conditions linked by lines with reported p-values, conditions labeled by ’a’ and ’'b’ are pairwise distinguishable

with p < .005.

rate of the resistant cells was not affected. And, as previously
reported [11], CAFs partially rescued growth inhibition of
parental cells by Alectinib (Alectinib vs Alectinib + CAF:
p < .005; Alectinib + CAF vs DMSO: p < .005), without
impacting growth rates of resistant cells.

But we did not limit ourselves to monotypic assays. Our
experience observing non-cell-autonomous biological interac-
tions [17] and modeling eco-evolutionary interactions [18-20]
in cancer led us to suspect that the heterotypic growth rates
would differ from monotypic culture. Cell-autonomous fitness
effects are ones where the benefits/costs to growth rate are
inherent to the cell: the presence of other cells are an irrele-
vant feature of the micro-environment and the growth rates
from monotypic cultures provide all the necessary information.
Non-cell-autonomous effects [17] allow fitness to depend on a
cell’s micro-environmental context, including the frequency of
other cell types: growth rates need to be measured in compet-
itive fitness assays over a range of seeding frequencies. Other
microscopic experimental systems in which frequency depen-
dent fitness effects have been considered include, but are not
limited to: Escherichia coli |21}, 22], yeast [23||24], bacterial
symbionts of hydra [25|, breast cancer [17] and pancreatic
cancer [26]. Hence, we continued our experiments over a range
of initial proportions of resistant and parental cells in mixed
cultures for each of the four experimental conditions.

Figure[2]shows the resulting growth rates of each cell type in
the co-culture experiments for all experimental (color, shape)
and initial conditions (opacity is parental cell proportion). In
the heterotypic culture — unlike monotypic — CAFs slightly
improved the growth rates of the parental cells, even in DMSO.
More strikingly, even in the absence of drug, resistant cells
tend to have a higher growth rate than parental cells in the
same environment (i.e. proportion of parental cells in the
co-culture). This is evident from most DMSO points being
above the dotted diagonal line (y = z) corresponding to equal
growth rate of the two types (this is quantified in Figure @
and is further discussed in section {Leader and Deadlock games

i NSCLCY).

Frequency dependence in fitness functions

Although not common in cancer biology, competitive fitness
assays are a gold standard for studying bacteria. But they
are typically conducted with a single initial ratio of the two
competing cell types. However, in Figure 2] if we view the
initial proportion of parental to resistant cells as a variable
parameter represented by opacity then we can see a hint of
frequency dependence in both parental and resistant growth
rates. This is shown more clearly as a plot of fitness versus
proportion of parental cells in Figure @ In all four conditions,
we see that the growth rate of the resistant and parental
cell lines depends on the initial proportion of parental cells.
To capture the principle first-order part of this dependence,
we consider a line of best fit between initial proportion of
parental cells and the growth rates. See equations in
Supplementary Appendix [C| (or the matrix entries in Fig-
ure for these lines of best fit. Interpretable versions
of these lines of best fit (see Supplementary Appendix @[)
can be expressed as a regularized fitness function wg where
S € {P, R} indexes the parental or resistant strategy and
C € {DMSO,DMSO + CAF, Alectinib, Alectinib + CAF}
indexes the experimental condition. For a description of reg-
ularization see Supplementary Appendix Finally, for a
discussion of higher-order fitness functions, see Supplemental
Appendix [F]

In three of the conditions, resistant cell growth rates increase
with increased seeding proportion of parental cells, while
parental growth rates remain relatively constant (in the case
of no CAFs) or slightly increase (for Alectinib + CAFs). In
DMSO, this suggests that parental cells’ fitness is independent
of resistant cells: wBMS© = 0.025. Parental fitness in DMSO
could be well characterized as cell-autonomous. However,
resistant cells in monotypic culture have approximately the
same fitness as parental cells (Figure [2h), but they benefit
from the parental cells in co-culture: wB™S© = 0.025 4+ 0.015p
(where p is the proportion of parental cells). Their fitness has
a non-cell autonomous component. The positive coefficient
in front of p suggests commensalism between resistant and
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Figure 2: Coculture growth rates across four experimental conditions. (a-f) serve as a sketch of the analysis procedure to
produce the main subfigure (g); for more detailed discussion, see Supplemental Appendix (a,b,c,d): In each experimental replicate
at each time step, we quantify population size by fluorescent area of each cell type (shown: two different time points per well, from two
different wells). Together, 30 time-lapse microscopy images (one every 4 hours) from each replicate create (e,f): time-series of parental
and resistant population size (shown: two example wells). With x-axis is time, y-axis is log of population size. Exponential growth rates
(and confidence intervals; omitted) were estimated for each well using the Theil-Sen estimator. These exponential models are shown as
solid lines and their slopes serve as the coordinates in (g). See Figurefor growth rate confidence intervals and Supplemental Section
for detailed discussion of growth-rate measurement. (g): Each point is a separate replicate of a competitive fitness assay with initial
proportion of parental cells represented by opacity and experimental condition represented by shape (DMSO: circle; Alectinib: square)
and colour (no CAF: red; + CAF: blue). Each replicate’s z-position corresponds to the measured parental growth rate and y-position for
resistant growth rate; the dotted black line corresponds to the line of equal fitness between the two at z = y.
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Figure 3: Fitness functions for competition of parental vs.

resistant NSCLC. For each plot: growth rate with confidence

intervals versus initial proportion of parental cells. This is the same data, measured in the same way, as Figure 2] Cyan data points are
growth rates of parental cells, and magenta for resistant cells. Dotted lines represent the linear fitness function of the least-squares best
fit; fit error is visualised in Figure The black dotted line is the gain function for parental (see Figure, it is well below the y = 0 line
in the Alectinib conditions (indicating the strong advantage of resistance) and thus cut out of the figure. See Supplemental Appendix
for more discussion and equations for lines of best fit, and Supplemental Appendixm for alternative fits with non-linear fitness functions.

parental cells, i.e. resistant cells benefit from the interaction
with the parental cells, without exerting positive or negative
impact on them.

The DMSO + CAF case differs from the other three in that
we see a constant — although elevated ngSO +CAF — 0,03 -
growth rate in resistant cells; but a linearly decreasing (in p)
growth rate of parental cells: wEMSO +OAR _ 0.025+0.01(1—
p) (or, equivalently: wp™5°+ “AF = 0.03 — 0.01(3 — p)).
This could be interpreted as CAFs switching the direction of
commensalism between parental and resistant cells.

Leader and Deadlock games in NSCLC

The tools of evolutionary game theory (EGT) are well suited
for making sense of frequency-dependent fitness |18H20 26H30].
In EGT, a game is the rule mapping the population’s strategy
distribution to the fitness of individual strategies. Previous
work has considered games like snowdrift [24], stag hunt [25],
rock-paper-scissors [21], and public goods [23] 26] alongside
experiments. Instead, we experimentally operationalize the
effective game (see [15] 16]) as an assayable hidden variable
of a population and its environment. We define the effective
game as the game played by an idealized population that shows
the same frequency dynamics as the experimental population
under consideration. As such, we are not aiming to test
EGT as an explanation. Instead, we are defining a game
assay to quantitatively describe our system in the language of
EGT. In future work, it would be interesting to ask about the
best language for describing cancer evolution by testing the
game assay against several clearly and well operationalized
alternatives to EGT.

