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We introduce cytoNet, a method to characterize multicellular topology from microscopy images.
Accessible over the web, cytoNet quantifies the spatial relationships in cell communities using
principles of graph theory, and evaluates the effect of cell-cell interactions on individual cell
phenotypes. We demonstrate cytoNet’s capabilities in two applications relevant to regenerative
medicine: quantifying the morphological response of endothelial cells to neurotrophic factors present
in the brain after injury, and characterizing cell cycle dynamics of differentiating neural progenitor cells.
The framework introduced here can be used to study complex cell communities in a quantitative

manner, leading to a deeper understanding of environmental effects on cellular behavior.

A cell’s place in its environment influences a large part of its behavior. Advances in the field of phenotypic
screening have yielded automated image analysis software that provide detailed phenotypic information
at the single-cell level (such as morphology, stain texture and stain intensity) from microscopy images in
a high-throughput manner'2. However, current image analysis pipelines often do not account for spatial
and density-dependent effects on cell phenotype. Various types of cell-cell interactions including
juxtacrine and paracrine signaling are an integral part of biological processes that affect the behavior of
individual cells. The recent emergence of technologies for multiparametric mapping of protein and RNA
expression in individual cells while preserving the spatial structure of the tissue® has further highlighted

the need to study single-cell behavior in the context of cell communities.
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For these reasons, a robust method to quantify the spatial organization of cell communities and its
influence on the behavior of individual cells adds an important, missing component to currently existing
image analysis tools. Such a method can be used to enhance image-based biological discovery through
phenotypic screens? by supplying multicellular metrics, provide a non-invasive means to standardize cell
manufacturing for therapeutic purposes?, and develop a quantitative framework for the analysis of

spatially-detailed human cell atlas data>®.

Prior reports have accounted for population context in image-based screens by using features such as
local cell density or a cell’s position on an islet edge, that describe local cell crowding”®. Mathematical
graphs, structures that are used to model pairwise relationships between objects, are uniquely suited to
cell community analysis. Among image-based methods that employ graph theory to analyze spatial
relationships among cells, the cell-graph technique® has been employed to great effect in analyzing
structure-function relationships in tissue sections. However, coupling single cell data to network structure
has been elusive: there remains a need for a broadly applicable, user-friendly tool that enables spatial
analysis of various different cell types, integrated with metrics describing the phenotype of individual

cells.

Here we introduce an image analysis method called cytoNet for quantification of multicellular spatial
organization using a graph theoretic approach. cytoNet is available as a web-based interface, providing
significant ease of use compared with other programs that require downloading software. Taking
fluorescence microscope images as input, the cytoNet image analysis pipeline identifies cells, creates
spatial network representations tailored to the type of image and cell type, and calculates a set of metrics
derived from graph theory that describe the network structure of the local multicellular neighborhood of

a cell of interest. We define this multicellular neighborhood as a cell’s community. Cell community metrics
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are then integrated with descriptors of cell phenotype, such as morphology and protein expression, to

provide a comprehensive description of single- and multiple-cell phenotype states.

Figure 1. The cytoNet image- a
processing pipeline. (a) The
pipeline begins with microscope

images.  (b)  Segmentation Microscope
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The cytoNet pipeline begins with microscope images (Fig. 1a). Appropriate segmentation algorithms are
implemented to detect cells (Fig. 1b, Supplementary Fig. 1-2). Upon detection of cells, the next step is to
evaluate spatial proximity of cells. We do this in one of two ways — by evaluating the overlap of adjacent
cell boundaries (type | graphs), or by evaluating the proximity of cells in relation to a threshold distance
(type Il graphs) (Fig. 1c). The former approach is useful when detailed information of cell boundaries and
morphology is available, such as in the case of membrane stains or cells stained for certain cytoskeletal
proteins. The latter approach is useful when dealing with images of cell nuclei, where detection of exact
cell boundaries is not possible. In both approaches, cells deemed adjacent to each other are connected
through edges, resulting in a network representation (Fig. 1d). This connectivity is denoted
mathematically using an adjacency matrix, A (Fig. 1d), where 4; ; = 1 if there exists an edge between
cells i and j, and 0 otherwise. Finally, the extracted metrics are used to visualize and analyze local

neighborhood effects on individual cell phenotypes (Fig. 1e).

