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ABSTRACT

Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology which offers faster
and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and
complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling:
directly translating the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of
4000 reads, we show that our model provides state-of-the-art basecalling accuracy even on previously unseen species. Chiron
achieves basecalling speeds of over 2000 bases per second using desktop computer graphics processing units.

1 Introduction
DNA sequencing via bioengineered nanopores, recently introduced to the market by Oxford Nanopore Technologies (ONT),
has profoundly changed the landscape of genomics. A key innovation of the ONT nanopore sequencing device, MinION, is that
it measures the changes in electrical current across the pore as a single-stranded molecule of DNA passes through it. The signal
is then used to determine the nucleotide sequence of the DNA strand1–3. Importantly, this signal can be obtained and analysed
by the user while the sequencing is still in progress. A large number of pores can be packed into a MinION device in the size
of a stapler, making the technology extremely portable. The small size and real-time nature of the sequencing opens up new
opportunities in time-critical genomics applications4–7 and in remote regions8–12.

While nanopore sequencing can be massively scaled up by designing large arrays of nanopores and allowing faster
translocation of DNA fragments, one of the bottle-necks in the analysis pipeline is the translation of the raw signal into
nucleotide sequence, or basecalling. Prior to the release of Chiron , basecalling of nanopore data involved two stages. Raw
data series are first divided into segments corresponding to signals obtained from a k-mer (segmentation) before a model is
then applied to translate segment signals into k-mers. DeepNano13 introduced the idea of using a bi-directional Recurrent
Neural Network (RNN), that uses the basic statistics of a segment (mean signal, standard deviation and length) to predict the
corresponding k-mer. The official basecallers released by ONT, nanonet and albacore (prior to version 2.0.1), also employ
similar techniques. As k-mers from successive segments are expected to overlap by k-1 bases, these methods use a dynamic
programming algorithm to find the most probable path, which results in the basecalled sequence data. BasecRAWller14 uses a
pair of unidirectional RNNs; the first RNN predicts the probability of segment boundary for segmentation, while the second one
translates the discrete event into base sequence. As such, basecRAWller is able to process the raw signal data in a streaming
fashion.

In this article we present Chiron, which is the first deep neural network model that can translate raw electrical signal directly
to nucleotide sequence. Chiron has a novel architecture which couples a convolutional neural network (CNN) with an RNN and
a Connectionist Temporal Classification (CTC) decoder15. This enables it to model the raw signal data directly, without use of
an event segmentation step. Oxford Nanopore Technologies have also developed a segmentation free base-caller, Albacore
v2.0.1, which was released shortly after Chiron v0.1.

Chiron has been trained on a small data set sequenced from a viral and bacterial genome, and yet it is able to generalise to a
range of genomes such as other bacteria and human. Chiron is as accurate as the ONT designed and trained Albacore v2.0.1 on
bacterial and viral base-calling and outperforms all other existing methods. Moreover, unlike Albacore, Chiron allows users to
train their own neural network, and it is also fully open-source, enabling development of specialised base-calling applications,
such as detection of base-modifications.
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Figure 1. A) An unrolled sketch of the neural network architecture. The circles at the bottom represent the time series of raw signal input data. Local pattern
information is then discriminated from this input by a CNN. The output of the CNN is then fed into a RNN to discern the long-range interaction information. A
fully connected layer is used to get the base probability from the output of the RNN. These probabilities are then used by a CTC decoder to create the
nucleotide sequence. The repeated component is omitted. B) Final architecture of the Chiron model. Variants of this architecture were explored by varying the
number of convolutional layers from 3 to 10 and recurrent layers from 3 to 5. We also explored networks with only convolutional layers or recurrent layers,
1×3 conv, 256, no bias means a convolution operation with a 1×3 filter and a 256 channels output with no bias added.

Results
Deep neural network architecture
We have developed a deep neural network (NN) for end-to-end, segmentation-free basecalling which consists of two sets of
layers: a set of convolutional layers and a set of recurrent layers (see Figure 1). The convolutional layers discriminate local
patterns in the raw input signal, whereas the recurrent layers integrate these patterns into basecall probabilities. At the top of
the neural network is a CTC decoder15 to provide the final DNA sequence according to the base probabilities. More details
pertaining to the NN are provided in Methods.