To measure the effective game that describes the non-cell-
autonomous interactions in NSCLC, we focus on the gain
function (see |20, [31] for a theoretical perspective): the dif-
ference in growth rate between resistant and parental cells
as a function of proportion of parental cells. The relatively
good fit of a linear dependence of growth rates on parental
seeding proportion allows us to describe the interaction as
a matrix game — a well-studied class of evolutionary games

(see a description in Figure . Note that this linearity is
not guaranteed to be a good description for arbitrary exper-
imental systems. For example, the game between the two
Betaproteobacteria Curvibacter sp. AEP1.3 and Duganella sp.
C1.2 was described by a quadratic gain function [25]. If one
views our work from the perspective of model selection then
in the main text we proceed from the assumption of linearity.
Supplemental Appendix |E| relaxes this assumption, extends
our game assay to non-linear games, and compares linear and
non-linear models with information criteria. Our qualitative
results are unchanged, although the exact quantitative results
for non-linear models differ slightly.

Two strategy matrix games have a convenient representation
in a two dimensional game-space (see the model in Figure
and Supplemental Appendix for details). This is the output
of our game assay. We plot the inferred games in a game-space
spanned by the theoretical fitness advantage a single resistant
invader would have if introduced into a parental monotypic
culture versus the fitness advantage of a parental invader in a
resistant monotypic culture; as shown in Figure @b In this
representation, there are four qualitatively different types of
games corresponding to the four quadrants, each of which we
illustrative with a dynamic flow. We can see that the game
corresponding to DMSO + CAF — although quantitatively
similar to DMSO — is of a qualitatively different type compared
to all three of the other combinations.

We can also convert our inferred fitness functions from Fig-
ure [3] into a payoff matrix. We do this by having each row
correspond to a strategy’s fitness function with the column
entries as the p = 1 and p = 0 intersects of this line of best
fit. These payoff matrix entries are abstract phenomenological
quantities that could be implemented by various biological or
physical processes [15]. If we look at our empirical measure-
ments for DMSO + CAF (upper-right quadrant Figure we
see the Leader game, and Deadlock in the other three cases
(we will use DMSO to illustrate the Deadlock game).

The Deadlock game observed in DMSO is in some ways
the opposite of the popular Prisoner’s Dilemma (PD) game
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(a) Replicator dynamics for parental-resistant NSCLC. (b) Two dimensional game space.

Figure 4: Measured games. (a) Replicator dynamics. Consider an idealized population of two strategies in a competitive
co-culture: parental (P) and resistant (R). When a subpopulation of P interacts with P the subpopulation experiences a fitness
effect A; when P interacts with R then P experience fitness effect B and R a fitness effect C; two Rs interact with fitness effects D,
summarized in the matrix. This can be interpreted as an idealized exponential growth model for the number of parental (Np) and

resistant (Ng) cells. The dynamics of the proportion of parental cells p = over time is described by the replicator equation

N
Np +PN R
(bottom). In Supplementary Sectionwe discuss a purely experimental interpretation based on Kaznatcheev . (b) Mapping of
the four measured in vitro games into game space. The x-axis is relative fitness of a resistant focal in a parental monotypic
culture: C' — A; y-axis is relative fitness of a parental focal in a resistant monotypic culture: B — D. Games measured in our
experimental system are given as specific points with error bars based on goodness of fit of linear fitness functions in Figure
The games corresponding to our conditions are given as matrices (with entries multiplied by a factor of 100) by their label. See
Supplemental Appendix |g for more details. The game space is composed of four possible dynamical regimes, one for each quadrant.
The typical dynamics of each dynamic regime are represented as qualitative flow diagram between P and R: an upward cyan arrow
corresponds to an increase in the parental proportion, and a downward magenta arrow correspond to an increase in the resistant
proportion. In the case of the two dynamic regimes observed in our NSCLC system, we also include insets of measured dynamics
(c,d): Experimental time-series of proportion of parental cells for DMSO 4+ CAF (c) and Alectinib + CAF (d).
Each line corresponds to the time dynamics of a separate well. A line is coloured magenta if proportion of resistant cells increased
from start to end; cyan if proportion of parental cells increased; black if statistically indistinguishable proportions at start and end
(where start/end are defined as the first/last 5 time-pints (20 hours)). See Supplementary Figure [5|for proportion dynamics of all
four games and Supplementary Figure |§| for density dynamics and their correspondence to the exponential growth model from

Figure [fa]
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(in fact, Robinson & Goforth [32] call it the anti-PD). If
we interpret parental as cooperate and resistant as defect
then, similar to PD, each player wants to defect regardless of
what the other player does (because 4.0 > 2.5 and 2.7 > 2.4;
payoff numbers used in these examples are from the matrix
entries we measured in Figure [4f) but hopes that the other
player will cooperate (because 4.0 > 2.7). However, unlike
PD, mutual cooperation does not Pareto dominate mutual
defection (because 2.5 < 2.7) but is instead strictly dominated
by it. Thus, the players are locked into defection. In our
system, this corresponds to resistant cells having an advantage
over parental in DMSO.

The Leader game observed in DMSO + CAF is one of
Rapoport [33]’s four archetypal 2 x 2 games and a social
dilemma related to the popular game known as Hawk-Dove,
Chicken, or Snowdrift (in fact, Robinson & Goforth [32] call
it Benevolent Chicken). If we interpret parental as ‘lead’ (for
Snowdrift: wait) and resistant as ‘work’ (for Snowdrift: shovel)
then similar to Snowdrift, mutual work is better than both
leading (because 3.0 > 2.6) and thus no work being done
(for Snowdrift: both waiting and thus not getting out of the
snowdrift) but each player would want to lead while the other
works (because 3.5 > 3.0). However, unlike Snowdrift, mutual
work is not better than the “sucker’s payoff” of working while
the other player leads (because 3.1 > 3.0). Rapoport [33]
sees this as a tension with a player switching from a “natural”
point of mutual work to lead and thus benefit both players
(3.5 > 3.0,3.1 > 3.0), but if the second player also does the
same and becomes a leader then all benefit disappears (because
2.6 is the smallest payoff). In our system, this corresponds
to cells in the tumour experiencing selective pressure to lose
some but not all of its resistance in DMSO + CAF.