First, we demonstrate the utility of cytoNet in analyzing cell cycle dynamics in communities of
differentiating neural progenitor cells. Neural progenitor cells are multipotent cells that can differentiate
into neurons, astrocytes or oligodendrocytes. Cell cycle regulation in neural progenitor cells is of interest
as it has implications for the genetic basis of brain size in different species'® and aberrant regulation can
cause diseases like microcephaly!!. Studies in the ventricular zone of the embryonic mouse neocortex
have shown that clusters of clonally-related neural progenitor cells go through the cell cycle together'13,
However, it is unclear whether this community effect is a ubiquitous feature of neural progenitor cells. To

this end, we employed the cytoNet workflow to determine whether cell cycle synchronization is a feature

of differentiating neural progenitor cells cultured in vitro.
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Figure 2. cytoNet reveals dynamic cell community trends and influence of cell density on individual cell
morphology. (a-c) Spatiotemporal synchronization of cell cycle in differentiating neural progenitor cells
(a) Neighborhood similarity score (Supplementary Table 1) for low-density culture across time. (b)
Neighborhood similarity score across time for medium-density culture. (c) Frames from time-lapse movies
corresponding to (a) and (b). Borders of mCherry+ nuclei (G1) are outlined in magenta, Venus+ nuclei
(S/G2/M) are outlined in green, and mCherry-/Venus- nuclei (quiescent) are outlined in blue; scale bar =
50um. (d-i) Influence of local neighborhood density on primary human endothelial cell (HUVEC)
morphology. (d) Distribution of cell circularity values grouped under different levels of closeness
centrality; Cohen’s d effect size: groups (1, 2) = 0.34, groups (1, 3) = 0.62; sample size, n=786 cells (group
1; ¢, < 0.025), 741 cells (group 2; 0.025 < c, < 0.05) and 782 cells (group 3; c, > 0.05) (e) Sample
immunofluorescence image with graph representation overlaid; scale bar = 50 um. (f) Heatmap depicting
closeness centrality of each cell, with circularity values overlaid in text. (g) Bar plot of variance explained
by growth factor treatment and local network metrics. (h) Box plot of cell size as a function of growth
factor treatment. (i) Box plot of mean actin intensity as a function of growth factor treatment. Legends
and axes in (h-i) contain information on treatment (BDNF, VEGF), concentration (50ng/ml, 100ng/ml) and
time of treatment (6 hours and 12 hours). Cohen’s d effect size for (h-i) is shown in Supplementary Table
3.

For this investigation, ReNcell VM human neural progenitor cells were stably transfected with the FUCCI
cell cycle reporters!* to generate Geminin-Venus/Cdtl-mCherry/H2B-Cerulean (FUCCI-ReN) cells. We
captured time-lapse movies of FUCCI-ReN cells after withdrawing growth factors to induce differentiation,
and built network representations from nucleus images. Adjacency was determined by comparing