Chiron presents an end-to-end basecaller, in that it predicts a complete DNA sequence from raw signal. It translates sliding
windows of 300 raw signals to sequences of roughly 10-20 base pairs (which we call slices). These overlapping slices are
stacked together to get a consensus sequence in real-time. The window is shifted by 30 raw signals, by processing this slices in
parallel, the base-calling accuracy can be improved with little speed loss.

Performance Comparison
For training and evaluating the performance of Chiron, a phage Lambda virus sample (Escherichia virus Lambda provided by
ONT and an Escherichia coli (K12 MG1655) sample using 1D protocol on R9.4 flowcells are sequenced for calibrating the
MinION device (See Methods). 34,383 reads were obtained for Lambda sample and 15,012 reads for E. coli, but only 2000
reads were randomly picked from each sample to train Chiron. It took the model 10 hours to train 3 epoch with 4,000 reads (∼
4Mbp) on a Nvidia K80 GPU. Then Chiron is cross-validated on the remainder of the reads from two runs, and the model is
further evaluated by testing its basecalling accuracy on other species. A Mycobacterium tuberculosis sample is sequenced and a
set of human data is downloaded from chromosome 21 part 3 from the Nanopore WGS Consortium16, to be used in testing the
generality of Chiron (see Table 7).

In order to establish the ground-truth of the data,the E. coli and M. tuberculosis samples are sequenced using Illumina
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Figure 2. Visualization of the predicted probability of bases and the readout sequence. The upper pane is a normalised raw signal from the Minion Nanopore
sequencer, normalised by subtracting the mean of the whole signal and then dividing by the standard deviation. The bottom pane shows the predicted
probability of each base at each position from Chiron. The final output DNA sequence is annotated on the x-axis of the bottom plane.

technology (see Methods) and assembled, which provided a high per-base accuracy reference. The reference sequence for the
Phage Lambda virus is NCBI Reference Sequence NC 001416.1 and for the human data the GRCh38 reference was used. The
raw signals are labeled by identifying the raw signal segment corresponding to the nucleotide assumed to be in the pore at a
given time-point (see Methods).

Table 1 presents the accuracy of the four basecalling methods, including the Metrichor basecaller (the ONT cloud service),
Albacore v1.1 (ONT official local basecaller), BasecRAWller14 and Chiron,with a greedy decoder (Chiron) and beam search
decoder(Chiron-BS), on the data. Chiron has the highest identity rate on the Lambda, E. coli and M. tuberculosis sample.
Additionally, it had the lowest deletion rate, mismatch rate on Lambda, M. tuberculosis and E. coli, and the lowest insertion rate
on Lambda and E. coli.In Human dataset where Chiron did not have the highest identity rate, it is was no more than 0.01 from
the best.

In addition we compared the segmentation-free ONT basecaller Albacore v2.0.1 with Chiron-BS in Table 1. Chiron-BS had
a consistently lower insertion rate across all species tested, as well as a lower deletion rate on Lambda and E-coli, however it
suffered a slightly higher mismatch rate on all species except E-coli. The performance is comparable to Albacore v2.0.1 on all
species except for Human, however this is likely at least partially due to the fact that it has not been trained on any human DNA.

In order to assess the quality of genomes assembled from reads generated by each basecaller, we used Miniasm together
with Racon to generate a de-novo genome assembly for each of the bacterial and viral genomes (see Methods). The results
presented in Table 3 demonstrate that Chiron assemblies for Phage lambda and E. coli have approximately half as many errors
as those generated from Albacore (v1 or v2) reads. For M. tuberculosis, Chiron has fewer errors than Albacore v1, but slightly
more than Albacore v2. The identity rate and relative length for each round of polishing with Racon are shown in Figure 3.