Note that the above intuitive stories are meant as heuristics,
and the effective games that we measure are summaries of
population level properties [15, [16]: the population is the
player and the two types of cancer cells are the strategies.
This means that the matrix entries should not be interpreted
as direct interactions between cells, but as general couplings
between subpopulations corresponding to different strategies.
The coupling term includes not only direct interactions, but
also indirect effects due to spatial structure, diffusible goods,
contact inhibition, etc.. But this does not mean that an ef-
fective game is not interpretable. For example, the Deadlock
game captures the phenomenon of the resistant population
always being fitter than parental (for example, in DMSO). We
noted this effect intuitively in Figure [2| (also see section
from replicates being above the y = = diago-
nal. Measuring a Deadlock game for DMSO with confidence
intervals that do not extend outside the bottom right quad-
rant of the game space in figure [Ab] allows us to show the
statistical significance of our prior intuitive understanding. In
other words, effective games allow us to quantify frequency-
dependent differences in growth rates.

Discussion

Cost of resistance

The classic model of resistance posits that the resistant phe-
notype receives a benefit in drug (in our case: Alectinib or
Alectinib + CAF) but is neutral, or even carries an inherent
cost, in the absence of treatment (DMSO or DMSO + CAF).
For example, experimentalists frequently regard resistance
granting mutations as selectively neutral in the absence of
drug, and the modeling community often goes further by con-
sidering explicit costs like up-regulating drug eflux pumps,
investing in other defensive strategies, or lowering growth rate
by switching to sub-optimal growth pathways [3| [34]. If we
limited ourselves to the monotypic assays of Figure [1} then
our observations would be consistent with this classic model of
resistance. But in co-culture, we observed that resistant cells
have higher fitness than parental cells in the same environ-
ment, even in the absence of drug. This is not consistent with
the classic model of resistance. This higher fitness of resistant
cells might not surprise clinicians as much as the biologists:
in clinical experience, tumours that have acquired resistance
are often more aggressive than before they were treated, even
in the absence of drug. See Supplemental Appendix for a
contrast of the biologist and clinician’s view of resistance in
this context.

Treating the game

Measuring a linear gain function has enabled us to develop an
assay that represents the inter-dependence between parental
and resistant cells as a matrix game. Experimentally cata-
loging these games allows us to support existing theoretical
work in mathematical oncology that considers treatment (or
other environmental differences) as changes between qualita-
tively different game regimes [18-20} [30]. In this framework,
treatment has the goal not to directly target cells in the tu-
mour, but instead to perturb the parameters of the game they
are playing to allow evolution to steer the tumour towards a
more desirable result (for examples, see [18-20} |30, |35 36]).
Empirically, this principle has inspired or built support for
interventions like buffer therapy [37], vascular renormalization
therapy [38], and adaptive therapy [39] that target the micro-
environment and interactions instead of just attacking the
cancer cell population. The success of the Zhang et al. |39]
trial suggests that therapeutic strategies based on modulating
competition dynamics are feasible. This highlights the need
for a formal experimental method like our game assay that
directly measures the games that cancer plays and tracks if
and how they change due to treatment.

In our system, we can view an untreated tumour as sim-
ilar to DMSO + CAF and thus following the Leader game.
Treating with Alectinib (move to Alectinib + CAF) or elim-
inating CAF's through a stromal directed therapy (move to
DMSO), moves the game into the lower-right quadrant of
Figure and the game becomes a Deadlock game. Not
only are these games quantitatively different among the four
environmental conditions — see Figure [4b| - but they are also
of two qualitatively different types. To our knowledge, nei-
ther of the Leader and Deadlock games are considered in the
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prior EGT literature in oncology. Given that the Deadlock of
drug-resistant over drug-sensitive cells is a challenge for classic
models of resistance we would be particularly interested in
theoretical models of resistance that produce the Deadlock
game. In addition to challenging theorists by adding two new
entries to the catalogue of games that cancers play, this switch
allows us to show that the theoretical construct of EGT — that
treatment can qualitatively change the type of game — has a
direct experimental implementation. Unfortunately, neither
of our in vitro games would lead to a therapeutically desirable
outcome if they occurred in a patient.

Heterogeneity and latent resistance

A particularly important difference between Leader and Dead-
lock dynamics is the existence of an internal fixed point in
Leader but not in Deadlock. Fixed points are a property
of equilibrium dynamics: in the most general case, even on
very long timescales these fixed points might not be realized
due to the evolutionary constraints of population size [40] or
computation |41} |42]. Thus, it is important to check to what
extent this qualitative difference can translate to a quanti-
tative difference in finite time horizons. In our system, we
can see a quantitative difference in the convergence towards
the fixed point in the DMSO + CAF condition of Figure [,
and no such convergence in the other three cases (Figure j4d
for Alectinib + CAF; Supplementary Figure [5). Since the
strength of selection (magnitude of the gain function) is small
near a fixed point, the change in p also slows in the DMSO +
CAF condition. We provide a more robust analysis of this in
Supplemental Appendices [C|and [F] It would be of interest for
future work to study the long-term experimental stability of
these fixed points.

Since the DMSO + CAF condition is our closest to an
untreated patient, it might have important consequences for
latent resistance. Many classical models of resistance assume
a rare preexistent mutant taking over the population after the
introduction of drug. In our experimental system, however, if
the resistant strategy is preexistent then negative frequency
dependent selection will push the population towards a stable
polyclonal tumour of resistant and sensitive cells before the
introduction of drug. This allows for much higher levels of
preexisting heterogeneity in resistance than predicted by the
classical picture. As such, we urge theorists to reconsider the
assumption of the rare pre-existing resistant clone.

Of course, our results are for a single in vitro system. But
if similar games occur in vivo and/or for other cancers, then
such preexisting heterogeneity could be a possible evolutionary
mechanism behind the speed and robustness of treatment
resistance to targeted therapies in patients. This could help
explain the ubiquity and speed of resistance that undermines
our abilities to cure patients or control their disease in the long
term. We will not know this unless we set out to quantify the

non-cell autonomous processes in cancer. Building a catalogue
of the games cancers play — by adopting our game assay in
other cancers, and other experimental contexts — can help
resolve this and other questions.

Methods

Methods are presented fully, alongside detailed justification, in
the Supplemental Appendix. Section describes the H3122
cell lines, CAFs, the escalating inhibitor protocol for creating
resistant cells [13], and transduction for GFP and mCherry
fluorescence. Section [A-2] describes the experimental set up
and microscopy. Section explains the use of exponential
growth rate as a measure of fitness. Finally, Sections[C.1] [C-3]
and @ describe the rest of the game assay pipeline for trans-
forming the results of the multiple competitive fitness assays
into a measurement of the effective game and the associated
propagation of uncertainty.

Data Availability

Due to size constraints, raw image data from experiments are
available upon request. Image analysis code is available on
GitHub at https://github.com/kaznatcheev/TLM_FA. Post-
image processing data (i.e. population size time-series for
each experimental replicate) along with the game assay anal-
ysis code are available on GitHub at https://github.com/
kaznatcheev/GameAssay.
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Appendices

In these supplementary appendices, we develop and discuss the tools used to define and measure our
game assay. The structure is as follows:

[A] Description of materials used, the experimental method, and time-lapse microscopy. Discussion of
resistance terminology.

