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Abstract 24 
Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and 25 
environmental factors. Phenotypic analysis of growth features over time is a key approach to understand 26 
how plants interact with environmental change as well as respond to different treatments. Although the 27 
importance of measuring dynamic growth traits is widely recognised, available open software tools are 28 
limited in terms of batch processing of image datasets, multiple trait analysis, software usability and 29 
cross-referencing results between experiments, making automated phenotypic analysis problematic.  30 
 31 
Results: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application 32 
that can be executed on different platforms. To facilitate diverse scientific user communities, we provide 33 
three versions of the software, including a graphic user interface (GUI) for personal computer (PC) 34 
users, a command-line interface for high-performance computer (HPC) users, and an interactive Jupyter 35 
Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. 36 
The software is capable of extracting multiple growth traits automatically from large image datasets. 37 
We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the 38 
Norwich Research Park (NRP, UK). By quantifying growth phenotypes over time, we are able to 39 
identify diverse plant growth patterns based on a variety of key growth-related phenotypes under varied 40 
experimental conditions.  41 
 42 
As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices and still 43 
produced reliable biologically relevant outputs, we believe that our automated analysis workflow and 44 
customised computer vision based feature extraction algorithms can facilitate a broader plant research 45 
community for their growth and development studies. Furthermore, because we implemented Leaf-GP 46 
based on open Python-based computer vision, image analysis and machine learning libraries, our 47 
software can not only contribute to biological research, but also exhibit how to utilise existing open 48 
numeric and scientific libraries (including Scikit-image, OpenCV, SciPy and Scikit-learn) to build 49 
sound plant phenomics analytic solutions, efficiently and effectively. 50 
 51 
Conclusions: Leaf-GP is a comprehensive software application that provides three approaches to 52 
quantify multiple growth phenotypes from large image series. We demonstrate its usefulness and high 53 
accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis 54 
genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over 55 
time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and 56 
high-performance computing clusters (HPC), with open Python-based scientific libraries preinstalled. 57 
We share our modulated source code and executables (.exe for Windows; .app for Mac) together with 58 
this paper to serve the plant research community. The software, source code and experimental results 59 
are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.  60 
 61 
Keywords: Growth phenotypes, automated trait analysis, feature extraction, computer vision, software 62 
engineering, Arabidopsis, wheat  63 
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Background 65 
Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental 66 
factors [1–3]. Phenotypic features such as relative growth rates (RGR), vegetative greenness and other 67 
morphological characters are popularly utilised by researchers in order to quantify how plants interact 68 
with environmental changes (i.e. GxE) [4–6]. In particular, to assess the growth and development in 69 
response to various experimental treatments, growth phenotypes (e.g. leaf area, canopy size and leaf 70 
numbers) are considered as key measurements [7–12], indicating the importance of dynamically scoring 71 
differences of growth related traits between experiments. To accomplish the above tasks, high quality 72 
image-based growth data need to be collected from many biological replicates over time [13,14], which 73 
is then followed by manual, semi-automated, or automated trait analysis [15,16]. However, the current 74 
bottleneck lies in how to extract meaningful results from our increasing phenotypic data, effectively 75 
and efficiently [14,17].  76 
 77 
   To facilitate the quantification of dynamic growth traits, a range of imaging hardware and software 78 
have been developed. We summarise some representative tools as follows:  79 
 80 

 LeafAnalyser [18] uses image-processing techniques to measure leaf shape variation as well as 81 
record the position of each leaf automatically.  82 

 GROWSCREEN [12] quantifies dynamic seedling growth under altered light conditions. 83 
 GROWSCREEN FLUORO [19] measures leaf growth and chlorophyll fluorescence to detect 84 

stress tolerance. 85 
 LemnaGrid [20] integrates image analysis and rosette area modelling to assess genotype effects 86 

for Arabidopsis.  87 
 Leaf Image Analysis Interface (LIMANI) [21] segments and computes venation patterns of 88 

Arabidopsis leaves.  89 
 Rosette Tracker [22] provides an open Java-based image analysis solution to evaluate plant-90 

shoot phenotypes to facilitate the understanding of Arabidopsis genotype effects. 91 
 PhenoPhyte [23] semi-automates the quantification of various 2D leaf traits through a web-92 

based software application.  93 
 OSCILLATOR [24] analyses rhythmic leaf growth movement using infrared photography 94 

combined with wavelet transformation in mature plants. 95 
 HPGA (a high-throughput phenotyping platform for plant growth modelling and functional 96 

analysis) [5], which produces plant area estimation and growth modelling and analysis to high-97 
throughput plant growth analysis. 98 

 LeafJ [25] provides an ImageJ plugin to semi-automate leaf shape measurement. 99 
 Integrated Analysis Platform (IAP) [16] is an open framework that performs high-throughput 100 

plant phenotyping based on the LemnaTec system.  101 
 Easy Leaf Area [26] uses colour-based feature to differentiate and measure leaves from their 102 

background using a red calibration area to replace scale measurement.  103 
 Phytotyping4D [27] employs a light-field camera to simultaneously provide a focus and a depth 104 

image so that distance information from leaf surface can be quantified. 105 
 Leaf Angle Distribution Toolbox [28] is a Matlab-based software package for quantifying leaf 106 

surface properties via 3D reconstruction from stereo images.  107 
 MorphoLeaf [29] is a plug-in for the Free-D software to perform analysis of morphological 108 

features of leaves with different architectures. 109 
 rosettR [30] is a high-throughput phenotyping protocol for measuring total rosette area of 110 

seedlings grown in plates.  111 
 A real-time machine learning based classification phenotyping framework [31] can extract leaf 112 