In terms of speed on a CPU processor, Chiron is slower (21bp/s, 17bp/s using a beam-search decoder with a 50 beam width)
than Albacore (2975bp/s) and - to a lesser extent - BasecRAWller (81bp/s). However, when run on a Nvidia K80 GPU, a
basecalling rate of 1652bp/s and 1204bp/s using a beam search decoder is achieved. (Chiron is also tested on a Nvidia GTX
1080 Ti GPU and got a rate of 2657bp/s). The GPU rate for other two local basecallers are not included, as Albacore and
basecRAWller do not currently offer GPU support. Metrichor was not included in the speed benchmarking as it is not possible
to gather information about CPU/GPU speed as it is a cloud basecaller.
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Table 1. Results from the experimental validation and benchmarking of Chiron against three other segmentation-based Nanopore basecallers and Albacore
V2(which is also segmentation-free basecaller).

Dataset Basecaller Deletion Rate(%) Insertion Rate(%) Mismatch Rate(%) Identity Rate(%) Error Rate(%)

Metrichor 8.93 2.38 4.57 86.50 15.88
Albacore v1.1 6.35 3.82 4.69 88.96 14.86
Albacore-v2 6.19 3.38 3.98 89.82 13.55

Lambda BasecRAWller 7.89 10.01 10.56 81.54 28.46
Chiron 8.20 2.13 4.03 87.76 14.36
Chiron-BS 6.20 2.13 4.20 89.60 12.53
Metrichor 7.52 1.93 3.84 88.64 13.29
Albacore v1.1 5.76 3.27 4.14 90.10 13.17
Albacore-v2 5.21 2.99 3.57 91.22 11.77

E. coli BasecRAWller 7.16 10.40 10.30 82.54 27.86
Chiron 6.36 1.81 3.07 90.57 11.24
Chiron-BS 4.94 2.36 3.16 91.90 10.46
Metrichor 7.63 2.40 4.35 88.02 14.38
Albacore v1.1 6.12 3.57 4.68 89.19 14.37
Albacore-v2 5.05 3.58 4.05 90.90 12.68

M. tuberculosis BasecRAWller 7.17 10.85 10.42 82.41 28.44
Chiron 7.16 2.50 4.33 88.51 13.99
Chiron-BS 5.84 3.05 4.50 89.66 13.39
Metrichor 12.95 4.15 7.65 79.4 24.75
Albacore v1.1 8.62 6.51 7.52 83.86 22.65
Albacore-v2 8.71 6.03 6.05 85.24 20.79

Human BasecRAWller 8.41 10.28 10.10 81.49 28.79
Chiron 9.13 5.14 9.33 81.54 23.60
Chiron-BS 9.30 5.62 7.87 82.83 22.79

Table 2. Deletion/Insertion/Mismatch rate(%) are defined as the number of deleted/inserted/mismatched bases divided by the number of bases in the reference
genome (the lower the better),Identity rate(%) is defined as the number of matched bases divided by the number of bases in the reference genome for that
sample (the higher the better, Identity Rate = 1 - Deletion Rate - Mismatch Rate), Error rate(%) is defined as the sum of deletion,insertion and mismatch rate,
(the lower the better, Error Rate = Deletion Rate + Insertion Rate + Mismatch Rate). This statistic effectively summarises the basecalling accuracy of the
associated model.
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Table 3. Assembly identity rate and relative length benchmark, draft genome generated by Miniasm and is polished 10 rounds by Racon, assembly identity
rates are presented in the left 4 columns while relative lengths are presented in the right 4 columns.

Sample(coverage) Albacore Albacore 2 Chiron-BS Metrichor Albacore Albacore 2 Chiron-BS Metrichor

E. coli-S18(27X) 99.004 99.162 99.533 87.678 100.055 99.715 99.720 94.253
E. coli-S10(40X) 99.106 99.316 99.646 88.745 100.144 99.739 99.811 94.829
M. tuberculosis(130X) 99.541 99.628 99.554 84.736 100.126 100.029 99.900 90.875
Lambda Phage( 790X) 97.926 99.207 99.507 99.164 101.104 100.123 99.800 99.335

Table 4. Identity rate(%) is calculated by first shredding the assembly contigs into 10K reads pieces, and then get the mean of the identity rate of the aligned
reads, relative length(%) is defined as the sum of the length of all the aligned pieces divided by the length of reference genome. E. coli-S10 and E. coli-S18 are
reads from two independent sequencing.