[B] Basic quantification of experimental images and how growth rates and associated error are measured
within each well. This is the definition of fitness used throughout our text. Explains Figures[I]and 2]
from the main text.

Defines parental proportions (p) and contrasts the evolutionary dynamics of proportions (Supple-
mentary Figure |5)) with the ecological dynamics of densities (Supplementary Figure @) Defines the
fitness functions based on lines of best between fitness and proportion from Figure [3| and presents
the actual lines of best fit as equations Explains how the linear fitness functions are converted
into gain functions and games; and how those games are plotted in Figure Justifies the use of
linear functions in terms of explanatory value and presents the model residuals in Supplementary

Figure []

|§| Presentation of interpretable fitness functions w§ from section {Frequency dependence in fitness|
functions] of the main text in the context of regularization. As a visual check of the regularization,
Supplementary Figure 8 shows what the games would look like if based on the ularized fitness

functions w§ instead of the unregularized fitness functions ©§ shown in Figure

E Experimental interpretation of replicator dynamics as an alternative to exponential model of Figure

[F] Generalization of game assay to non-linear fitness functions. Provides the 3rd order fitness functions
(Supplemental Figure E[) or independent mixed order fitness functions (Supplemental Figure
that would be selected by information criteria (Supplemental Figure if one treats the game
assay not as a definition of games but as a model selection problem for parameter fitting. As a
qualitative check, Supplementary Figure [12|shows the agreement in game space between the higher
order games and our measured matrix games.

A Materials and experimental method

A.1 Cell lines

H3122 cell line was obtained from Dr. Haura (Moffitt Cancer Center). Cell line identity was validated by
the Moffitt Cancer Center Molecular Genetics core facility using short tandem repeats (STR) analysis.
Primary lung cancer associated fibroblasts were obtained from S. Antonia lab (Moffitt Cancer Center),
following the protocols approved by the USF Institutional Review Board. CAFs were isolated as previously
described in Mediavilla-Varela et al. [43] and expanded for 3-10 passages prior to the experiments. The
alectinib resistant derivative cell line was obtained through escalating inhibitor concentration protocol,
as described in Dhawan et al. |[13]|. Alectinib sensitive parental H3122 cells were cultured in DMSO for
the same length of time, as the alectinib resistant derivate.

Stable GFP and mCherry expressing derivative cell H3122 cell lines were obtained through lentiviral
transduction with pLVX-AcGFP (Clontech) and mCherry (obtained from K. Mitsiades, DFCI) vectors,
respectively. We cultured both H3122 cells and CAFs in RPMI media (Gibco brand from Thermo
Scientific), supplemented with 10% FBS (purchased from Serum Source, Charlotte, NC). Regular tests
for mycoplasma contamination were performed with MycoScope PCR based kit from GenLantis, San
Diego, CA.

A.2 Experimental set-up.

The cells were harvested upon reaching 70% confluence and counted using Countess II automatic cell
counter (Invitrogen). CAFs were counted manually to avoid segmentation artifacts. Mixtures of parental
and resistant H3122 cells were prepared at 8 different ratios: all-resistant, 9:1 resistant to parental, 4:1,
3:2, 2:3, 1:4, 1:9, and all-parental. For the determination of competitive growth rates, 2,000 H3122 cells
from the 8 mixtures were seeded with or without 500 CAF cells in 50 L RPMI media per well into 384
well plates (Corning, catalogue #7200655), with different ratios of differentially labelled parental and
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alectinib resistant variants: with 6 wells used for each resistant:parental ratio in each of the 4 conditions.
20 hours after seeding, Alectinib — purchased from ChemieTek (Indianapolis, IN) — or DMSO vehicle
control, diluted in 20 pL. RPMI was added to each well, to achieve final Alectinib concentration of 500
nM/L [14]. Time lapse microscopy measurements were performed every 4 hours in white light, as well as
green and red fluorescent channels using Incucyte Zoom system from Essen Bioscience.

A.3 Reductive vs effective definitions of resistance.

In these experiments, we observed (see Figure [2f and Sections {Monotypic vs mixed cultures| and {Cost|
) that even in the absence of drug, resistant cells tend to have a higher growth rate than
parental cells in the same environment (i.e. proportion of parental cells in the co-culture). A reductionist
could rationalize our observations by saying that we actually selected for two different qualities in our
resistant line: (i) a general growth advantage, and (ii) resistance to Alectinib.

This is a reasonable hypothesis, but it faces a few challenges. First, both parental and resistant
cells were evolved for the same length of time, with escalating dosages of DMSO for the former and
Alectinib for the latter (see Mediavilla-Varela et al. [43] and above). Thus, (i) cannot be due to just
subculturing, but is somehow linked to drug. Second, there is no growth rate advantage of resistant
cells in monoculture (see Figure ; the advantage is only revealed when parental and resistant cells are
cultured with a common proportion of parental cells. Finally, to even make the distinction between (i)
and (ii), one has to implicitly assume that resistance has to be neutral or costly by definition. For an
oncologist, however, both (i) and (ii) would constitute clinical resistance if they led to a tumour escaping
therapeutic control. By using a definition of clinical resistance that is broad enough to capture both
aspects, we observe resistance that is neither neutral nor costly in DMSO co-culture.

B Measuring population sizes and fitnesses

B.1 Fluorescent area as units of population size

We measured fluorescent area from time-lapse images via python code using the OpenCV package and
used this as our units of size for populations. See Kaznatcheev [15] for a discussion of fitness and
replicator dynamics under various definition of population size. We cleaned images by renormalizing
them (GFP and mCherry intensities vary over different orders of magnitude), removed vignetting with
CLAHE, and finally thresholded to identify fluorescent regions. We eliminated salt-and-pepper noise
from the thresholded images with the opening morphological transform. See Figures 7b7d,e for examples
of the image analysis. The resultant area is then taken as a measure of population size for the purposes
of computing fitnesses.

B.2 Growth rate as fitness.

We use the exponential growth rate (or Malthusian parameter) as our measure of fitness. In order to
minimise the impact of growth inhibition by confluency, we analyzed the competitive dynamics during
the first 5 days of culture, when the cell population was expanding exponentially. See section [E] for a
discussion of the impact of measurement length. We learned growth rate along with a confidence interval
from the time-series of population size in each well using the Theil-Sen estimator [44] [45]. Since the
Theil-Sen estimator is a rank-based median method (unlike least-squares, which is a numeric-based mean
method), it is more robust to noise and does not need to choose between a linear or log representation
for computing the error-term (since log transforms do not change rank orders). The robustness to rare
but large magnitude noise is useful for our purposes because such errors do not reflect biological function
or noise but are more likely to be due to errors in image processing, for example in response to sudden
condensation on the well plate. See Figures 2k,f for examples of fitting.