canopy to rate soybean stress severity.   113 
 114 
   While many hardware and software solutions have been created, the threshold for employing the 115 
existing tools for measuring growth phenotypes is still relatively high. This is due to many analytic 116 
software solutions that are either customised for specific hardware platforms (e.g. LemnaTec), or relied 117 
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on proprietary or specialised software platforms (e.g. Matlab), restricting the accessibility for smaller 118 
or not well-funded laboratories to utilise the existing solutions [22]. Hence, data annotation, phenotypic 119 
analysis, and results cross-referencing are still frequently done manually in many laboratories, which is 120 
time consuming and prone to errors [21].  121 
 122 
   Available open software tools are also limited in terms of batch processing, multiple trait analysis, 123 
and software usability, making automatic phenotypic analysis problematic [30]. In order to provide an 124 
open analytics software solution to serve a broader plant research community, we developed Leaf-GP 125 
(Growth Phenotypes), an open-source and easy-to-use software solution that can be easily setup for 126 
automated analysis using the community driven Python-based scientific and numeric libraries. After 127 
continuous development and testing, Leaf-GP can now extract and compare key growth phenotypes 128 
reliably from large image series. Some of the growth-related traits are projected leaf area (mm2), leaf 129 
perimeter (mm), canopy length and width (mm), leaf canopy area (mm2), stockiness (%), compactness 130 
(%), leaf numbers and greenness (0-255). We demonstrate its high accuracy and usefulness through 131 
experiments using Arabidopsis thaliana and Paragon wheat (a UK spring wheat variety). The software 132 
can be executed on most of the mainstream operating systems with Python and Anaconda distribution 133 
preinstalled. More importantly, we followed the open software design strategy, which means our work 134 
is expandable and new functions or procedures for other plant species can be easily added.  135 
 136 

Methods 137 

Applying Leaf-GP to plant growth studies 138 
Figure 1 illustrates how Leaf-GP was applied to quantify growth phenotypes for Arabidopsis rosettes 139 
and Paragon wheat over time. To improve the software flexibility, Leaf-GP was designed to accept 140 
both RGB (a red, green and blue colour model) and infrared (sensitive to short-wavelength infrared 141 
radiation at around 880nm) images acquired by a range of devices, including a fixed imaging platform 142 
using a Nikon D90 digital camera (Fig. 1a), smartphones (e.g. an iPhone, Fig. 1b), or a mobile version 143 
CropQuant [32] equipped with either a Pi NoIR (no infrared filter) sensor or an RGB sensor (Fig. 1c). 144 
When taking pictures, users need to ensure that the camera covers the regions of interest (ROI), i.e. a 145 
whole tray (Fig. 1d) or a pot region (Fig. 1e). Red circular stickers (4mm in radius in our case) shall be 146 
applied to the four corners of a tray or a pot (Fig. 1b). In doing so, Leaf-GP can extract ROI from a 147 
given raw image and then convert measurements from pixels to metric units (i.e. millimetre, mm). Both 148 
raw and processed image data can be loaded and saved by Leaf-GP on personal computers (PCs), HPC, 149 
or cloud-based computing storage (Figs. 1f&g).  150 
 151 
   As different research groups may have access to dissimilar computing infrastructures, we developed 152 
three versions of Leaf-GP to enhance the accessibility of the software: (1) for users utilising HPC 153 
clusters, a Python-based script was developed to perform high-throughput trait analysis through a 154 
command-line interface (Fig. 1h), which requires relevant scientific and numeric libraries such as SciPy 155 
[33], computer vision (i.e. the Scikit-image library [34] and the OpenCV library [35]), and machine 156 
learning libraries (i.e. the Scikit-learn library [36]) pre-installed on the clusters; (2) for users working 157 
on desktop PCs, a GUI-based (graphic user interface) software application was developed to incorporate 158 
batch image processing, multiple trait analysis, and results visualisation in a user-friendly window (Fig. 159 
1i); and, (3) for computational biologists and computer scientists who are willing to exploit our source 160 
code, we created an interactive Jupyter Notebook (Fig. 1j, also known as the iPython Notebook, see 161 
Additional File 1) to explain our multilevel trait analysis workflow and how to modulate code to 162 
improve algorithm readability. In particular, we have enable the Notebook version to process large 163 
image series via a Jupyter server, which means users can carry out batch image processing directly 164 
using the Notebook version. Due to software distribution licensing issues, we recommend users to 165 
install the Anaconda Python distribution (Python 2.7 version) and OpenCV (v2.4.11) libraries before 166 
using Leaf-GP. Application File 2 explains the step-by-step procedure of how to install Python and 167 
necessary libraries for our software.  168 
 169 
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   After trait analysis, two types of output results are generated. First, processed images (Fig. 1k), which 170 
includes pre-processing results, calibrated images, colour clustering, and figures exhibiting key growth 171 
traits such as leaf outlines, leaf skeletons, detected leaves, and leaf canopy (Additional File 3). Second, 172 
a CSV file (comma-separated values, Fig. 1l), containing image name, experimental data, pot ID, pixel-173 
to-mm ratio, and biologically relevant outputs including projected leaf area (mm2), leaf perimeter, 174 
canopy length and width (in mm), stockiness (%), leaf canopy size (mm2), leaf compactness (%), the 175 
number of leaves, and vegetative greenness (Additional File 4).  176 
  177 

The GUI of Leaf-GP 178 
As plant researchers commonly use PCs for their analyses, we develop the Leaf-GP GUI version based 179 
on Python’s native GUI package, Tkinter [37]. The version can operate on different platforms (e.g. 180 
Windows and Mac OS) and the default resolution of the main window is set to 1024x768 pixels, so that 181 
it can be compatible with earlier operating systems (OS) such as Windows 7. Figure 2 illustrates how 182 
to utilise the GUI window to process multiple growth image series (five series were imported with four 183 
processed). A high-level analysis workflow of Leaf-GP is presented in Figure 2a, containing five steps: 184 
(1) data selection, (2) image pre-processing, (3) global ROI segmentation (i.e. at image level), (4) local 185 
trait analysis (i.e. at the pot level), and (5) results output. To explain functions and procedures developed 186 
for the workflow, we also prepared a detailed UML (unified modelling language) activity diagram [38] 187 
that elucidates stepwise actions, which includes software engineering activities such as choice, iteration, 188 
and concurrency to enable the batch processing of large image datasets (Additional File 5).  189 
 190 
   Figure 2b shows five self-explanatory sections designed to integrate the above analysis steps into the 191 
GUI version of the software, including: Data Input, Colour Clustering Setting, Series Processing, 192 
Processing Log (a hidden section), and Results Section. To analyse one or multiple image series, users 193 
just need to follow these sections sequentially. Also, a number of information icons (coloured blue) 194 
have been included to explain how to enter input parameters. Figure 2b demonstrates a screenshot of 195 
Leaf-GP after it has finished processing four image series.  196 
 197 