Table 5. Base-calling rate (bp per second) .

Basecaller CPU rate (1 core) CPU rate (8 cores) GPU rate

Albacorev1.1.2 2975 23800 NA
BasecRAWller 81 648 NA
Chiron 21 168 1652
Chiron-BS 17 136 1204

Table 6. Single core CPU rate is calculated by dividing the number of nucleotides basecalled by the total CPU time for the basecalling analysis. 8 core CPU
rate is estimated by multiplying single core cpu rate by 8, based on observed 100% utility of CPU processors in multi-threaded mode on 8 cores. GPU rate
calculated on a Nvidia K80 GPU. The reported rate is the average across all samples analysed. GPU rate not reported for Albacore or BasecRAWller as they
have not been developed for use on GPU. Chiron is also capable of running on a GPU and its rate in this mode is included in parentheses. Albacore is not
capable of running in GPU mode. Albacore V2 was found to have similar performance as albacore v1.1.2.

Discussion
Segmenting the raw nanopore electrical signal into piece-wise constant regions corresponding to the presence of different
k-mers in the pore is an appealing but error-prone approach. Segmentation algorithms determine a boundary between two
segments based on a sharp change of signal values within a window. The window size is determined by the expected speed
of the translocation of the DNA fragment in the pore. We noticed that the speed of DNA translocation is variable during a
sequencing run, which coupled with the high level of signal-to-noise in the raw data, can result in low segmentation accuracy.
As a result, the segmentation algorithm often makes conservative estimates of the window size, resulting in segments smaller
than the actual signal group for k-mers. While dynamic programming can correct this by joining several segments together for
a k-mer, this effects the prediction model.

All existing nanopore base callers prior to Chiron employ a segmentation step. The first nanopore basecalling algorithms17, 18

employed a Hidden Markov Model, which maintains a table of event models for all possible k-mers. These event models were
learned from a large set training data. More recent methods (DeepNano13, nanonet) train a deep neural network for inferring
k-mers from segmented raw signal data.

A recent basecaller named BasecRAWller14 used an initial neural network (called a raw network) to output probabilities of
boundaries between segments. A segmentation algorithm is then applied to segment these probabilities into discrete events.
BasecRAWller then uses a second neural network (called the fine-tune network) to translate the segmented data into the base
sequence.

Our proposed model is a departure from the above approaches in that it performs base prediction directly from raw data
without segmentation. Moreover the core model is an end-to-end basecaller in the sense that it predicts the complete base
sequence from raw signal. This is made possible by combining a multi-layer convolutional neural network to extract the
local features of the signal, with a recurrent neural network to predict the probability of nucleotides in the current position.
Finally, the complete sequence is called by a simple greedy algorithm, based on a typical CTC-style decoder15, reading out the
nucleotide in each position with the highest probability. Thus, the model need not make any assumption of the speed of DNA
fragment translocation and can avoid the errors introduced during segmentation.

To improve the basecalling speed and to minimize its memory requirements, the neural network is run on a 300-signal
sliding window (equivalent to approximately 20bp), overlapping the sequences on these windows and generating a consensus
sequence. Chiron has the potential to stream these input raw signal ’slices’ into output sequence data, which will become
increasingly important aspect of basecalling very long reads (100kb+), particularly if used in conjunction with the read-until
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capabilities of the MinION.
Our model was either the best or second-best in terms of accuracy on all of the datasets we tested in terms of read-level

accuracy. This includes the human dataset, despite the fact that the model has not seen human DNA during training. Our model
has only been trained on a mixture of 2,000 bacterial and 2,000 viral reads. The most accurate basecaller is the proprietary
ONT Albacore basecaller. Chiron is within 1% accuracy on bacterial DNA, but only within 2% accuracy on human DNA. More
extensive training on a broader spectrum of species, including human can be expected to improve the performance of our model.
There are also improvements in accuracy to be gained from a better alignment of overlapping reads and consensus calling.
Increasing the size of the sliding window will also improve accuracy but at the cost of increased memory and running time.