The learned parental growth rate and resistant growth rate of each well are used as the y coordinates
in the monoculture experiments of Figure [1| (along with errors on the growth rate) and as the x and y
coordinates of the main part of Figure [2| Due to too much information content, the errors on the growth
rates are omitted in Figure 2] but they are shown explicitly as error-bars in Figure [3| Note that this
means that each point in Figure [1| and the main part of Figure [2| and each pair of points in Figure
(one magenta and one cyan at the same x-position) correspond to one biological replicate, with the error
term coming from the confidence interval on the growth-rate estimate from the 30 time-series points
that we recorded for each biological replicate (see section [E|on how this relates to the accuracy-precision
trade-off). Thus, each of the 6 wells corresponding to a given resistant:parental ratio (in each of the
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4 conditions) has its own independent growth rate with associated error. The wells are not averaged
together: each acts as its own data point (with noise) for later analysis (that propagates the noise).

B.3 Other definitions of fitness.

Of course, in the most general case, it is possible to consider other alternatives to the exponential growth
rate or Malthusian parameter as definitions of fitness. Popular alternatives include logistic growth rate
and more general Gompertz growth rate, but many choices are possible. However, there are experimental,
conceptual, and mathematical reasons for why we focus on the exponential growth model.

Experimentally: if the exponential growth model is a poor choice for our game assay pipeline, this
will show up in an unreasonably large error term on the growth rate, which would then propagate to
inconclusive measurements of the game. This is one of the advantages of being able to estimate error
terms for the growth rate of each individual biological replicate (instead of the more common practice of
relying on variance between replicates). In other words, if the error bars are big on the growth rate,
then this will increase the size of error bars on the final game measurement — potentially to the point
that the game cannot be localized with confidence to a given quadrant of game space. For our particular
experimental system, this is not the case, and the error terms on growth rate are sufficiently small to get
conclusive measurements of the game.

Conceptually: an effective game is defined with respect to a choice of idealized population. It is better
if the fitness measure is natural for that idealized population. In our case, both the intuitive presentation
of games in Figure [a] and operational presentation in section [E] are purely multiplicative models. And
exponential growth is the generator of multiplicative models.

Mathematically: a central advantage of representing evolutionary dynamics as games is to make
qualitative distinctions between types of games. The qualitative nature of a game depends only on the
rank ordering of its payoff matrix entries. Any strictly monotonic transform between fitness value will
not change the rank ordering of payoff matrix entries and thus preserve the main qualitative conclusions
of a game theoretic analysis. Thus, in the context of the game assay of our experimental system, little is
to be gained from a more complex definition of fitness.

B.4 Figure 2| as map of analysis flow.

Along with showing all the data, Figure |2 serves as a map to the above analysis pipeline. The subfigures
can be understood in the following order:

[a,b,c,d]: Within each image from the series generated by time-lapse microscopy: identify the fluorescent
regions for GFP and mCherry and calculate their areas to serve as units of population size (GFA
and CFA).

[e,f]: For parental (mCherry) and resistant (GFP) plot the population sizes from each image in the
series on a semilog grid as population vs. time. Find the slope of the two lines to serve as parental
and resistant fitness.

[g]: Use the parental fitness as x value and resistant as y value to plot each well as a data-point
according to the above process, and color the point according to its experimental condition (with
opacity for initial parental proportion; see Section , For ease of viewing: put a convex hull binding
polygon around each well data-point dependent on their experimental condition.

Given the complexity of Figure [2] it is tempting to ask for a simple summary statistic of the data in
the main figure. But it is not reasonable to ask of the “average” growth rate in Figure [2] because each
point differs not only along the four experimental conditions of the environment, but also along the
micro-environmental conditions of the initial parental proportion (represented by the opacity that is
explained in SA . Averaging over this information would be akin to assuming that the growth rates are
cell-autonomous. It would be attributing the variance in growth rates to noise instead of the independent
variable or initial parental proportion. As such, the game assay developed in rest of the paper can be
viewed as a method for summarizing Figure |2l when the underlying process is non-cell-autonomous. And
the games derived through Figure [3]and presented in Figure [{b] are the summary of the data in the main
part of Figure
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Supplementary Figure 5: Evolutionary dynamics of proportion of parental cells versus time for
competition of parental vs. resistant NSCLC. Each line corresponds to the time dynamics of a separate
well. A line is coloured magenta if proportion of resistant cells increased from start (time step 3 to 8) to end (time
step 24 to 29); cyan if proportion of parental cells increased; black if statistically indistinguishable proportions at
start and end.

C DMeasuring fitness functions and games

C.1 Proportions.

Since raw population sizes have different units (GFP Fluorescent Area (GFA) vs mCherry Fluorescent
Area (RFA)), we converted them to common cell-number-units (CNU) by learning the linear transform
that scales GFA and RFA into CNU. We defined proportions based on this common CNU as p =
Np/(Np + Ngr) where Nip ry is the CNU size of parental and resistant populations. The transform of
GFA to RFA into CNU is associated with an error that is propagated to measures of p as o,. Thus,
although we used 8 different ratios of resistant to parental cells with 6 wells per condition seeded at
each of the ratios, we do not average over these 6 wells but associated each with its own proportion
p £ op from the initial image. This helps us control for systemic noise from field of view and our image
processing algorithm. The time dynamics of p can be seen in the insets of Figure ] for DMSO and
DMSO+CAF or in Supplementary Figure [5] for all conditions.

C.2 Neglecting ecological dynamics.

Throughout this report, we focus on evolutionary dynamics: changes in proportion of strategies.
However, one could also consider the ecological dynamics: changes in densities of strategies. It is not
only proportions that are changing in our experimental system but also the densities. These ecological
dynamics are not the focus of our report, but we present them in Supplementary Figure@for completeness.
Here, we also compare the prediction of the model based on our measured games and the exponential
growth interpretation in Figure @ to the observed data. There is overall agreement between data and
model. But this is based on the traditional two track approach on qualitative agreement. Instead,
we prefer to focus on the single track measurement of evolutionary dynamics described in the rest of
these supplementary materials. Future work can aim to extend our approach to also include ecological
dynamics.

C.3 Lines of best fit as fitness functions.