Section 1 – Data Input 198 
To simplify the data input phase, we only require users to enter essential information regarding their 199 
images and associated experiments. To complete the section (Fig. 2c), the user first needs to choose a 200 
directory (“Image Dir.”) which contains captured image series. Then, the user shall enter parameters in 201 
the “Row No.” and “Column No.” input boxes to define the layout of the tray used in the experiment 202 
as well as “Ref. Radius (mm)” to specify the radius of the red stickers. Finally, the user needs to select 203 
from “Plant Species” and “Read Exp. Data” dropdowns. All inputs will be verified upon entry to ensure 204 
only valid parameters can be submitted to the core algorithm.  205 
 206 
   In particular, the “Read Exp. Data” dropdown determines how Leaf-GP reads experiment metadata 207 
such as imaging date, treatments and genotypes. For example, choosing the “From Image Name” option 208 
allows the software to read information from the filename, selecting the “From Folder Name” option 209 
will extract metadata from the directory name, whereas the “No Metadata Available” selection will 210 
group all images as an arbitrary series for trait analysis. This option allows users to analyse images that 211 
are not following any data annotation protocols. Although not compulsory, we developed a simple 212 
naming convention protocol (Additional File 6) to assist users to annotate image names or folder names 213 
tailored for Leaf-GP.  214 
 215 

Section 2 – Colour Clustering Setting 216 
Once the data input phase is completed, the user can click the ‘Load’ button to initiate series sorting, 217 
which will populate the Colour Clustering Setting section automatically (Fig. 2d). A sample image from 218 
the midpoint of a given series will be chosen by the software, i.e. the image represents the colour groups 219 
in the middle of the plant growth. The image is then downsized and processed by a simple k-means 220 
method [36], producing a clustering plot and a k value that populates in the “Pixel Groups” input box. 221 
The user can override the k value in the “Pixel Groups” input box; however, to reduce the computational 222 
complexity, Leaf-GP only accepts a maximum value of 10 (i.e. 10 representative colour groups) and a 223 
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minimum value of 3 (i.e. three colour groups) when conducting trait analysis. The generated k value 224 
(between 3 and 10) will be passed to the core analysis algorithm when the batch processing starts.    225 
 226 

Sections 3&4 – Series Processing  227 
In the Series Processing section (Fig. 2e), the software fills the processing table with information that 228 
can help users identify different experiments, including experiment reference (“Exp. Ref.”), the tray 229 
number (“Tray No.”), and the number of images in a series (“No. Images”). To improve the appearance 230 
of the table, each column is resizable. Checkboxes are prepended to each recognised series. Users can 231 
toggle one or multiple checkboxes to specify how many experiments will be processed. If the ‘No 232 
Metadata Available’ option is selected (see the Data Input section), information such as “Exp. Ref.” 233 
and “Tray No.” will not be populated.  234 
 235 
   The initial status of each processing task (“Status”) is Not Processed, which will be updated constantly 236 
during the image analysis. When more than one experiment is selected, Python’s thread pool executor 237 
function will be applied, so that these experiments can be analysed simultaneously in multiple cores in 238 
the central processing unit (CPU). We have limited up to three analysis threads (see the right of Fig. 239 
2e), because many Intel processors comprise four physical cores and conducting parallel computing can 240 
have a high demand of computing resources (e.g. storage, CPU and memory), particularly during the 241 
batch processing when raw image datasets are big.   242 
 243 
   Once the processing table is filled, the user can click the ‘Run Analysis’ button to commence the 244 
analysis. Figure 2b shows the screenshot when five experiments (i.e. five image series) are recognised 245 
and four of them are analysed. Due to the multi-task design of Leaf-GP, we only allowed three series 246 
running in parallel. Throughout the analysis, the ‘Status’ column will be continually updated, indicating 247 
how many images have been processed. It is important to note that, although Leaf-GP was designed for 248 
parallel computing, some functions used in the core algorithm are not thread-safe, indicating they can 249 
only be executed by one thread at a time. Because of this limit, we have utilised lock synchronisation 250 
mechanisms to protect code blocks (i.e. procedures or functions), so that these thread-unsafe blocks can 251 
only be executed by one thread at a time. In addition to the processing status, more analysis information 252 
can be viewed by opening the Processing Log section (to the right of Fig. 2e), which can be displayed 253 
or hidden by clicking the ‘Show/Hide Processing Log’ button on the main window.  254 
 255 

Section 5 – Results 256 
When all processing tasks are completed, summary information will be appended to the Results section, 257 
including processing ID and a link to the result folder which contains the CSV file and all processed 258 
images (“Result Dir.”). Depending on which species (i.e. Arabidopsis rosette or wheat) is selected, trait 259 
plots will be generated to show key growth phenotypes (e.g. the projected leaf area, leaf perimeter, leaf 260 
canopy size, leaf compactness, and leaf numbers) by clicking on the associated cell in the Results table 261 
(Fig. 2f). The range of phenotype measurements is also listed in the Results section. The GUI version 262 
also saves processing statistics, for example, how many images have been successfully analysed and 263 
how many images have been declined, together with related error or warning messages in a log file for 264 
debugging purposes. 265 
 266 

Core trait analysis algorithms 267 
Multiple trait analysis of Arabidopsis rosettes and wheat plants is the core part of Leaf-GP. Not only 268 
does it utilise advance computer vision algorithms for automated analysis, it also encapsulates feature 269 
extraction and phenotypic analysis methods that are biologically relevant to growth phenotypes. In the 270 
following sections, we explain the core analysis algorithm in detail.  271 
 272 

Step 2 – Pre-processing and calibration  273 
Different imaging devices, camera positions and even lighting conditions can cause quality variance 274 
during image acquisition. Hence, it is important to calibrate images before conducting automated trait 275 
analysis. We developed a pre-processing and calibration procedure as shown in Figure 3. We first 276 
resized each image (Fig. 3a) to a fixed resolution so that the height (i.e. y-axis) of all images in a given 277 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2017. ; https://doi.org/10.1101/180083doi: bioRxiv preprint 

https://doi.org/10.1101/180083


Computer Vision 

 7 

series could be fixed. A rescale function in Scikit-image was used to dynamically transform the 278 
image height to 1024 pixels (Fig. 3b). After that, we created a RefPoints function (Function_2 in 279 
Additional File 1) to detect red circular markers attached to the corners of a tray or a pot region. To 280 
extract these markers robustly under different illumination conditions, we designed 𝑔(𝑥, 𝑦), a multi-281 
thresholding function to segment red objects derived from a single-colour extraction approach [39]. The 282 
function defines which pixels shall be retained (intensity is set to 1) and which pixels shall be discarded 283 
(intensity is set to 0) after the thresholding:  284 
 285 