Bacterial and viral genome assemblies generated from Chiron basecalled reads all had less than 0.5% error, whereas those
generated by Albacore had up to 0.8% accuracy Figure 3. This marked reduction in error rate is essential for generating accurate
SNP genotypes, a pre-requisite for many applications such as outbreak tracking. These results are consistent with those reported
in recent study into read and assembly level accuracy for K. pneumoniae19.

Our model is substantially more computationally expensive than Albacore and somewhat more computationally expensive
than BasecRAWller. This is to be expected given the extra depth in the neural network. Our model can be run in a GPU mode,
which makes computation feasible on small to medium sized datasets on a modern desktop computer. Our method can be
further sped up by increasing the step size of the sliding window, although this may impact accuracy. Also there are several
existing methods which can be used to accelerate NN-based basecallers such as Chiron. One such example is Quantization,
which reformats 32-bit float weights as 8-bit integers by binning the weight into a 256 linear set. As neural networks are robust
to noise this will likely have negligible impact of the performance. Weight Pruning is another method used to compress and
accelerate NN, which prunes the weights whose absolute value is under a certain threshold and then retrains the NN20.

Conclusion
We have presented a novel deep neural network approach for segmentation-free basecalling of raw nanopore signal. Our
approach is the first method that can map the raw signal data directly to base sequence without segmentation. We trained
our method on only 4000 reads sequenced from the simple genome lambda virus and E. coli, but the method is sufficiently
generalised to be able to base call data from other species including human. Our method has state-of-art accuracy - outperforming
the ONT cloud basecaller Metrichor as well as another 3rd-party basecaller, BasecRAWller.

Methods
Deep neural network architecture
Our model combines a 5-layer CNN21 with a 3-layer RNN and a fully connected network (FNN) in the last layer that calculates
the probability for a CTC decoder to get the final output. This structure is similar to that used in speech recognition22. Both the
CNN and RNN layers are found to be essential to the base calling as removing either will cause a dramatic drop in prediction
accuracy, which is described more in the Training section.

Preliminaries Let a raw signal input with T time-points s = [s1,s2, ...,sT ] and the corresponding DNA sequence label (with
K bases) y = [y1,y2, ...,yK ] with yi ∈ {A,G,C,T} be sampled from a training dataset χ = {(s(1),y(1)),(s(2),y(2)), ...}. Our
network directly translates the input signal time series s to the sequence y without any segmentation steps.

The input signal is normalized by subtracting the mean of the whole read and dividing by the standard deviation. s’ =
(s− s)/std(s).

Then the normalised signal is fed into a residual block23 combined with global batch normalisation24 in the 5 convolution
layers to extract the local pattern from the signal. The stride is set as 1 to ensure the output of the CNN has the same length of
the input raw signal. The residual block is illustrated in Figure 1, a convolution operation with a l×m filter, n×p stride and s
output channels on a k channels input is defined as:

Out put(i, j,s) = ∑
di<l,d j<m,q<k

Input(i ·n+di, j · p+d j,q) ·Filter(di,d j,q,s)

.
An activation operation is performed after the convolution operation. Various kinds of activation functions can be chosen,

however, in this model a Rectified Linear Unit (ReLU) function is used as the activation operation which has been reported to
have a good performance in CNN, defined as :

ReLU(x) = max(x,0)

Following the convolution layers are multiple bi-directional RNN layers25, a LSTM cell26 is used as the RNN cell, with a
separate batch normalisation on the inside cell state and input term27.
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A typical batch normalisation procedure24 is

BN(x;γ,β ) = β + γ� x− Ê[x]√
ˆVar[x]+ ε

, (1)

where x be a inactivation term.
Let hl

t be the output of lth RNN layer at time t, the batch normalisation for a LSTM cell is