To measure the fitness functions we plotted fitness of each cell-type in each well vs seeding proportion
(p) of parental cells in Figure The x-axis proportion of parental cells (p) was computed from the
first time-point: see section for an interpretation of this as a measurement of dp/dt or as a series of
competitive fitness assays. We estimated the line of best-fit and error on parameters for this data using
least-squares weighted by the inverse of the error on each data point (i.e. weight, , = 1//02 + 02).
This provides the error estimates on the line’s parameters that we use later. The lines of best fit (with
coefficients rounded to the thousandths for presentation) from weighted least-squares are:
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Supplementary Figure 6: Dynamics of population sizes of resistant cells versus parental cells. Axis
are fold change in CNU normalized from the seeding proportion of each well, with x-axis for parental and y-axis
for resistant. Foreground: raw data. Each line corresponds to the time dynamics of a separate well. A line is
coloured magenta if proportion of resistant cells increased from start to end; cyan if proportion of parental cells
increased; black if statistically indistinguishable proportions at start and end (using the same conventions as
Figure [5). Background: flow diagram for model from Figure Each coloured point shows the proportion of
parental-resistant (cyan-magenta) at that point. Arrow going from magenta to cyan indicates parental proportion
increased, if from cyan to magenta then resistant proportion increased.

wpMS© =0.025 — 0.001(1 — p) = 0.025p + 0.024(1 — p) (1)
WpMS0 =0.027 + 0.013p = 0.04p + 0.027(1 — p) (2)
WPMSO + CAF = 0.026 + 0.009(1 — p) = 0.026p + 0.035(1 — p) (3)
WPMSO T OAF = 0.03 +0.001p = 0.031p + 0.03(1 — p) (4)
pectini = —0.01 — 0.002(1 — p) = —0.01p — 0.013(1 — p) (5)
et =0.023 4 0.02p = 0.043p + 0.023(1 — p) (6)
ptectinib - CAF = 0.005 — 0.009(1 — p) = 0.005p — 0.004(1 — p) (7)
et AR =0.024 + 0.014p = 0.038p + 0.024(1 — p) (8)

C.4 Summarizing fitness functions as games.

For the final column of our presentation of ¥§ in equations [1}i8] we rewrote the fitness functions in a
suggestive form of W% = Ap + B(1 — p) and w§ = Cp + D(1 — p). This is done to show at a glance
where the matrix entries in Figure @ come from. This is because the p = 0 and p = 1 intercepts of the
fitness functions serve as the entries of the game matrices. Note that in Figure [db] we multiplied the
entries by 100 for easier presentation. The game point are calculated from the matrices as ¢ := C — A
and y := B — D, and the error is propagated from the error estimates on fitness function’s parameters.

C.5 Gain functions, game space, and fixed points

A particularly important equation for studying two strategy games is the gain function. This represents
the relative fitness difference between two strategies. Thus, it is a measure of selection strength and a
proxy for the rate of evolution. The parental gain function (i.e. gain function for p in Figure [4a] and
equation is given by §%(p) = WS (p) — W (p); and the resistant gain function (i.e. gain function for
q=1-p)is §5(¢q) = w§(1—p) —wE(1—p) = =& (1 —p). The end-points of this gain function determine
the game coordinates in the game space of Figure [4b| with (z,7) := (§%(0), §5(0)) = (—§5(1),§%(0)).
These points can be interpreted as the idealized quantities of relative fitness of a resistant invader
in parental monoculture (§%(0)) and relative fitness of a parental invader in resistant monoculture
(9%(0) = —gE(1)). If these two coordinates have the same sign then the gain function has to cross 0 in
getting from p = 0 to p = 1 and thus the dynamics have a fixed point. If the two coordinates are both
positive (top right quadrant of Figure then the fixed point is stable, if both are negative (bottom left
quadrant of Figure then the fixed point is unstable. In our experimental system, only the DMSO +
CAF condition has a fixed point at 0.53 = 0.14 (rounded to the nearest percent).
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Supplementary Figure 7: Residuals for the fitness functions. The x-axis is proportion and y-axis is
residuals of the lines of best fit from Figure |3|for parental (Cyan,Top) and resistant (Magenta,Bottom).

C.6 Width and height of fixed regions.

Since we propagate the errors on our measurement from the image all the way to the game, we find it
more helpful to think of an experimental fixed point not as a point but as a fixed region p € (0.39,0.67)
of finite width. This can provide an alternative explanation for the apparent slowness of convergence
to the fixed point in Figure Some of the fixed region’s width is noise in measurement, but some
could be due to true variance between wells: in particular, even if the reductive game is the same, the
spatial structure will be slightly different in each well and thus there will be a slightly different effective
game. As such, apparent slowness in Figure [5| might be from different lines being very close to slightly
different fixed points that are all within the fixed region’s width. An alternative view to width is in
terms of height: a fixed region corresponds not just to the point where gEMSO + CAF crosses 0 but to
the region where the gain function crosses 0 + 0.0014 (rounded to the nearest thousandth). We call this
the fixed region’s height (and use it in section . This height is due to propagation of error and can be
interpreted as our measurement not being able to distinguish relative growth rates in (—0.0014, 0.0014)
from zero. In the case of the other three conditions (DMSO, Alectinib, and Alectinib + CAF), in going
from p =0 to p = 1, the gain function do not pass within their fixed region height of zero, and thus no
fixed regions exist.

C.7 Lines and matrix games.

Although slight deviations from a linear fit — that might not be attributable to noise alone — might
be present in the data (see Supplementary Figure , we do not think that they justify considering
higher-order fitness functions (although we discuss higher-order functions in section [F| for completeness).
This is due to the higher explanatory value of linear models and our hope to influence the well-established
study of matrix games in microscopic systems. Some good EGT work has recently been done on
non-linear games |25, [26} |30, but this is very little compared to the immense literature on matrix games.
More importantly, we think that our focus on matrix games is better viewed not from the perspective of
model selection but rather as an operational definition of effective games. We are not aiming to provide
the best or most predictive account of non-small-cell lung cancer in the petri dish, but rather a method
for measuring (matrix) games. If the error of the measured (matrix) games ends up very high — which
is not the case from the error bars in Figure @b~ then we know that this first order approximation of
interactions is not sufficient and higher orders should be pursued. However, we will not know this unless
we first have a robust method for measuring the lower order terms.

D Regularization and interpretable fitness functions

Regularization is a machine learning technique for reducing over-fitting by biasing towards more succinct
models. It is the use of a priori knowledge on what constitutes a simpler or more likely model to
anchor our inference. A classic example of this is preferring lower-order over higher-order polynomials
for describing data unless there is overwhelming evidence otherwise. Of course, what constitutes
overwhelming evidence depends on the goals of the scientists. If the only goal is prediction then
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Supplementary Figure 8: Mapping of the regularized fitness functions for the four conditions into
game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic culture: C — A. The
y-axis is the relative fitness of a parental focal in a resistant monotypic culture: B — D. Games measured in our
experimental system are specified by the bounding boxes corresponding to the range of their errors. The games
corresponding to the regularized fitness functions in equations @-@ are given as points. Experimental condition is
represented by shape (DMSO: circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).

cross-validation is a good way to test how heavily inference should be regularized. But if the goal is
explanation then accordance with existing theory is another important factor to consider.

As such, our choice of focusing on linear fitness function in section [C]and Figure[3]can be seen as a form
of regularization. In particular, we can see our inference procedure as either restricted to the hypothesis
class of linear functions, or as considering the hypothesis class of all polynomials but with prohibitively
high costs for non-zero components (lo regularization) on orders beyond linear. But we prefer to think
of it in terms of operationalization. By introducing a game assay, we are defining the hidden variable of
(matrix) games in terms of the measurement procedure that we described in sections [B| and

D.1 Interpretable fitness functions.