   𝑔(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑓𝑅(𝑥, 𝑦) > 125 𝑎𝑛𝑑 𝑓𝐵(𝑥, 𝑦) < 225 𝑎𝑛𝑑 (𝑓𝑅(𝑥, 𝑦) − 𝑓𝐺(𝑥, 𝑦)) > 50

 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 286 

 287 
where 𝑓𝑅(𝑥, 𝑦) is the red channel of a colour image, 𝑓𝐵(𝑥, 𝑦) represents the blue channel and  𝑓𝐺(𝑥, 𝑦) 288 
the green channel. The result of the function is saved in a reference binary mask. 289 
 290 
   We then used the regionprops function in Scikit-image to measure morphological features of the 291 
reference-point mask to filter out false positive items. For example, if an object’s area, eccentricity or 292 
solidity readings do not fit into the characteristics of a circle, this object will be discarded. After this 293 
step, only genuine circular objects are retained (Fig. 3c) and the average radius (in pixels) of these 294 
circular objects is converted to mm units (the radius of the red markers is 4mm). To extract the tray 295 
region consistently, we developed a tailored algorithm called PerspectiveTrans_2D (Function_5 296 
in Additional File 1), using getPerspectiveTransform and warpPerspective functions in 297 
OpenCV to retain the region that is enclosed by the red markers (Fig. 3d). Finally, we employed a non-298 
local means denoising function called fastNlMeansDenoisingColored in OpenCV to smooth 299 
leaf surface for the following global leaf ROI segmentation (Fig. 3e).  300 
 301 

Step 3 – Global leaf ROI segmentation  302 
Besides imaging related issues, changeable experimental settings could also cause issues for automated 303 
trait analysis. Figures 4a-d illustrate a number of problems we have encountered whilst developing 304 
Leaf-GP. For example, the colour and texture of the soil surface can change considerably between 305 
different experiments, especially when gritty compost and other soil types are used (Figs. 4a&b); 306 
sometimes plants are not positioned in the centre of a pot (Fig. 4b), indicating leaves that cross over to 307 
adjacent pots should be segmented; algae growing on the soil has caused false detection due to their 308 
bright green colour (Figs. 4c&d); finally, destructive harvest for weighing biomass could occur from 309 
time to time throughout an experiment, indicating the core analysis algorithm needs to handle random 310 
pot disruption robustly (Fig. 4d). To address the above technical challenges, we developed a number of 311 
computer vision and simple machine-learning algorithms based on open scientific libraries. Results of 312 
our software solutions integrated in Leaf-GP can be seen to the right of Figures 4a-d.  313 
 314 
   The first approach we developed is to establish a consistent approach to extract pixels containing high 315 
values of greenness (i.e. leaf regions) from an RGB image robustly. Using a calibrated image, we 316 
computed vegetative greenness 𝐺𝑉(𝑥, 𝑦) [13] based on excessive greenness 𝐸𝑥𝐺(𝑥, 𝑦) and excessive 317 
red 𝐸𝑥𝑅(𝑥, 𝑦) indices. The pseudo vegetative greenness image (𝐺𝑉, Figure 4e) is produced by equation 318 
2, based on which we implemented a compute_greenness_img function (Function_8 in 319 
Additional File 1) to transfer an RGB image into a 𝐺𝑉  picture. Excessive greenness is defined by 320 
equation 3 and excessive red is defined by equation 4:  321 
 322 
   𝐺𝑉(𝑥, 𝑦) = 𝐸𝑥𝐺(𝑥, 𝑦) −  𝐸𝑥𝑅(𝑥, 𝑦)        (2) 323 
   𝐸𝑥𝐺(𝑥, 𝑦) = 2 ∗ 𝑓𝐺(𝑥, 𝑦) − 𝑓𝑅(𝑥, 𝑦) − 𝑓𝐵(𝑥, 𝑦)       (3) 324 
   𝐸𝑥𝑅(𝑥, 𝑦) = 1.4 ∗ 𝑓𝑅(𝑥, 𝑦) − 𝑓𝐵(𝑥, 𝑦)         (4) 325 
 326 
where 𝑓𝑅(𝑥, 𝑦) is the red channel of a colour image, 𝑓𝐵(𝑥, 𝑦) represents the blue channel, and  𝑓𝐺(𝑥, 𝑦) 327 
the green channel.  328 
 329 
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   After that, we applied a simple unsupervised machine learning algorithm called KMeans (default k = 330 
8 was used, assuming 8 representative colour groups in a given image) and KMeans.fit in Scikit-331 
learn to estimate how many colour groups can be classified (Fig. 4f, Function_8.1 in Additional File 1). 332 
We chose a median threshold (red dotted line) to segment the colour clustering result and obtained the 333 
k value to represent the number of colour groups (Fig. 4g). Also, this process has been integrated into 334 
the GUI version (i.e. the Colour Clustering Setting section). Utilising the k value (e.g. k = 4, Fig. 4g), 335 
we designed a kmeans_cluster function (Function_9 in Additional File 1) to classify the pseudo 336 
vegetative greenness picture, highlighting greenness values in red pixels (Fig. 4h). A global adaptive 337 
Otsu thresholding [40] was used to generate an image level leaf ROI binary mask (Fig. 4i). However, 338 
the simple machine learning approach could produce miss-detected objects due to complicated colour 339 
presentations during the plant growth period (e.g. Figs. 4a-d). For example, the k-means approach 340 
performed well when the size of the plants is between 25-75% of the size of a pot, but created many 341 
false detections when leaves are tiny or the background is complicated. Hence, we designed another 342 
approach to improve the detection based on the k-means approach. 343 
 344 
   We employed Lab colour space [41], which incorporates lightness and green-red colour opponents to 345 
refine the detection. We created an internal procedure called LAB_Img_Segmentation (Function_7 346 
in Additional File 1) to transfer RGB images into Lab images using the color.rgb2lab function in 347 
Scikit-image, based on which green pixels were featured in a non-linear fashion (Fig. 4j). Again, a 348 
global adaptive Otsu thresholding was applied to extract leaf objects and then a Lab-based leaf region 349 
mask (Fig. 4k). Finally, we combined the Lab-based mask with the k-means mask as the output of the 350 
phase of global leaf ROI segmentation.   351 
 352 