centroid-centroid distance to a threshold (type Il graphs, Fig. 1c).
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In order to evaluate spatiotemporal synchronization in cell cycle, for each individual cell in a frame, we
evaluated the average fraction of neighboring cells in a similar phase of the cell cycle (G1 phase —
mCherry+ and S/G2/M phases — Venus+), normalized by total fraction of that cell type in the population.
We called the average value of this fraction across all cells in an image the neighborhood similarity score,
Ng (Supplementary Table 1). Results for medium and low-density cultures are shown in Fig. 2a and Fig.
2b respectively. Frames from corresponding time-lapse movies are shown in Fig. 2c (see also
Supplementary Videos 1-4). We observed that groups of cells in the low-density culture moved through
the cell cycle in unison, which was reflected in periodically high values of the neighborhood similarity
score (Fig. 2a, Supplementary Video 1-2). In contrast, the composition of cell clusters in the medium
density culture was relatively heterogeneous, resulting in relatively low values of the neighborhood
similarity score over time (Fig. 2b, Supplementary Video 3-4). Neighboring cells in very low-density
cultures are likely to be derived from the same clonal lineage, which explains the high level of
synchronization in these cultures!?. This example highlights how cytoNet can be used to derive insight into

the role of cell-cell interactions on dynamic cell behavior.

Next, we used cytoNet to evaluate the relative influence of local neighborhood density and growth factor
perturbations on endothelial cell morphology. From a regenerative medicine perspective, studying the
morphological response of endothelial cells to neurotrophic stimuli can help assess the cells’ potential
angiogenic response following brain injuries that induce growth factor secretion, like ischemic stroke or
transient hypoxia'>!. Common high-throughput angiogenic assays focus on migration and proliferation
as the main cell processes defining angiogenesis, or the growth of new capillaries from existing ones'’.
Distinct morphology and cytoskeletal organization of endothelial cells indicate the cell’s migratory or

proliferative nature, and hence their angiogenic contribution within a sprouting capillary®®. Reproducibly
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96  quantifying the morphological response of endothelial cells to neurotrophic factors would enable more

97  targeted approaches to enhancing brain angiogenesis.

98  We took an image-based approach to this problem, building a library of immunofluorescence images of

99 human umbilical vein endothelial cells (HUVECs) stained for cytoskeletal structural proteins (actin, a-
100  tubulin) and nuclei, in response to various combinations of vascular endothelial growth factor (VEGF) and
101 brain-derived neurotrophic factor (BDNF) treatment. Cell morphology was annotated using 21 metrics
102 described in our previous study’® (Supplementary Table 2), which included cell shape metrics like
103 circularity and elongation, and texture metrics for cytoskeletal stains such as Actin polarity, smoothness
104  etc. Cluster analysis on this dataset revealed dominant morphological phenotypes as a function of

105  treatment conditions (Supplementary Fig. 3).

106  We then used the cytoNet workflow to quantify density-dependent effects on endothelial cell morphology
107  in control cultures (without any growth factor perturbation). Network representations were designated
108  based onshared cell pixels (type | graphs, Fig. 1c) and local network properties were described using seven
109 metrics, including degree (number of neighbors) and centrality measures (indicating relative location of
110  cells within colonies) (Supplementary Table 1). Our analysis showed correlations between cell
111 morphological features and local network properties (Supplementary Fig. 4). Some of these relationships
112 were expected, for instance the positive correlation between shared cell border and cell size. Other
113 relationships, such as the negative correlation between cell circularity and closeness centrality, capture
114  intuitive notions of the influence of cell packing on morphology (Fig. 2d-f). The closeness centrality of a
115  cell (Supplementary Table 1) describes its relative position in a colony — cells in the middle of a colony will
116  have higher centrality values than cells at the edge of a colony or isolated cells. The negative relationship

117  between circularity and closeness centrality implies that isolated cells and cells located at the edge of
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118  colonies are more likely to have a circular morphology, while more densely packed cells tend to be less
119  circular (Fig. 2e-f). Thus, our analysis revealed that local network properties have a quantifiable effect on

120  cell morphology.

