
 

 

 Methods paper template 

 

SeroBA: rapid high-throughput serotyping 1 

of Streptococcus pneumoniae from whole 2 

genome sequence data 3 

 4 

Authors: Lennard Epping1,2,  Andries J. van Tonder3, Rebecca A. Gladstone3, The Global 5 

Pneumococcal Sequencing consortium, Stephen D. Bentley3, Andrew J. Page*,1,+, Jacqueline A. 6 

Keane*,1,+ 7 

 8 
1Pathogen Informatics, Wellcome Trust Sanger Institute, Hinxton, Cambs, UK, CB10 1SA. 9 
2Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany 10 
3Infection Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambs, UK, CB10 1SA. 11 
 12 
*Corresponding email: jm15@sanger.ac.uk, ap13@sanger.ac.uk 13 
+ joint corresponding authors 14 

 15 

ABSTRACT 16 

Streptococcus pneumoniae is responsible for 240,000 - 460,000 deaths in children under 5 years of 17 

age each year. Accurate identification of pneumococcal serotypes is important for tracking the 18 

distribution and evolution of serotypes following the introduction of effective vaccines. Recent efforts 19 

have been made to infer serotypes directly from genomic data but current software approaches are 20 

limited and do not scale well. Here, we introduce a novel method, SeroBA, which uses a hybrid 21 

assembly and mapping approach. We compared SeroBA against real and simulated data and present 22 

results on the concordance and computational performance against a validation dataset, the robustness 23 

and scalability when analysing a large dataset, and the impact of varying the depth of coverage in the 24 

cps locus region on sequence-based serotyping. SeroBA can predict serotypes, by identifying the cps 25 

locus, directly from raw whole genome sequencing read data with 98% concordance using a k-mer 26 

based method, can process 10,000 samples in just over 1 day using a standard server and can call 27 

serotypes at a coverage as low as 10x.  SeroBA is implemented in Python3 and is freely available 28 

under an open source GPLv3 license from: https://github.com/sanger-pathogens/seroba 29 

  30 

 31 

DATA SUMMARY 32 
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1. The reference genome Streptococcus pneumoniae ATCC 700669 is available from National 33 

Center for Biotechnology Information (NCBI) with the accession number: FM211187 34 

2. Simulated paired end reads for experiment 2 have been deposited in FigShare: 35 

https://doi.org/10.6084/m9.figshare.5086054.v1 36 

3. Accession numbers for all other experiments are listed in Supplementary Table S1 and 37 

Supplementary Table S2. 38 

I/We confirm all supporting data, code and protocols have been provided within the article or 39 

through supplementary data files. ☒    40 

 41 

IMPACT STATEMENT 42 

This article describes SeroBA, a k-mer based method for predicting the serotypes of Streptococcus 43 

pneumoniae from Whole Genome Sequencing (WGS) data. SeroBA can identify 92 serotypes and 2 44 

subtypes with constant memory usage and low computational costs. We showed that SeroBA is able 45 

to reliably predict serotypes at a depth of coverage as low as 10x and is scalable to large datasets. 46 

 47 

 48 

INTRODUCTION 49 

Streptococcus pneumoniae (the pneumococcus) is a clinically important bacterium estimated to cause 50 

700,000 to 1 million deaths in children under 5 years of age annually prior to the introduction of 51 

polysaccharide conjugate vaccines (O’Brien et al. 2009). The capsular polysaccharide biosynthesis 52 

(cps) locus, which encodes the serotype, is a major virulence factor in S. pneumoniae. The 53 

introduction of multi-valent pneumococcal conjugate vaccines has led to a substantial change in the 54 

circulating serotypes (Menezes et al. 2011) and decreased the number of deaths in children under 5 55 

years of age to 240,000 - 460,000 annually (Wahl et al. 2016). By surveilling the circulating 56 

serotypes, the epidemiological trends of S. pneumoniae can be observed, pre- and post-vaccination. 57 

The rapid reduction in the cost of whole genome sequencing (WGS) has lead to its extensive use in 58 

the monitoring of pneumococcal serotypes (Lang et al. 2015) 59 

  60 

To date there are nearly 100 known serotypes described for S. pneumoniae based on differing 61 

biochemical and antigenic properties of the capsule (Van Tonder et al. 2017). The cps locus, which 62 

encodes the serotype, can be very similar between serotypes from the same serogroup (such as 63 

serogroup 6) with some of them distinguished by a single nucleotide polymorphism (SNP), rendering 64 

a gene non-functional or altering the sugar linkage (Bentley et al. 2006). However, dissimilar loci may 65 

be grouped in the serogroup as they elicit a similar antibody response (e.g. serogroup 35). The large 66 

number of identified serotypes, and the high similarity between them, makes it challenging to 67 

computationally predict the serotype based on WGS data.  Another challenge is recombination with 68 

other serotypes resulting in a mosaic cps locus (Salter et al. 2017) which may or may not affect the 69 