Step 4.1 – Pot level segmentation   353 
To measure growth phenotypes in a given pot over time, plants within each pot need to be monitored 354 
over time. Using the calibrated images, we have defined the tray region, based on which we constructed 355 
the pot framework in the tray. To accomplish this task, we designed an iterative layout drawing method 356 
called PotSegmentation (Function_5 in Additional File 1) to generate anti-aliased lines using the 357 
line_aa function in Scikit-image to define the pot layout (Fig. 5a).  358 
 359 
   After constructing the framework, we segmented the leaf growth image into a number of sub-images 360 
(Fig. 5b), so that plant can be analysed locally, at the pot level. We developed an iterative analysis 361 
approach to go through each pot with the sequence presented in Figure 5c. Within each pot, we 362 
conducted a local leaf detection method. For example, although combining leaf masks produced by the 363 
machine learning (Fig. 4i) and the Lab colour space (Fig. 4k) approaches, some false positive objects 364 
may still remain (Fig. 5d). The local leaf detection can enable us to employ pot-level contrast and 365 
intensity distribution [42], weighted image moments [43], texture descriptor [44], and leaf positional 366 
information to examine each sub-image to refine the leaf detection (Fig. 5e). This local feature selection 367 
method (detailed in the following sections) can also help us decrease the computational complexity (i.e. 368 
memory and computing time), as analysis is carried out within smaller sub-images.        369 
  370 

Step 4.2 – Local multiple trait measurements 371 
Utilising the refined local leaf masks at the pot level (Fig. 6a), a number of growth phenotypes could 372 
be quantified reliably. Some of them are enumerated briefly as follows: 373 
 374 
1) “Projected Leaf Area (mm2)” measures the area of an overhead projection of the plant in a pot. 375 

While implementing the function, the find_contours function in Scikit-image is used to outline 376 
the leaf region (coloured yellow in Fig. 6b). Green pixels enclosed by the yellow contours are 377 
totalled to compute the size of the projected leaf area (Fig. 6c). Pixel-based quantification is then 378 
converted to mm units based on the pixel-to-mm exchange rate. This trait is a very reliable 379 
approximation of the three-dimensional (3D) leaf area and has been used in many growth studies 380 
[20,22,45]. 381 
 382 
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2) “Leaf Perimeter (mm)” is calculated based on the length of the yellow contour line that encloses 383 
the detected leaf region. Again, pixel-based measurements are converted to mm units, which are 384 
then used to compute the size change of a plant over time. 385 

 386 
3) “Daily Relative Growth Rate (%)” (Daily RGR) quantifies the speed of plant growth. Derived from 387 

the RGR trait described previously [19,46], the Daily RGR here is defined by equation 5:  388 
 389 

   
1

(𝑡2−𝑡1)
∗ (ln(𝐴𝑟𝑒𝑎2𝑖) − ln (𝐴𝑟𝑒𝑎1𝑖)/ln (𝐴𝑟𝑒𝑎1𝑖)       (5) 390 

 391 
where ln is natural logarithm, 𝐴𝑟𝑒𝑎1𝑖  is the projected leaf area in pot i in the previous image, 392 
𝐴𝑟𝑒𝑎2𝑖 is the leaf area in pot i in the current image, and (𝑡2 − 𝑡1) is the duration (in days) between 393 
the two consecutive images. 394 

 395 
4) “Leaf Canopy (mm2)” expresses the plant canopy region that is enclosed by a 2D convex hull in a 396 

pot [19,20,22]. The convex hull was generated using the convex_hull_image function in 397 
Scikit-image, enveloping all pixels that belong to the plant with a convex polygon [47]. Figure 6d 398 
presents all convex hulls created in a given tray. As described previously [19], this trait can be used 399 
to define the coverage of the leaf canopy region as well as how the petiole length changes during 400 
the growth period. 401 

 402 
5) “Stockiness (%)” is calculated based on the ratio between the plant projected area and the leaf 403 

perimeter (Fig. 6e). It is defined as (4𝜋 ∗ 𝐴𝑟𝑒𝑎𝑖)/(2𝜋 ∗ 𝑅𝑖)2, where 𝐴𝑟𝑒𝑎𝑖 is the projected leaf 404 
area detected in pot i and 𝑅𝑖 is the longest radius (i.e. major axis divided by 2) of the convex hull 405 
polygon in pot i. This trait (0-100%) has been used to measure how serrated a plant is, which can 406 
also indicate the circularity of the leaf region (e.g. a perfect circle will score 100%).  407 

 408 
6) “Leaf Compactness (%)” is computed based on the ratio between the projected leaf area and the 409 

area of the convex hull enclosing the plant [20,22]. Figure 6f shows how green leaves are enclosed 410 
by yellow convex hull outlines that calculates the leaf compactness trait.   411 

 412 
7) “Greenness” monitors the normalised greenness value (0-255) of the leaf canopy, i.e. the convex 413 

hull region. A rescaled Lab image is used to provide the greenness reading, so that we could 414 
minimise the background noise caused by algae and soil types. Greenness can be used to study plant 415 
growth stages such as vegetation and flowering.   416 

 417 

Step 4.3 – Leaf number detection  418 
As the number of rosette leaves is popularly used to determine key growth stages for Arabidopsis [15], 419 
we therefore designed a leaf structure detection algorithm to provide a consistent reading of traits such 420 
as the number of detected leaves and the number of detected long or large leaves over time. This 421 
algorithm comprises of a 2D topological skeletonisation algorithm (Function_10 in Additional File 1) 422 
and a leaf outline sweeping method (Function_11 in Additional File 1).  423 
 424 
   Figure 7a demonstrates the result of the skeletonisation approach, which utilises the skeletonize 425 
function in Scikit-image to extract 2D skeletons from the leaf masks in each pot. The skeletons can be 426 
used to quantify the structural characteristics of a plant, including the number of leaf tips and branching 427 
points of a plant. For example, we implemented a find_end_points function to detect each leaf 428 
tip (i.e. end point) in a plant skeleton using the binary_hit_or_miss function in the SciPy library 429 
to match the four possible 2D matrix representations:  430 
 431 