121 Next, we developed a workflow to analyze the effect of growth factor treatments on cell morphology,
122 while correcting for the effect of local network properties. We applied a quantile multidimensional binning
123 approach?®?! to calculate the variance in morphology metrics that could be individually explained by all
124 local network metrics and growth factor treatments (Fig. 2g). We then calculated the values for each
125 morphology metric after correcting for the effect of local network metrics (see Methods). The raw and
126 network-corrected values for two metrics, cell size and mean actin intensity, are shown as box plots in
127  Fig. 2h-i. The influence of network properties can be clearly seen on cell size, where at 6 hours, large cell
128  sizes are seen in the uncorrected but not corrected plots (Fig. 2h). The effect of growth factor treatment
129  can be clearly seen in network-corrected mean actin intensity (Fig. 2i, Supplementary Table 3), where
130  VEGF and BDNF treatment have dose-dependent effects on mean actin intensity. Thus, cytoNet detects
131  the independent effects of local neighborhood properties and growth factor perturbations on endothelial

132 cell morphology.

133  The examples described above illustrate how cytoNet can be used to enhance image informatics for
134 phenotypic screens as well as basic discovery in biology. From the image informatics perspective, cytoNet
135 adds crucial information on local cell density to the suite of metrics that are currently used to characterize
136 individual cells. We illustrated how local network metrics can be used to infer independent effects of cell
137  density and chemical perturbations. This workflow can be used to more comprehensively characterize the

138  response of cells to chemical perturbations, which can aid in drug discovery.
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139  The cytoNet workflow can also be used to quantitatively study biological pathways involved in cell-cell
140 communication. The combination of visualizing dynamic cell behavior through time-lapse movies and
141  quantifying local cell-cell interactions is particularly powerful. This paradigm can be of great benefit in
142 stem cell biology to evaluate environmental effects on cell fate decisions. More broadly, the principle
143 behind cytoNet — treating cell communities as complex ecosystems — will help transition from
144 characterizing cells as independent ‘silos’ to a more holistic approach, where due importance is given to

145 the environment surrounding cells.
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205 METHODS

206  Software. CytoNet is available as a web interface at https://qutublab.org/cytoNet/

207  See Supplementary Methods 1 for instructions on using cytoNet.

208 Cell Culture. Human umbilical vein endothelial cells (HUVECs, Lonza) were cultured in EBM-2 medium
209  (Lonza) supplemented with penicillin-streptomycin (Fisher Scientific) and EGM-2 SingleQuot bullet kit
210  (Lonza). For imaging experiments, cells were cultured for different periods (6, 12 or 24 hours) in different
211 combinations of vascular endothelial growth factor (VEGF, human recombinant; Millipore) and brain-
212 derived neurotrophic factor (BDNF, human recombinant, Sigma-Aldrich). Concentrations used were in the

213 range 50-100ng/mL. Controls were the same culture period without growth factor treatments.

214  Immortalized human neural progenitor cells derived from the ventral midbrain (ReNCell VM) were
215  obtained from Millipore. Cells were expanded on laminin-coated tissue culture flasks, in media containing
216 DMEM/F12 supplemented with B27 (both Life Technologies), 2pg/ml Heparin (STEMCELL Technologies),
217  20ng/ml bFGF (Millipore), 20ng/ml EGF (Sigma) and penicillin/streptomycin. For differentiation

218 experiments, cells were cultured in medium lacking bFGF and EGF.

219 FUCCI Reporter Lines. Stable reporter cell lines (FUCCI-ReN) were generated by sequentially nucleofecting
220  ReNcell VM neural progenitor cells with an ePiggyBac?? construct encoding mCherry-Cdt, Venus-Geminin,
221 or Cerulean-H2B. Each construct introduced to the cells was driven by a CAG promoter containing a
222 blasticidin (ePB-B-CAG-mCherry-Cdt1), puromycin (ePB-P-Venus-Geminin), or neomycin (ePB-N-Cerulean-
223 H2B) resistance gene. Following each round of nucleofection, cells were cultured in the presence of

224  appropriate antibiotics (2 pg/ml blasticidin, 0.1 pg/ml puromycin and 100 pg/ml neomycin).