An uncontroversial case of regularization in our report is the presentation of w§ in section
|[dependence in fitness functionsf. There, we restrict beyond linear fitness functions to focus on conceptually
simple ones. In particular, we favor cell-autonomous functions over frequency dependent ones (i.e. lo
regularization on the fitness function coefficients) and we favor coefficients that are shared between
different S and C. This results in the following regularized fitness functions:

wiMSO — 0,025 ©)
wp™®© = 0.025 + 0.015p (10)
1

wpMSO T CAF — 025 +0.01(1 — p) (or 0.03 — 0.01(5 — ) (1)
wBMSO + CAF _ g o3 (12)
wélectinib — —0.010 (13)
wileetini® _ 0 005 10018 (14)

L 1
w%lectlmb + CAF = 0.005 — 0009(1 — p) (OI‘ 0009(5 — p)) (15)
wilectinib + CAF _ g 005 10 013y (16)

Note that for both P and R strategies, we used the proportion of the other strategy (1 — p, p) as the
parameter that captures the non-cell-autonomous contribution. In equations [TI|[T5] we also consider the

parameter % — p because of the elegant form it provides.
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‘We can compare these regularized fitness functions wg to the non-regularized wg‘ in equations [1}{8]
As can be seen, all w§ are close to their respective w§ and are actually within the error estimates
on wg We can see the regularization in action with a push towards a constant base fitness of 0.025
shared by w?ﬁflg?,ngso + CAF and w}zAle“mb’Alemmb + CAF} " The absence of frequency dependent

perturbation terms for wI{DDMSO’AIQCti“ib} and wHMSO + OAF qugoests that these strategies can be explained

in terms of cell-autonomous processes. However, the other strategies in the other contexts ask for a
non-cell-autonomous explanation.

D.2 Games from interpretable fitness functions.

For a visual confirmation that the regularization of wg in equations are reasonable, we can transform
them into regularized games. We do this in the same way as we did for transforming the non-regularized
wg‘ in equations into the game-points of figure The results are in Supplementary Figure |8} The
regularized games (points) are within the confidence rectangles of the measured games (boxes), with the
exception of DMSO which is just outside its box. This is reasonable given that the boxes correspond to

error: i.e. around 2/3rds confidence.

E Experimental definition of replicator dynamics

Consider a well that is seeded with an initial number N3 of parental and N% of resistance cells; total
number N' = NL + Ni. Let N f p,r} be the number of {parental,resistant} cells after being grown for
an amount of time A¢. From this, the experimental growth rate can be defined based on fold change as:

N{pry = Nir.r

N{p gy At

’w{p,R} = (17)
this can be rotated into a mapping N' — N¥ given by N{FP,R} = N{IRR}(l + wyp ryAt).

By defining the initial and final proportion of parental cells as p{!*¥'} = N}{DI’F}/N{I’F}7 we can find
the mapping:

F_N};_ [1+’UJPAt

TNF TP T wyAr (18)

where (w) = p’wp + (1 — p’)wg. This is the discrete-time replicator equation.

We can approximate this discrete process with a continuous one by defining p(t) = p’, p(t + At) = p¥
and looking at the limit as At gets very small:

i PEHAD —p()

p At—0 At (19)
. pI 1+ wpAt

= A G A Y (20)

o wp — (w)

- Aliglopl + (w)At (21)

— pwp — () (22

=p(1 —p) (wp — wr) (23)
—_——

gain f’n for p

Thus, we recover replicator dynamics as an explicit experimental interpretation for all of our theoretical
terms. Note that we did not make any assumptions about if things are inviscid or spatial; if we are talking
about individual or inclusive fitness; or, if we have growing populations in log phase or static populations
with replacement. All of these microdynamical details are buried in the definition of experimental fitness.
This allows us to focus on effective games |15] and avoid potential confusions over aspects like spatial
structure |16].

E.1 Better estimates of w.

The problem with the definition of w in equation is that it depends on just two time points, and
thus not good for quantifying error. In our experimental system, we are able to peek inside the system
with time-lapse microscopy. This allows us to get more than just the initial and final population sizes
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Supplementary Figure 9: Cubic Fitness functions for competition of parental vs. resistant NSCLC.
For each plot: growth rate with confidence intervals versus initial proportion of parental cells. This is the same
data as Figure[3] Cyan data points are growth rates of parental cells, and magenta for resistant cells. Dotted
lines represent the 3rd-order (cubic) fitness function of the least-squares best fit. The black dotted line is the gain
function for parental (see Figure , it is well below the y = 0 line in the Alectinib conditions (indicating the
strong advantage of resistance) and thus cut out of the figure.

and replace fold-change by the more specific measurements of inferred growth rates for wyp gy that
we describe in section [B] An advantage of this approach is that the goodness-of-fit of the exponential
growth model provides a good estimate of the error associated with each measurement of w. Thus, we
are able to quantify error within each well and not just between experimental replicates in different wells
with similar initial conditions.

E.2 Accounting for finite At.

The small time definition of the derivative can be thought of as a way to approximate a function by
local linearizations. It is why for simulations, modelers often use the discrete time replicator dynamics
to represent continuous time replicator dynamics: effectively using the discretization as a simple ODE
solver /plotter. In the limit of A¢ going to 0, this linearization recapitulates the function. Unfortunately
in practice, our experimental system cannot take the limit as At goes to 0 because of a precision-accuracy
trade-off. Accuracy increases as At decreases because the continuous dynamics is approximated by more
and more, shorter and shorter straight lines. But — from an experimentalist’s perspective — the precision
decreases because any measurement is noisy: if we measure growth rate over a shorter period of time
then we are less certain whether our measurement reflects reality or noise. For very short measurements,
we might get higher accuracy (assuming biological factors like time from seeding to adherence could
be ignored) but would have incredibly low precision (due to only one, two or three time points from
which to calculate growth rate). As we increase the time of the experiment, the accuracy might decrease
but the precision will tend to increase. This is a classic trade off between random noise (low precision)
and systematic noise (linearization being progressively less accurate over larger At). Since each of our
growth rate measurements has an associated error term (see section , we quantify the random and
systematic noise together and propogate it throughout our analysis. Given the biological constraints of
our system, we judged that 5 days was a good trade-off point. This will most likely be different for other
experimental systems.

Given that w are defined over a finite range of time, we need to pick a particular time-point to
associate each measurement with. As is common for discrete time process, we attribute the value of
the growth rate to the initial point. In particular, this means that when we make w{p gy a function of
p in the main text, then the values of growth rate are attributed to the initial proportion of parental
cells and not the final one. This customary choice is further reinforced by the fact that we have a less
noisy estimate of initial proportions of cells than of the final, and so other definitions would lead to less
precise measurements. Finally, our procedure can be viewed as standard competitive fitness assays but
with initial ratio of the two types as a varied experimental parameter. Thus, for consistency with both
theoretical and experimental literature, we associated the growth rates with the initial — more controlled
— seeding proportion.