(ft , it ,ot ,gt) = BN(Whhl
t−1;γh,βh)+BN(Wxhl−1

t ;γx,βx)+b (2)

ct = σ(ft)� ct−1 +σ(it)� tanh(gt) (3)

ht = σ(ot)� tanh(BN(ct ;γc,βc)) (4)

The batch normalisation is calculated separately in the recurrent term Whhl
t−1 as well as the input term Wxhl−1

t . The
parameters βh and βx are set to zero to avoid the redundancy with b. The last forward layer~hL

i f and the backward layer~hL
ib are

concatenated together as an input to a fully connected layer

Hi = [hL
iw,h

L
ib]. (5)

The final output is transferred through a fully connected network followed by a softmax operation

p(oi = j) =
expW jHi

∑ j expW jHi
(6)

The output oi, i = 1,2, ...,T predict the symbol given the input vector x, P(oi = j|x). If the read is a DNA sequence then
j ∈ {A,G,C,T,b}, where b represents a blank symbol( Figure 1). During training, the CTC loss is calculated between the
output sequence o and label y15 and back-propogation is used update the parameters. An Adam optimizer28 with an initial
learning rate of 0.001 is used to minimize the CTC loss.

During inference, the final sequence constructed using either a greedy decoder15, or a beam-search decoder29. The greedy
decoder works by first getting the argument of maximum probability in each position of o, and then producing the sequence call
by first removing the consecutive repeat, and then removing the blank symbols. For example, the greedy path of an output o
is A A - - - A - - G - , here - represent the blank symbol, the consecutive repeat is removed first and lead to A - A - G -, and
the blank is removed to get the final sequence AAG. The beam search decoder with beam width W, maintains a list of the W
most probable sequences (after collapsing repeats and removing blanks) up to position i of o. To obtain this list at position
i+1, it constructs the probability of all possible extensions of the W most probable at position i based on adding each symbol
according to p(oi = j), and collapsing and summing up over repeated bases, or repeated blanks which are terminated by a
non-blank. The greedy decoder is a special case of the beam-search decoder when the beam width is 1. It should be noted that
the model can still call homopolymer repeats provided each repeated base is separated by a blank, which is typically the case.

Convolutional network to extract local patterns: 256 channel filters are used for all five convolutional layers. In each layer,
there is a residual block23 (Figure 1) composing with two branches. A 1x1 filter is used for reshaping in the first branch. In the
second branch, a 1x1 convolution filter is followed by a rectified linear unit (RELU)30 activation function and a 1x3 filter with a
RELU activation function as well as a 1x1 filter. All filters have the same channel number of 256. An element-wise addition is
performed on the two branches followed by a RELU activation function. A global batch normalisation operation is added after
every convolution operation. A large kernel size (5,7,11) and different channel numbers (128,1024) is also tested, and the above
combination is found to yielded the best performance.

Recurrent layers for unsegmented labelling: The local pattern extracted from the CNN described above is then fed to a
3-layer RNN (Figure 1). Under the current ONT sequencing settings, the DNA fragments translocate through the pore with a
speed of roughly 250 or 450 bases per second, depending on the sequencing chemistry used, while the sampling rate is 4000
samples per second. Because the sampling rate is higher than the translocation rate, each nucleotide usually stays in the current
position for about 5 to 15 samplings, on average. Furthermore, as a number of nearby nucleotides also influence the current,
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Table 7. Details about the number of reads and their median read length for data that was used in evaluation of the various basecallers.

Sample No. reads Median read length (bp)

Phage Lambda 34,383 5720
E. coli 15,012 5,836
M. tuberculosis 147,594 3,423
Human 10,000 6,154

40 to 100 samples (based on a 4- or 5-mer assumption) could contain information about a particular nucleotide. A 3-layer
bidirectional RNN is used for extracting this long range information. LSTM (Long Short Term Memory) cells31, 32 with 200
hidden units are used in every layer and a fully connected neural network (FNN) is used to translate the output from the last
RNN layer into a prediction. The output of the FNN is then fed into a CTC decoder to obtain the predicted nucleotide sequence
for the given raw signals.