225 HUVEC Immunocytochemistry. For imaging experiments, HUVECs were cultured on glass dishes coated
226  with fibronectin (Sigma-Aldrich). After appropriate growth factor treatments, cultures were fixed with 4%

227 paraformaldehyde, free aldehyde groups were quenched using 1mg/mL sodium borohydride, and
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228 membranes were permeabilized with 0.2% Triton-X-100 solution in PBS. Actin fibers were visualized using
229  an Alexa Fluor 488-phalloidin antibody (1:40, Molecular Probes) and microtubules were visualized using a
230  mouse monoclonal anti-a-Tubulin antibody (1:250, Sigma-Aldrich) followed by a goat anti-mouse Alexa
231 Fluor 647 secondary antibody. Nuclei were stained using Hoescht (Molecular Probes). 16-bit composite
232 immunofluorescence images were acquired through a 20X objective (N.A. = 0.75) on a Nikon Ti-E

233 epifluorescence microscope. Physical pixel size was 0.32um.

234  Time-lapse Microscopy. FUCCI-ReN cells were plated at different densities on chambered cover glasses
235 (Fisher Scientific) coated with laminin. Cells were imaged after switching to differentiation medium
236 containing phenol red-free DMEM/F12. Time-lapse imaging was performed using a Nikon Ti-E microscope
237 equipped with a motorized stage, a cage incubator for environmental control (Okolab), a 20X objective
238  lens (N.A. = 0.75), SOLA SE Light Engine for LED-based fluorescence excitation (Lumencor), appropriate
239  filters for visualizing mCherry, Venus and Cerulean fluorescent proteins and a Zyla 5.5 sCMOS camera
240  (ANDOR). 16-bit composite fluorescence images were acquired at 10 minute intervals for a total duration

241 of 57.5 hours.

242 Image Processing of HUVEC Immunofluorescence Images. Fluorescence images were processed as

243 described previously?® (Supplementary Fig. 1). Briefly, the following steps were used.

244 1. Contrast was enhanced using histogram equalization.

245 2. Images were smoothed using a 2D Gaussian lowpass filter.

246 3. Initial binarization was performed using Otsu’s method.

247 4. The binary image was dilated to fill in individual cell areas.

248 5. All objects <1% of the total image area were removed. This was called the final binary image.
249 6. A binary representation of the nuclear and microtubule image layers was generated using a high

250 input threshold value. This was called the marker image.
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251 7. Another binary image was created with values of 0 where either the final binary image (step 5) or
252 the marker image (step 6) had a value of 1.

253 8. Watershed markers were generated by imposing the minimum of the complement of images
254 obtained in steps 2 and 7. This image had black markers contained within cells to serve as basins
255 for flooding, while cell areas themselves were represented by lighter pixels that served as the
256 rising contours of the basins.

257 9. The watershed algorithm was implemented using Matlab’s built-in function to generate cell
258 boundaries.

259 10. Masks generated in step 9 were refined by using composite images of microtubules and actin as
260 the marker image (step 6).

261 In order to automate the threshold generation, the area of cell masks obtained from segmentation were

262  compared to those obtained through thresholding with a high threshold. The entire process was then

263 iterated until an acceptable area ratio was achieved.

264  Image Processing of FUCCI-ReN Time-Lapse Images. Grayscale images for each channel (H2B-Cerulean,
265  Geminin-Venus and Cdtl-mCherry) were binarized using locally adaptive thresholding. Seeds for the
266  watershed transform were generated using the regional minimas from the distance transform of the
267  grayscale images. Next, the watershed algorithm was applied to detect boundaries between overlapping

268 cell nuclei. Finally, information from different channels were used to correct undersegmented nuclei.