polysaccharide being produced. It is possible to have significant variation across the cps locus which 70 

does not lead to a different polysaccharide capsule being produced (Ko et al. 2013). Conversely novel 71 
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serotypes can be generated through these processes and can go unnoticed by antibody-based 72 

serotyping (Geno et al.; Park et al. 2007). Finally, mixed populations in a single sample and 73 

contamination can lead to ambiguity. 74 

  75 

There are a number of methods available to predict serotypes in S. pneumoniae.  Besides the gold 76 

standard method, Quellung, which can be subjective in certain cases, there are five additional methods 77 

based on serological tests, at least eight semi-automated molecular tests based on PCR and one 78 

method that uses microarray data for serotyping (Jauneikaite et al. 2015). There are a number of in-79 

silico methods to detect the cps locus, which can then be used to predict serotypes from WGS data 80 

(Croucher et al. 2009; Leung et al. 2012; Kapatai et al. 2016; Metcalf et al. 2016). However, the tool 81 

described by Metcalf et al. is an in-house tool, and the tool described by Leung et al. only covers half 82 

of the known serotypes. 83 

  84 

The only fully-featured automated pipeline for serotyping S. pneumoniae WGS data is PneumoCat, 85 

which was developed by Public Health England (PHE) (Kapatai et al. 2016). PneumoCat provides a 86 

capsular type variant (CTV) database including FASTA sequences for 92 serotypes and 2 subtypes as 87 

well as additional information about alleles, genes and SNPs for serotypes within specific serogroups. 88 

To predict a serotype, PneumoCat uses bowtie2 (Langmead and Salzberg 2012) to align reads to all 89 

serotype sequences. If the serotype belongs to a predefined serogroup or the serotype sequence could 90 

not be unambiguously identified, PneumoCat maps the reads to serogroup specific genes to identify 91 

the genetic variants. It is however computationally and memory intensive, and does not work with 92 

samples where there is a low depth of coverage in the cps locus region, as shown below. 93 

  94 

To address these problems, we developed SeroBA, which makes efficient use of computational 95 

resources and can accurately detect the cps locus even at low coverage, and thus predict serotypes 96 

from WGS data using a database adapted from PneumoCAT (Kapatai et al. 2016). This accuracy was 97 

evaluated by comparing the results to a standard, validated dataset from PHE (Kapatai et al. 2016). 98 

We showed that it is scalable and robust by calculating the serotypes of 9,477 samples from the GPS 99 

project, an ongoing global pneumococcal sequencing project, on commodity hardware. Simulated 100 

read data, with varying coverage over a known reference sequence, was used to show the minimum 101 

depth of coverage required to call a serotype. 102 

    103 

 104 

THEORY AND IMPLEMENTATION 105 

 106 

SeroBA takes Illumina paired-end reads in FASTQ format as input as shown in Figure 1. 107 

Precomputed databases are bundled with the application that describe the serotypes. The first of these 108 

is a k-mer counts database for every serotype sequence produced by KMC (v3.0.0) (Kokot et al. 109 

2017), the second is an ARIBA (v 2.9.3) (Hunt et al. 2017) compatible database for every serotype, 110 

and the third is a capsular type variant (CTV) database, including FASTA sequences for 92 serotypes 111 
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and 2 subtypes, as well as additional information about alleles, genes and SNPs for serotypes in 112 

specific serogroups. These databases were adapted from PneumoCAT (Kapatai et al. 2016). A k-mer 113 

analysis is performed on the input reads, and the intersection is found between these k-mers and the 114 

precomputed k-mer database of serotypes. The k-mer coverage of the input reads over the serotype 115 

sequences is normalised to the sequence length of the serotype sequence and the serotype with the 116 

highest normalised sequence coverage is selected. This step identifies the possible serotype or 117 

serogroup and ARIBA is used to confirm the presence of the selected serotype from the raw reads. If a 118 

serogroup is selected, the cps sequence produced by ARIBA and serotype specific genes are aligned 119 

with nucmer (Kurtz et al. 2004) to find specific variants, such as presence/absence of genes, SNPs, or 120 

gene truncations as defined in the CTV. The output of SeroBA includes the predicted serotype with 121 

detailed information that led to the prediction, as well as an assembly of the cps locus sequences. 122 

 123 

VALIDATION DATASET 124 

A validation dataset consisting of 2,065 UK isolates (Supplementary Table S1) retrieved from the 125 

PHE archive was originally used to evaluate PneumoCat. It consists of 72 out of 92 known serotypes, 126 

including all serotypes contained in commercial vaccines, and 19 non-typeable samples. The serotype 127 

of each sample was confirmed by latex agglutination with Statens Serum Institut typing sera (Kapatai 128 

et al. 2016). PneumoCat v1.1 (Kapatai et al. 2016) and SeroBA v0.1 were evaluated on an AMD 129 

Opteron 6272 server running Ubuntu 12.04.2 LTS, with 32 cores and 256GB of RAM. A single CPU 130 