   
0 0 0
0 1 0

     𝑜𝑟     
0 1 0
0 0 0

     𝑜𝑟     
0 0
0 1
0 0

     𝑜𝑟     
0 0
1 0
0 0

       (6) 432 

 433 
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   The find_end_points function outputs 2D coordinates of end points that correlates with leaf tips 434 
(Fig. 7b). Furthermore, the function can be employed for novel trait measurements, for instance, large 435 
or long rosette leaves can be identified if they are over 50% or 70% of the final size (Fig. 7c and 436 
Step_4.4.2.7 in Additional File 1). To accomplish this, we evaluated the leaf skeleton as a weighted 437 
graph and then treated: (1) the skeleton centroid and end points as vertices (i.e. nodes), (2) lines between 438 
the centre point and end points as edges, and (3) the leaf area and the length between vertices as weights 439 
assigned to each edge. Depending on the experiment, if the weights are greater than a predefined 440 
threshold (i.e. over 15mm in length and 100mm2 in leaf size in our case), the associated leaf will be 441 
recognised as a long or large leaf.  442 
 443 
   As the skeletonisation approach could miss some small leaves if they are close to the plant centroid 444 
or partially overlapping with other leaves, we implemented a leaf_outline_sweeping procedure 445 
to establish another approach to detect the total leaf number based on the distance between the plant 446 
centroid and any detected leaf tips. This procedure is based on a published leaf tip identification 447 
algorithm [5]. We improved upon the algorithm through utilising the leaf boundary mask (i.e. contour) 448 
to reduce the computational complexity. For a given plant, the algorithm generates a distance series that 449 
represents the squared Euclidean distances from the plant centroid to its contour, at angles between 0 450 
and 359 degrees with a 1-degree interval (for presentation purposes, we only used 15 degree intervals 451 
in Fig. 7d). To reduce noise, the algorithm smooths the distance series using a Gaussian kernel (Fig. 452 
7e). A peak detection algorithm called PeakDetect [48] is integrated in our core analysis algorithm 453 
to detect peaks on the distance series (Step_4.4.2.8 in Additional File 1). The procedure implemented 454 
here supports our assumption that the number of peaks can be used to largely represent the number of 455 
leaf tips (Figs. 8f&g). When quantifying the total number of leaves, results from both skeleton and 456 
outline sweeping approaches are combined to produce a viable measurement. 457 
 458 

Results 459 
Leaf-GP can facilitate plant growth studies through automating trait analysis and cross-referencing 460 
results between experiments. Instead of merely utilising machine learning algorithms to build neural 461 
network architecture for pixel clustering or trait estimates [49], we chose an approach that combines 462 
simple unsupervised machine learning and advance computer vision algorithms to establish an efficient 463 
analysis workflow. This approach has enabled us to select morphological features that are biologically 464 
relevant for conducting meaningful ROI segmentation at both image and pot levels. Here, we exhibit 465 
three use cases where Leaf-GP were employed to study key growth phenotypes for Arabidopsis rosettes 466 
and Paragon wheat.  467 
 468 

Use case 1 – Tracking three genotypes in a single tray 469 
We applied Leaf-GP to measure growth phenotypes in a tray containing three genotypes Ler (wildtype), 470 
spt-2, and gai-t6 rga-t2 rgl1-1 rgl2-1 (della4) at 17°C. Each pot in the tray was monitored and cross-471 
referenced during the experiment. The projected leaf area trait in 24 pots was quantified by Leaf-GP 472 
(Fig. 8a) and rosette leaves were measured from stage 1.02 (2 rosette leaves, around 5mm2) to stage 5 473 
or 6 (flower production, over 2400mm2), a duration of 29 days after the first image was captured.  474 
 475 
   After dividing the quantification into three genotype groups, we used the projected leaf area readings 476 
(Fig. 8b) to verify the previously manually observed growth differences between Ler, spt-2, and della4 477 
[2,3]. Furthermore, the differences in phenotypic analyses such as leaf perimeter, compactness, leaf 478 
number, and daily RGR of all three genotypes can be statistically differentiated (Figs. 8c–f). Particularly 479 
for Daily RGR (Fig. 8f), the three genotypes exhibit a wide variety of growth rates that are known to 480 
be determined by genetic factors [50]. Based on image series, Leaf-GP can integrate time and treatments 481 
(e.g. temperature signalling or chemicals) with dynamic growth phenotypes for cross referencing. We 482 
provided the CSV file for Use Case 1 in Additional File 4, containing trait measurements for each pot 483 
over time. The Python script we used to plot and cross-reference either pot- or genotype-based growth 484 
phenotypes is provided in Additional File 7, called Leaf-GP plot generator. 485 
 486 
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Use case 2 – Two genotypes under different temperatures 487 
We also used our software to detect differences in rosette growth between Ler (wildtype) and spt-2 488 
grown at different temperatures, i.e. 12°C and 17°C. Utilising the projected leaf area measurements, we 489 
observed that temperatures affect vegetative growth greatly on both lines (Fig. 9a). Similar to previously 490 
studied [2,3], lower temperatures can have a greater effect on the growth of spt-2 than Ler. Around 491 
seven weeks after sowing, the projected leaf area of spt-2 was around 50% greater on average (1270mm2) 492 
compared to Ler (820mm2), when grown at 12°C (Fig. 9c). However, when grown in 17 °C, at 36 days-493 
after-sowing spt-2 had a similar area at around 1200mm2, but Ler had an area of 1000mm2, a much 494 
smaller difference. 495 
 496 
   As our software can export multiple growth phenotypes, we therefore investigated both linked and 497 
independent effects of temperature on wildtype and spt-2. For instance, the larger rosette in spt-2 causes 498 
a similar increase in rosette perimeter, canopy length and width, and canopy size. At similar days after 499 
sowing, plants of both genotypes grown at 12°C had more compact rosettes that those growing at 17°C 500 
(Fig. 9b), and spt-2 was less compact than Ler in general. The number of leaves produced was greater 501 
at the warmer temperature (Fig. 9c). This ability to easily export a number of key growth traits of interest 502 
is useful and relevant to broader plant growth research. We provided detailed processing results (csv 503 
files) for the Ler (12°C and 17°C, Additional File 8) and spt-2 (12°C and 17°C, Additional File 9) 504 
experiments. Results including processed images and CSV files for the two experiments can also be 505 
downloaded at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases. 506 
 507 

Use case 3 – Monitoring wheat growth  508 
Another application for which Leaf-GP has been designed is to analyse wheat growth images taken in 509 
glasshouses or growth chambers. Similarly, red circular stickers are required to attach to the corners of 510 
the pot region so that Leaf-GP can extract ROI and traits can be measured in mm units. Figure 10 511 
demonstrates a proof-of-concept study demonstrating how Leaf-GP has been applied to measure 512 
projected leaf area and leaf canopy size based on Paragon (a UK spring wheat) image series taken over 513 
a 70-day period in greenhouse, from sprouting (Fig. 10b), to tillering (Fig. 10c), and then from booting 514 
(Fig. 10e) to heading (Fig. 10f). With a simple and cheap imaging setting, Leaf-GP can precisely 515 
quantify key growth phenotypes for wheat under different experimental conditions. Please note that the 516 
leaf counting function in Leaf-GP cannot be reliably applied to quantify wheat leaves, because the 517 
complicated plant architecture of wheat plants.  518 
 519 