269  Generation of Network Representation. Type | graphs were generated as follows. Mask boundaries were
270 expanded by 2 pixels and overlap of expanded masks was used to assign edges and build an adjacency
271 matrix (Fig. 1c). Cells touching the image border were included in calculations of local network properties
272 (Supplementary Table 1) for cells not touching the boundary, but were excluded for the construction of

273  the adjacency matrix.
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274  Type |l graphs were generated as follows: For each pair of objects (nuclei), a threshold distance for
275 proximity was defined as the average of the two object diameters, multiplied by a scaling factor (S). If the
276 Euclidean distance between the object centroids was lower than the threshold distance computed, then
277  the pair of objects was connected with an edge (Fig. 1c). We chose a default scaling factor S = 2 for all our

278 analysis, through visual inspection of cell adjacency.

279  Network Metric Computation. All the network metrics described in Supplementary Table 1 were

280  computed using custom-written code, building upon the routines provided in Bounova et al®*.

281  Correction of morphology metrics for effects of local network properties and treatment conditions. We
282 performed quantile multidimensional binning? of cells for all 7 network metrics (5 bins per metric). The
283 mean of each morphology metric was calculated for each multidimensional bin, and this mean was
284  subtracted from the raw measurements to generate the network-corrected measurements for each cell.
285  Treatment-corrected measurements were generated similarly by calculating the mean of each

286  morphology metric under each treatment condition and then subtracting it from the raw measurements.

287  Variance explained by local network properties and treatment conditions. The variance explained by

288  each factor was calculated using the following formula®!

289 1 = Veorr/Vancorr

290 V., is the variance of the corrected measurements, and V,,,corr is the variance of the uncorrected

291 measurements.

292 22. Lacoste, A., Berenshteyn, F. & Brivanlou, A. H. An Efficient and Reversible Transposable System
293 for Gene Delivery and Lineage-Specific Differentiation in Human Embryonic Stem Cells. Cell Stem

294 Cell 5, 332—-342 (2009).
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neurotrophic factors
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Supplementary Figure 1. Image segmentation of HUVEC immunofluorescence images. (a) Original
grayscale image. (b) Image after adaptive histogram equalization and Gaussian filtering. (c) Binary image
obtained using Otsu’s threshold, with small objects removed. (d) Complement of filtered image in (b). (e)
Watershed basins obtained through imposing minimum of images in (d) and the marker image (obtained
by combining the binary image in (c) and the image obtained through binarization of microtubules and
nuclei). (f) Final cell borders.
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Supplementary Figure 2. Image processing steps for FUCCI-ReN nucleus images. (a) Fluorescence image
from H2B-Cerulean channel marking all nuclei. (b) Binary mask obtained through adaptive thresholding.
(c) Image obtained through imposing minimum of distance transform of binary image in (b) and local
minima. This image serves as seeds for the watershed algorithm. (d) Final mask obtained after watershed
transform.
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Supplementary Figure 3. Unique HUVEC morphological phenotypes in response to stimulation by
neurotrophic factors vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor
(BDNF). (a) The ‘average cell phenotype’ displayed of each cluster obtained from clustering morphological
features of 39,500 cells from 400 monolayer images of endothelial cells stained for actin (green),
microtubules (red) and Hoescht (blue). K-means clustering was performed across all cells for all conditions,
with the optimal number of four clusters identified by Silhouette scores, using Euclidean distance as the
similarity metric. Morphological features within each phenotype captured quantitatively what has been
observed qualitatively during coordinated cell processes of angiogenesis. As an example, phenotype 4, a
multi-nucleated cell showing nuclear asymmetry, indicates a proliferative state. Elongated cells with
asymmetrical actin distribution and relatively large nuclei show both migratory and proliferative properties
(e.g., phenotype 1) (b) Cluster membership of cells after stimulation by VEGF and BDNF for 6, 12 and 24 hrs
is displayed, corresponding to clusters from (a). Cells in each condition change their cluster assignment over
time as a function of stimuli. Shading indicates % of cells in that cluster (darker = higher %). (c) Example
feature metrics of endothelial cell phenotypes resulting from BDNF and VEGF stimulation. Cell size, the minor
axis length of the nucleus, and actin polarity were among features that contributed the most variance in the
endothelial dataset. Each point in the plot represents metric values for the average cell for all time-points for
each of the five growth factor conditions. Cell order (x-axis) is arbitrary, while relative values (y-axis) are
normalized to the maximum value per metric across all cells. Color corresponds to the closest cell phenotype
from (a) to which an average cell from each stimulation condition belongs.
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Supplementary Figure 4. Correlation heatmap of local network metrics and morphology metrics for
immunofluorescence HUVEC images. All morphology and local network metrics (Supplementary Table 1,
Supplementary Table 2) were combined into a single matrix. The cluster dendrogram was obtained
through hierarchical clustering of the covariance matrix using Pearson’s correlation as the similarity
metric.
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Supplementary Table 1. Metrics describing local community, calculated at the level of individual cells.