Improving basecalling performance: To achieve a better accuracy and less memory allocation, a sliding window is applied
(default of 300 raw signals), with a pre-set sliding step size (default of 10% of window size), to the long raw signal. This gives
a group of short reads with uniform length (window length) that overlap the original long read. Then basecalling is run in
parallel on these short reads, and reassemble the whole DNA sequence by finding the maximum overlap between two adjacent
short reads, and read out the consensus sequence. Note here the reassembly is very easy because the order of the short reads is
known. This procedure improves the accuracy of the basecalling and also enables parallel processing on one read.

Data preparation
Sequencing: The library preparations of the E. coli and M. tuberculosis samples were done using the 1D gDNA selecting for
long reads using SQK-LSK108 (March 2017 version) protocol with the following modifications. Increase the incubation time to
20 minutes in each end-repair and ligation step; use 0.7x AgencourtR AMPureR XP beads (Beckman Coulter) immediately
after the end-repair step and incubation of the eluted beads for 10 minutes; and use elution buffer (ELB) warmed up at 50oC
with the incubation of the eluted bead at the same temperature. For the Lambda sample, the 1D Lambda Control Experiment
for MinIONT M device using SQK-LSK108 (January 2017 version) protocol was followed with some changes: sheared the
sample at 4000rpm (2x1 minutes); 30 minutes of incubation in each end-repair step and 20 minutes for adaptor ligation and
elution of the library with 17µL of ELB. All samples were sequenced on new FLO-MIN106, version R9.4, flow cells with
over 1100 active single pores and the phage was sequenced in a MinION Mk1 (232ng in 6h run) while the bacteria samples
were sequenced in a MinION Mk1B (1µg E. coli and 595ng M. tuberculosis in 22h and 44h runs, respectively). The E. coli
sample was run on the MinKNOW version 1.4.3 and the other samples in earlier versions of the software. The E. coli sample
was also sequenced on Illumina MiSeq using paired-end 300x2 to 100-fold coverage. An assembly of the E. coli genome was
constructed by running Spades33 on the MiSeq sequencing data of the sample. The genome sequence of the Phage Lambda is
NCBI Reference Sequence: NC 001416.1.

Labelling of raw signal: Metrichor, the basecaller provided by ONT which runs as a cloud service, is used to basecall the
MinION sequencing data first. Then Nanoraw34 is used for labelling the data. Briefly, the basecalled sequence data is aligned
back to the genome of the sample, and from the alignment the errors introduced by Metrichor are corrected to avoid the bias
from Metrichor being learned into Chiron, and the corrected data is mapped back to the raw data. The resulting labelling
consists of the raw signal data, as well as the boundaries of raw signals when the DNA fragment translocates to a new base.
We use the base-level segmentation of the raw data to obtain matched pairs of signal segment (of lengths 200, 400 and 1000)
together with the corresponding DNA base sequence. From this point onwards, the exact matching of the signal to each base
within a segment is disregarded.

Training dataset A data set using 2,000 reads from E. coli and 2,000 reads from Phage Lambda is created for training Chiron.
In every start of the training epoch, the dataset is shuffled first and then fed into the model by batch. Training on this mixture
dataset gave the model better performance both on generality and accuracy on not only the E. coli and Phage Lambda but also
on M. tuberculosis and Human data.

Training
The labelling from Metrichor described previously in Equation 1 is used to train Chiron, although the neural network architecture
is translation invariant and not restricted by the sequence length, a uniform length of sequences is suited for batch feeding, thus
can accelerate the training process. From this view, the original reads were cut into short segments with a uniform length of 200,
400 and 1000, and trained on these batches in alternation. Several different architectures of the neural network were tested, (see
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Table 8. Comparison of normalised edit distance with different neural network architectures. The normalised edit distance is the edit distance between
predicted reads and labelled reads and normalised by segments length.