(Central Processing Unit) was used for each experiment, repeated 10 times, with the mean memory 131 

usage and wall clock times noted.  132 

Figure 2 summarises the serotypes called for each sample by each method. As serotyping with latex 133 

agglutination and Quellung can be subjective (Selva et al. 2012) and potentially imprecise, a serotype 134 

was said to be concordant if two or more methods agreed on the same serotype. This gave a 135 

concordance of 98.4% for SeroBA and 98.5% for PneumoCat with latex agglutination method. The 136 

reference sequences in the CTV for the serotypes 24A, 24B, 24F may not be representative for the 137 

circulating strains (Kapatai et al. 2016), so SeroBA will report serogroup 24 instead of reporting the 138 

serotype. As discussed in (Kapatai et al. 2016) serological prediction in serogoup 12 were error-prone, 139 

so a prediction of either 12B or 12F were counted as concordant.   140 

 141 

The overall computational resources required to call the serotypes differed substantially between 142 

PneumoCat and SeroBA (Table 1): SeroBA was fifteen times faster and required five times less 143 

memory than PneumoCat.  144 

EVALUATION USING A LARGE DATASET 145 

To show the scalability of SeroBA to large datasets, we took 9,477 S. pneumoniae samples from the 146 

GPS project (Supplementary Table S2) and calculated the serotypes using the hardware setup 147 

previously described. A comparison with serotypes determined using experimental methods gave an 148 

accuracy of 98.2% for SeroBA. The serotypes were determined by different experimental methods as 149 

listed in Supplementary Table S2. Using all 32 cores resulted in a total wall-clock time of 823.78 150 

hours. This showed that SeroBA can robustly scale to large datasets. 151 
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IMPACT OF DEPTH OF COVERAGE 152 

The effect of depth of coverage on the serotyping results produced by SeroBA and PneumoCat was 153 

evaluated by simulating perfect paired end reads over the serotype 23F cps locus from the 154 

Streptococcus pneumoniae ATCC 700669 (accession code: FM211187) reference genome (Croucher 155 

et al. 2009). Flanking regions of 1,000 bases were included on either side of the cps locus to eliminate 156 

confounding effects of low coverage at the locus boundaries. The reads with a length of 125 base 157 

pairs were generated by FASTAQ (v3.15.0) (https://github.com/sanger-pathogens/Fastaq) with an 158 

insert size of 500 bases and standard deviation of 50 with varying depth of coverage from 1x to 50x 159 

and from 100x to 350x in steps of 50. SeroBA started to predict serotype 23F at a depth of coverage 160 

of 10x while PneumoCat required nearly twice as much, needing at least 19x coverage.  The 161 

computational resources required by SeroBA remained constant with increasing depth of coverage; 162 

however, the computational resource requirements of PneumoCat continue to grow linearly (Figure 163 

3). At 350x coverage, PneumoCat took 3 times longer than SeroBA. Similarly, the amount of memory 164 

required by SeroBA stabilised at 150MB, regardless of coverage, whereas PneumoCat’s memory 165 

requirement grew with the depth of coverage, requiring 3 times more than SeroBA at 350x coverage. 166 

Each experiment was repeated 10 times and the mean was calculated. 167 

 168 

 169 

CONCLUSION 170 

In this paper, we described SeroBA a method for predicting serotypes from S. pneumoniae Illumina 171 

NGS reads. We compared SeroBA and PneumoCat to a gold standard experimental serotyping 172 

method and showed that they had approximately the same level of concordance. However, SeroBA 173 

was fifteen times faster and required five times less memory than PneumoCat. The assembly of the 174 

cps locus sequence provides by SeroBA is another key feature that is very useful for further analyses 175 

and reference free comparisons. SeroBA was able to predict the serotype from only 10x read depth 176 

and scaled well on a large dataset of nearly 10,000 samples with a prediction accuracy of over 98%.  177 

 178 
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ABBREVIATIONS 184 

SNP: Single nucleotide polymorphism 185 

WGS: Whole genome sequencing 186 

CTV: Capsular Type Variant database  187 
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CPS: Capsular polysaccharide biosynthesis 188 

GPS: The Global Pneumococcal Sequencing 189 

 190 
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 257 

FIGURES AND TABLES 258 

Table 1: Performance of SeroBA and PneumoCat on the validation set 259 

Tool Mean Wall Clock Time (m) Mean RAM usage (MB) 

PneumoCat 65.84 922.89 

SeroBA 4.53 187.82 

 260 

Figure 1: Flowchart outlining the main steps of the SeroBA algorithm 261 

Figure 2: Agreement of serotyping results between different methods 262 

Figure 3:  a) mean CPU time in seconds used by SeroBA and PneumoCat when varying the coverage 263 

from 1x to 350x; b) maximum memory allocation of SeroBA and PneumoCat when varying the 264 

coverage from 1x to 350x. Each data point represents the mean value of ten identical experiments. 265 
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