Graph Metrics Symbol Definition
Degree* k Number of neighbors (one link away)
k, Average degree of all neighboring cells

Average Neighbor Degree

Fraction of total possible links among the neighbors of

Clustering Coefficient ¢ a node that are actually present, averaged across all
neighbors
Local Efficiency E; Average shortest path length in local neighborhood
Node Closeness Centrality Cn Sum of reciprocal distances to all other nodes
Node Betweenness Wy, Number of shortest paths that pass through the node
Centrality
S; Length of border shared with neighboring cells, in pixels

Shared Border Length**

*The fraction of neighbors of a certain phenotype is used to compute the neighborhood similarity score,
N

**Valid only for type | graphs (adjacency evaluated through shared pixels)
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Supplementary Table 2. Metrics used to define cellular architecture.

Metrics Definition Mathematical Representation
. Ac
Cell Size Cell spread area
4‘7T.AC
. . P,
Circularity Shape factor
Where P = perimeter of cell
. Pc
Elongation Shape factor —
Ac
2 2
\/(Xc,x - QS,x) + (XC,y - QS,y)
Distance between center of
Polarity* f stai dth troid
olarity mass of stain and the centroi Where Qg = center of mass of
of the cell .
stain
Xc = centroid of cell
255 |
2T
£.255°P
i=0
Mean* First moment of grayscale stain
ean intensity distribution Where p is the histogram counts
of the image for pixel intensities,
with 256 possible bins for a
grayscale image
255 .
Standard Second moment of grayscale Z (L) P
Deviation* stain intensity distribution = 255
1 255 | 4
i
Third Moment*  Third moment of stain intensity > Z — .p
distribution 255 i=0 255
1

Smoothness*

Measure of smoothness of
stain

1+( 1 zssL2 )
2552 4i=0255 P

Entropy from

Histogram*

Measure of randomness of the
stain intensity

- z p-log(p)

Uniformity*

Sum of squared elements in
the histogram counts of the
image for pixel intensities.

2.7

*Computed for all 3 stains (nucleus, actin and microtubules)
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Supplementary Table 3. Cohen’s d effect size for treatment conditions on morphology metrics shown
in Figure 2(h-i) in the main text.

Morphology Treatment Cohen’s d Effect Size
Metric Condition
Cell.Size 6hr (uncorrected*)  12hr 6hr 12hr

(uncorrected) (corrected**) (corrected)

BDNF50 0.256 0.217 0.148 0.170
VEGF50 0.151 0.023 0.093 0.068
Mean.Actin 6hr (uncorrected) 12hr 6hr 12hr
(uncorrected) (corrected) (corrected)
BDNF50 0.381 1.020 0.091 0.873
BDNF100 0.517 2.522 0.260 1.959
VEGF50 1.121 1.018 0.348 0.740
VEGF100 1.267 2.269 0.284 1.808

* no correction for network metrics
** correction applied for network metrics
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Supplementary Video 1

Time-lapse movie of sparse culture of FUCCI-ReN cells. Magenta: Cdt1-mCherry, Green: Geminin-Venus.