Architecture normalised edit distance

3 Convolutional Layers 0.4007 ± 0.0277
5 Convolutional Layers 0.3903 ± 0.0230
10 Convolutional Layers 0.3874 ± 0.0186
3 Bidirectional Recurrent Layers 0.2987 ± 0.0221
5 Bidirectional Recurrent Layers 0.2930 ± 0.0215
3 Convolutional Layers + 3 Bidirectional Recurrent Layers 0.2011 ± 0.0252
5 Convolutional Layers + 5 Bidirectional Recurrent Layers 0.2001 ± 0.0177

Figure 3. A) Assembly Error Rate(%) for each polishing round using Racon. Two individually sequenced E. coli samples are included(S10, S18). All
basecallers have a similar performance on the M. tuberculosis dataset due to its high sequencing depth(130X). B) Relative assembly Length(%) after each
round of polishing. Relative length is defined as the length of the assembly divided by the length of reference genome.

Table 8) with the CNN-RNN network architecture having the best accuracy compared to a CNN- or RNN-only network. Also
using more layers seems to increase the performance of the model, however, the time consumed for training and basecalling is
also increased. In the final structure, a NN with 5 convolution layers and 3 recurrent layers is adopted, as adding layers above
this structure gave negligible performance improvement but required more calculation and also increased the risk of overfitting.

Parameters for basecalling
All basecallers were invoked on the same set of reads for each sample. When using Chiron to basecall, the raw signal was
firstly sliced by a 300 length window, the window is slided by 30, and then these sliced segments are fed into the basecaller
with a batch size equal to 1100, and then the output short reads are simply assembled by a pair-wise alignment between
neighbouring reads, and the consensus sequence is output from this alignment. All basecalling with Albacore (version 1.1.1 and
version 2.0.1) and BasecRAWller14 (version 0.1) was done with default parameters. For the configuration setting in Albacore,
r94 450bps linear.cfg was used for all samples, as this matches the flowcell and kit used for each sample. The data is
basecalled on Metrichor on Jun 3rd 2017(Lambda), May 18th 2017(E. coli), Jun 4th 2017(M. tuberculosis), and June 20th
2017(NA12878-Human).

Quality score
The quality score is calculated by the following algorithm: qs = 10∗ log10(

P1
P2 ) where P1 is the probability of most probable

base in current position, and P2 is the probability of the second probable base in current position.
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Comparison of raw read accuracy
To assess the performance of each program, the resulting FASTA/FASTQ file from basecalling was aligned to the reference
genome using graphmap35 with the default parameters. The resulting BAM file is then assessed by the japsa error
analysis tool (jsa.hts.errorAnalysis) which looks at the deletion, insertion, and mismatch rates, the number of
unaligned and aligned reads, and the identification rate compared to the reference genome. The identity rate is calculated as

number of matched bases
number of bases in reference and is the marker used here for basecalling accuracy.

Assembly Identity Rate Comparison
We assessed the quality of assemblies generated from reads produced by different base-callers. For each base-caller, a de-novo
assembly is generated by the use of only Nanopore reads for the M. tuberculosis E. coli and Lambda Phage genomes. We use
Minimap236 and Miniasm37 to generate a draft genome, then Racon38 is used to polish on the draft genome for 10 rounds.

Data availability
The M. tuberculosis sequencing data have been deposited Genbank under project number PRJNA386696. The Human nanopore
data were downloaded from https://github.com/nanopore-wgs-consortium/NA12878. The E. coli data are
in the process of being deposited to Genbank.

Program and code are available at https://github.com/haotianteng/chiron pypi package index 0.3 at
https://pypi.python.org/pypi/chiron. Chiron is registered in SciCrunch with RRID:SCR 015950.
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38. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads.
Genome research 27, 737–746 (2017).

12/12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/179531doi: bioRxiv preprint 

http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://online.liebertpub.com/doi/abs/10.1089/cmb.2012.0021
http://online.liebertpub.com/doi/abs/10.1089/cmb.2012.0021
http://dx.doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1101/179531
http://creativecommons.org/licenses/by/4.0/

	Introduction
	References