Discussion 520 
Different environmental conditions and genetic mutations can impact a plant’s growth and development, 521 
making the quantification of growth phenotypes a useful tool to study how plants respond to different 522 
biotic and abiotic treatments. Amongst many popularly used growth phenotypes, imaging leaf-related 523 
traits is a non-destructive and reproducible approach for plant scientists to record plant growth over 524 
time. In comparison with many published image analysis software tools for leaf phenotyping, our 525 
software provides a comprehensive solution that is capable of extracting multiple traits automatically 526 
from large image datasets; and moreover, it can provide traits analysis that can be used to cross reference 527 
different experiments. In order to serve a broader plant research community, we designed three versions 528 
of Leaf-GP, including a graphic user interface for PC users, a command-line interface for HPC users, 529 
and a Jupyter Notebook for computational users. We provide all steps of the algorithm design and 530 
software implementation, together with raw and processed datasets we produced for our Arabidopsis 531 
and Paragon wheat studies at NRP.  532 
 533 
   When developing the software, we particularly considered how to enable different sizes of plant 534 
research laboratories to utilise our work for screening large populations of Arabidopsis and wheat in 535 
response to varied treatments through accessible and low-cost imaging devices. Hence, we paid much 536 
attention to software usability (e.g. simple command-line interface or GUI), capability (automatic 537 
multiple trait analysis running on different platforms), expandability (open software architecture, new 538 
Python-based functions and procedures can be easily added to the software, see the PeakDetect 539 
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procedure in Additional File 1), and biological relevance (i.e. the feature extraction approach and 540 
processing results are biological relevant). We trust our software is suitable for studying the growth 541 
performance of a large number of plant genotypes and treatments with very limited imaging hardware 542 
and software resource requirements.  543 
 544 
   The software has been used to evaluate noisy images caused by algae and different soil surfaces such 545 
as gritty compost, dry and wet soil types. Still, it can automatically and reliably execute the analysis 546 
tasks without users’ intervention. To verify Leaf-GP’s trait measurements, we have scored manually 547 
the key growth phenotypes on the same pots and obtained a correlation coefficient of 0.958. As the 548 
software is implemented based on open image analysis, computer vision and machine learning libraries, 549 
Leaf-GP can be easily adopted or redeveloped for other experiments. To support computational users 550 
to comprehend and share our work, we have provided very detailed comments in our source code.  551 
 552 
   From a biological perspective, the use of key growth traits generated by Leaf-GP can be an excellent 553 
tool for screening leaf growth, leaf symmetry, leaf morphogenesis and movement, e.g. phototropism. 554 
For example, the leaf skeleton is a useful tool to estimate hyponasty (curvature of the leaf). It could also 555 
be used as a marker to quantify plant maturation, e.g. Arabidopsis plants transits to the reproductive 556 
stage (i.e. flowering), a change from vegetative to flowering meristem when cauline leaves are produced, 557 
which can be used to mark differences in maturation. Some traits are also useful in studies other than 558 
plant development biology. For instance, vegetative greenness can be used in plant pathogen interaction 559 
to analyse the activity of pathogens on the leaf surface, as most of the times broad yellowish symptoms 560 
can be observed from susceptible plants (e.g. rust in wheat). 561 
 562 
   From a software engineering perspective, we followed best practices in computer vision and image 563 
analysis [51] when conducting feature selection, i.e. choosing traits based on the statistical variation or 564 
dispersion of a set of phenotypic data values. Whilst implementing the software, we built on our 565 
previous work in batch processing and high-throughput trait analysis [52–56] and improved software 566 
implementation in areas such as reducing computational complexity (e.g. the usage of CPU cores and 567 
memory in parallel computing), optimising data annotation and data exchange between application 568 
programming interfaces (APIs), i.e. the objects passing between internal and external functions or 569 
procedures, promoting mutual global and local feature verification (e.g. cross validating positional 570 
information of plants at the image level as well as the pot level), and implementing software modularity 571 
and reusability when packaging the software (see the software executables and package source code in 572 
https://github.com/Crop-Phenomics-Group/Leaf-GP). Furthermore, we verify that, instead of fully 573 
relying on a black-box machine learning approach without an in-depth understanding of why clustering 574 
or estimation is accomplished, it is more efficient to establish an analysis algorithm based on a sound 575 
knowledge of the biological challenge that we need to address. If the features we are interesting is 576 
countable and can be logically described, advanced computer vision and image analysis methods would 577 
be efficient for our phenotypic analysis missions. 578 
 579 

Conclusions  580 
In this paper, we presented Leaf-GP, a comprehensive software application for analysing large growth 581 
image series so that multiple growth phenotypes in response to different treatments can be measured 582 
and cross-referenced over time. Our software demonstrates that treatment effects such as the response 583 
to different temperatures between genotypes could be detected reliably. We demonstrate the usefulness 584 
and high accuracy of the software based on the quantification of growth traits for Arabidopsis genotypes 585 
under varied temperature conditions and wheat growth in the glasshouse over time. To serve a broader 586 
plant research community, we improved the usability of the software so that it can be executed on 587 
different platforms. To help users or developers to gain an in-depth understanding of the algorithms and 588 
the software, we have provided our source code, detailed comments, software modulation strategy, and 589 
executables (.exe and .app), together with raw image data and experiment results in the Additional files. 590 
The software, source code and experiment results presented in this paper are also freely available at 591 
https://github.com/Crop-Phenomics-Group/Leaf-GP/releases. 592 
 593 
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   Leaf-GP package provides an efficient and effective analysis platform for carrying out large growth 594 
phenotype measurements with no requirement on programming skills and limited requirements on 595 
imaging equipment. We followed the open software strategy so that we could share and contribute 596 
jointly with the computational biology community. Our software has confirmed previously reported 597 
results in the literature and produces a number of key growth traits that enhance the reproducibility for 598 
plant growth studies. Many plant growth and development experiments can be analysed by Leaf-GP 599 
under a range of treatment conditions. Our case studies of temperature effects and different genotypes 600 
or plant species are not limited. Natural variation in plant growth can also be analysed or images from 601 
plants experiencing mineral or nutrient stress could be equally well handled. 602 
 603 