Time stamp is shown on top right corner.

Supplementary Video 2

Time-lapse movie of sparse culture of FUCCI-ReN cells with graph overlay. Movie displays phase contrast
frames from movie in Supplementary Video 1, with Cdtl(-)/mCherry(+) nuclei circled in magenta,
Geminin(-)/Venus(+) nuclei circled in green and mCherry(-)/Venus(-) nuclei circled in blue. Yellow lines

represents proximity edges.

Supplementary Video 3

Time-lapse movie of dense culture of FUCCI-ReN cells. Magenta: Cdtl-mCherry, Green: Geminin-Venus.

Time stamp is shown on top right corner.

Supplementary Video 4

Time-lapse movie of dense culture of FUCCI-ReN cells with graph overlay. Movie displays phase contrast
frames from movie in Supplementary Video 3, with Cdtl(-)/mCherry(+) nuclei circled in magenta,
Geminin(-)/Venus(+) nuclei circled in green and mCherry(-)/Venus(-) nuclei circled in blue. Yellow lines

represents proximity edges.
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Supplementary Methods 1

Instructions for using the web-based user interface

1. Go to http://qutublab.rice.edu/cytoNet/

Explanation of parameters and input format can also be downloaded there.

2. Select images

a) Select image files by clicking on the ‘Choose Files’ button to start a file selection dialog box. Multiple
files can be selected by: a) clicking on a file while holding down the control key (command key in MacOS;
b) clicking and dragging; or c) entering control-a (command-a in MacOS) to select all files in a directory or
folder. Color input images are first converted to grayscale images by cytoNet before being processed as
previously described. Binary input images are considered to already be binary masks and the

segmentation step is skipped.

b) Select image number. Some image file formats such as tiff support the storage of multiple images
per file. If your images are not stored in tiff files, you may skip this parameter. Otherwise you can specify
which images in each file will be processed by using comma separated (1-based) indices. Hence 1,3

indicates the first and third images in each file. Indices must be specified in increasing order.

c) For demonstration purposes, cytoNet also provides images if you do not have your own.

3. Select edge determination method

a) Edges between nearby objects are determined by the distance between their centroids.

b) Edges between touching objects are determined by the sharing of border pixels.
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4. Select adjacency threshold

When edges are determined by the distance between centroids, an adjacency threshold parameter is
required. The adjacency threshold determines the maximum distance between two centroids at which

an edge is created in the following way. Let a; and a, be the area of two objects with centroids ¢; and
c, respectively. For each object, compute its effective radius: r; = \/% A graph edge is placed between

two objects (vertices) whenever the distance between their centroids is within the adjusted sum of their
effective radii: distance(c;,c;) <S-(ry +1,) where S is the user defined adjacency threshold

parameter.
5. Enter an email address. cytoNet will use this email address to inform you that processing is complete.
6. Click the Submit button.

7. cytoNet will send you an email message indicating that your request has been accepted. This message
includes a Request ID that you can use to check on the progress of your request. cytoNet will also send

you an email message informing you that processing has ended for your request.

8. When your request has been successfully processed, you may download your results. Note that your

results will be available for only a limited amount of time.

Results are formatted as follows. Global metrics are tabulated in a file called ‘GlobalMetrics.csv’ for all
images in the input folder. Local metrics, computed on a per-cell basis are tabulated in a separate file for
each image called ‘LocalMetrics_filename.csv’, where filename is the original file name. Also, basic
morphology metrics (size, elongation, circularity and stain intensity) are tabulated in a separate file for
each image called SingleCellMetrics_filename.csv, where filename is the original file name. Processed
images are also created for each image in the input folder, called ‘filename_processed.tif’ where the

original image is overlaid with cell indices, object outlines (red) and spatial proximity edges (yellow). Cell
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indices displayed in the processed images are used in the first column of local metrics and single cell metric

files.
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