F Generalizing the game assay to non-linear fitness functions

The game assay that we presented above is more interpretable and its output more easily plotted for
matrix games with linear fitness functions. And in the case of our experimental system, the linear fitness
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Supplementary Figure 10: AICs and BICs for best polynomial fits of a given degree (up to additive
offset). In cyan are AIC and BIC values for models parental cell fitness functions, while in magenta are AIC and
BIC values for models of resistant cell fitness functions. Circles surround the minimum of AIC and BIC.

functions provide an adequate fit for our purposes. However, that does not mean that the game assay
has to be used only for linear games. Whereas section [C| used linear functions as the hypothesis class for
fitting the growth-rate vs. proportion, one could use any other class of functions. An obvious candidate is
polynomial fitness functions of orders higher than 1. We provide an example in Supplementary Figure |§|
of a 3rd-order (cubic) fit. Visually, the cubic provides a better fit than the linear one in Figure |3} which
is to be expected from the extra degrees of freedom. But qualitatively it provides the same interpretation
as the linear fitness functions, including the same number of fixed points. In particular, DMSO + CAF
has a single fixed point at p = 0.52 and (using the fixed region height from section a single fixed
region for p € (0.04,0.668). This is much like the linear fit, but the fixed point region is expanded. The
other three conditions (DMSO, Alectinib, and Alectinib + CAF) have no fixed points and no fixed
regions.

F.1 Information criteria for non-linear fits.

If we treat the game assay not as a measurement and definition of games but as a model selection
problem for parameter fitting then it becomes important to quantify the trade-off between the goodness
of fit and model simplicity. For this, we can use techniques like the Akaike information criterion (AIC),
its small-sample size correction (AICc), or the Bayesian information criterion (BIC) — or any other
statistical model selection procedure. Given that (i) a polynomial of degree d has k = d + 2 degrees
of freedom as a statistical model (+1 for zeroth order term, +1 for noise term); the eight models (4
conditions, 2 fitness functions per condition) are trained on n = 42 data points each; and AIC/BIC
only works reasonablely when n >> d. For example, given our relatively small dataset for each model,
Burnham & Anderson [46] would advocate to always prefer AICc over AIC (they suggest n/k < 40 as the
cut off). Hence, we show the results of all three of AIC, AICc and BIC for polynomial fitness functions
for degree d < 6 in Supplemental Figure [I0] In this figure, a better model corresponds to a lower AIC,
AICc or BIC value (lower on the y-axis). Since constant offsets in the information criteria do not matter
for model selection, the axes are set so that the linear model has A{AIC, AICc, BIC} = 0. The leftmost
column of Supplemental Figure considers the joint product model where each fitness function has
the same degree — for the d = 1 model, this would correspond to the linear game assay as presented in
section [C] Both AICc and BIC select the 3rd-degree polynomial model that we discussed above. AIC
doesn’t differentiate strongly between the 3rd, 4th, 5th and 6th degree, but prefers slightly the 5th
degree. Too much emphasis should not be placed on AIC however, given the number of parameters
compared to sample size [46]. The four right columns of Supplemental Figure [10| consider independent
models for each of the fitness functions across the 4 different conditions — so a total of 8 models. At the
cost of extra researcher degrees of freedom, it is possible to look at the fits where the model for each of
the 8 fitness functions is selected independently. Such a fit, as selected by BIC, is shown in Supplemental
Figure Note the two extra crossings of zero by the gain function in the DMSO + CAF case.
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Supplementary Figure 11: Fitness functions for competition of parental vs. resistant NSCLC as
selected by BIC. For each plot: growth rate with confidence intervals versus initial proportion of parental cells.
This is the same data as Figure [3] Cyan data points are growth rates of parental cells, and magenta for resistant
cells. Dotted lines represent the fitness function of the least-squares best fit for models selected by BIC. These are
a linear model for resistant fitness function in Alectinib + CAF'; quadratic models for parental fitness function in
Alectinib + CAF, resistant fitness function in Alectinib, and both fitness functions in DMSO; cubic for resistant
in DMSO + CAF, and parental in Alectinib; and quintic for parental in DMSO 4 CAF. The black dotted line is
the gain function for parental (see Figure , it is identical with the y = 0 line in the DMSO + CAF condition
(indication equal fitness for the two strategies) and well below it in the Alectinib conditions (indicating the strong
advantage of resistance) and thus not visible in the figure.
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Supplementary Figure 12: Mapping of the AIC and BIC selected fitness functions for the four
conditions into game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic
culture. The y-axis is the relative fitness of a parental focal in a resistant monotypic culture. Games measured in
our experimental system are specified by the bounding boxes corresponding to the range of their errors. The
games corresponding to joint degree models are given as points, with joint degree labeled nearby. Experimental
condition is represented by shape (DMSO: circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).
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F.2 Plotting nonlinear games.

Just like with the linear games, it is possible to plot nonlinear games in our 2D game space based on
the p = 0 and p = 1 endpoints of the gain function. We do this in Supplemental Figure with each
point labeled by the degree of the corresponding polynomial fitness functions. Unsurprisingly, at a brief
glance there is broad qualitative agreement — all (but one) points are in the same quadrant as the linear
model — although little quantitative agreement with the linear game assay — most points are outside
of the error-box corresponding to the linear game. However for a general nonlinear game, unlike with
linear games, two points in the same quadrant might not correspond to the same qualitative kind of
dynamic. In particular, for a general nonlinear game, a quadrant only tells us the parity of the number
of roots in (0, 1) — where roots are counted by their multiplicity — and the order of alternations on the
flow. For more on discrete flow alternation representation of gain functions, see Pefia et al. [31].

Fortunately, for our particular experimental system the above generality is not realized. In particular,
for all degrees of the DMSO, Alectinib, and Alectinib 4+ CAF games the gain functions have no fixed
points — just like the linear case. For DMSO + CAF, degrees d = {1,2,3} have one fixed point and
d = {5,6} have 3 fixed points (although only two fixed regions: p € {(0.07,0.25), (0.38,0.46)} for d =5
and p € {(0.09,0.31), (0.44,0.50)} for d = 6. For d = 0 it is impossible for any model to be in the top
right or bottom left quadrant — since no constant line can be both negative and positive — and there is
no fixed point, but the fitness difference for DMSO is so tiny that there is a single fixed region for the
whole space p € (0,1). The real outlier for DMSO is d = 4 since it has two fixed points (and is thus in
the bottom right quadrant) and two fixed regions at p € {(0.07,0.11), (0.29,040)}. Thus, the existence
of fixed point(s) in DMSO + CAF and absence of fixed points in the other conditions is robust across
the nonlinear models. The exact position of the fixed point(s) in DMSO + CAF, however, is not as
robust to model choice.
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