List of abbreviations 604 
RGB: a red, green and blue colour model 605 
NoIR: no infrared filter 606 
ROI: regions of interest 607 
GUI: graphic user interface  608 
HPC: high-performance computer  609 
CSV: comma-separated values 610 
OS: operating systems  611 
CPU: central processing unit 612 
Lab: lightness, a for the colour opponents green–red, and b for the colour opponents blue–yellow 613 
RGR: relative growth rate 614 
Ler: Landsberg erecta (wildtype) 615 
spt-2: spatula-2 616 
API: application programming interfaces 617 
 618 
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 Additional File 5: The analysis workflow and a detailed activity diagram of Leaf-GP 800 
 Additional File 6: The manual for importing image datasets via the GUI version of Leaf-GP 801 
 Additional File 7: The Jupyter Notebook version for plotting and cross-referencing growth traits 802 

between experiments  803 
 Additional File 8: Multiple trait measurements results based on Ler 12°C, 17°C, 22°C 804 
 Additional File 9: Multiple trait measurements results based on spt-2 12°C, 17°C, 22°C 805 
 806 

Figures Legends 807 

Figure 1. An overview of how to utilise Leaf-GP in plant growth research.  808 
(a-c) A range of imaging devices, including a fixed imaging platform, smartphones, or a mobile version 809 
CropQuant equipped with either a Pi NoIR sensor or an RGB sensor. (d-e) The regions of a tray or a 810 
pot need to be covered. (f-g) Both raw and processed image data can be loaded and saved by Leaf-GP 811 
on PCs, HPC clusters, or cloud-based computing storage. (h-j) Three versions of Leaf-GP, including 812 
HPC, GUI and a Jupyter Notebook. (k-l) Processed images highlighting key growth phenotypes and 813 
CSV files containing trait measurements are produced after the batch image processing.     814 
 815 

Figure 2. The analysis workflow and the GUI of Leaf-GP.  816 
(a) The high-level analysis workflow of Leaf-GP contains five main steps. (b) Five self-explanatory 817 
sections designed to integrate the analysis workflow into the GUI version of Leaf-GP. (c) The initial 818 
status of the GUI. (d) The screenshot after selecting image series. (e) The screenshot when image 819 
datasets are being processed in parallel. (f) Growth-related trait plots can be generated by clicking the 820 
associated cell in the Results table. 821 
 822 
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Figure 3. The step of image pre-processing and calibration.  823 
(a-b) Fix the height (i.e. y-axis) of all images in a given series. (c) Detect red circular markers. (d) 824 
Extract ROI from the original image. (e) Denoise the image to smooth leaf surface for the global leaf 825 
segmentation. 826 
 827 

Figure 4. The step of defining global leaf ROI.  828 
(a-d) A number of experiment-related problems encountered whilst developing Leaf-GP (to the left of 829 
the figures) and results of our solutions (to the right of figures). (e) A pseudo vegetative greenness 830 
image. (f-g) Using KMeans to estimate how many colour groups can be classified from a given colour 831 
image. (h) The classification result of the KMeans approach based on the pseudo vegetative greenness 832 
picture, highlighting greenness values in red pixels. (i) A global adaptive Otsu thresholding used to 833 
generate a global leaf ROI binary mask. (j-k) Lab colour space used to extract leaf ROI objects at the 834 
image level.  835 
 836 

Figure 5. The step of conducting pot level segmentation in a sequential manner. 837 
(a) Depending on the number of rows and columns, generate anti-aliased lines to define the pot layout. 838 
(b) Segmented a given image into a number of sub-images. (c) The sequence to go through each pot an 839 
in an iterative approach. (d-e) Apply a local detection method to improve the result of leaf detection.   840 
 841 

Figure 6. The step of measuring multiple growth traits. 842 
(a) Refined leaf masks for every pot. (b) Contours generated to outline the leaf region. (c) Green pixels 843 
enclosed by the contours are totalled for computing the size of the projected leaf area. (d) Convex hulls 844 
created in every pot for calculating leaf canopy. (e) Stockiness calculated based on the ratio between 845 
the plant projected area and the leaf perimeter. (f) Leaf Compactness computed based on the ratio 846 
between the projected leaf area and the area of the convex hull. 847 
 848 

Figure 7. The step of detecting leaf structure. 849 
(a) The result of a 2D skeletonisation approach to extract leaf structure. (b) Detect end points of the leaf 850 
structure which correlates with leaf tips. (c) Large or long rosette leaves identified if they are over 50% 851 
or 70% of the final size. (d-e) Generate a distance series to represent the distance between the plant 852 
centroid and its leaf contour, at angles between 0 and 359 degrees with a 15-degree interval. (f-g) The 853 
number of detected peaks are used to represent the number of leaf tips.  854 
 855 

Figure 8. Case study 1: Analysis results of a tray with three genotypes 856 
(a) The projected leaf area trait in 24 pots was quantified by Leaf-GP. (b) The projected leaf area traits 857 
divided into three genotype groups. (c-f) A number of growth related traits such as leaf perimeter, 858 
compactness, leaf number, and daily RGR of all three genotypes can be statistically differentiated.  859 
 860 

Figure 9. Case Study 2: Analysis results of multiple experiments 861 
(a) The projected leaf area measurements used to observe how temperatures affect vegetative growth 862 
on both Ler and spt-2. (b) Plants of both genotypes growing at 12°C had more compact rosettes that 863 
those growing at 17°C. spt-2 was less compact than Ler in general. (c) The number of leaves produced 864 
was greater at the warmer temperature.   865 
 866 

Figure 10. Case Study 3: Applying Leaf-GP on wheat growth studies  867 
(a) A proof-of-concept study of how to measure the projected leaf area and the leaf canopy size based 868 
on Paragon wheat images, taken over a 70-day period in greenhouse. (b-f) Analysis results generated 869 
from sprouting to heading stage.  870 
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Figure 2. The GUI of Leaf-GP 
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Figure 6. Local multiple trait measurements
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Figure 8. Case study 1: Analysis results of a tray with three genotypes
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Figure 9. Case Study 2 – Analysis results of multiple experiments
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Figure 10. Case Study 3 – Application on Wheat
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Supplemental Figure 1. The Analysis Workflow of Leaf-GP 
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