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Abstract 31 

 32 

We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy 33 

images. cytoNet quantifies spatial topology and functional relationships in cell communities using 34 

principles of network science. Capturing multicellular dynamics through graph features, cytoNet 35 

also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate 36 

cytoNet’s capabilities in four case studies: 1) characterizing the temporal dynamics of neural 37 

progenitor cell communities during neural differentiation, 2) identifying communities of pain-38 

sensing neurons in vivo, 3) capturing the effect of cell community on endothelial cell morphology, 39 

and 4) investigating the effect of laminin 4 on perivascular niches in adipose tissue. The 40 

analytical framework introduced here can be used to study the dynamics of complex cell 41 

communities in a quantitative manner, leading to a deeper understanding of environmental effects 42 

on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis 43 

framework accessible to researchers across domains.  44 

 45 

Availability and Implementation 46 

QutubLab.org/how | cytoNet contact: cytoNetProject@gmail.com 47 

Brain Initiative Alliance Toolmaker cytoNet site:  48 

https://www.braininitiative.org/toolmakers/resources/cytonet/ 49 

 50 

Author / Lay Summary 51 
 52 

cytoNet provides an online tool to rapidly characterize relationships between objects within images 53 

and video frames. To study complex tissue, cell and subcellular topologies, cytoNet integrates 54 

vision science with the mathematical technique of graph theory. This allows the method to 55 

simultaneously identify environmental effects on single cells and on network topology. cytoNet 56 

has versatile use across neuroscience, stem cell biology and regenerative medicine. cytoNet appli-57 

cations described in this study include: (1) characterizing how sensing pain alters neural circuit 58 

activity, (2) quantifying how vascular cells respond to neurotrophic stimuli overexpressed in the 59 

brain after injury or exercise, (3) delineating features of fat tissue that may confer resistance to 60 

obesity and (4) uncovering structure-function relationships of human stem cells as they transform 61 

into neurons. 62 
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Introduction 63 

 64 

Discoveries in biology increasing rely on images and their analysis (3). Advances in microscopy 65 

and accompanying image analysis software have enabled quantitative description of single-cell 66 

features including morphology, gene and protein expression at unprecedented levels of detail (4-67 

7). There has also been a growing appreciation of spatial and density-dependent effects on cell 68 

phenotype. Various types of cell-cell interactions including juxtacrine and paracrine signaling are 69 

an integral part of biological processes that affect the behavior of individual cells. In response to 70 

this realization, many research groups have developed in situ profiling techniques to extract highly 71 

multiplexed single-cell data while preserving the spatial characteristics of biological samples (4, 72 

8-12).  73 

 74 

Need for a user-friendly tool to test biological hypotheses that depend on spatial information 75 

 76 

The increasing prevalence of spatially detailed imaging datasets has led to the proliferation of 77 

spatial analysis pipelines for biological research (Table 1). While these methods have enabled 78 

principled exploration of spatial hypotheses, the majority of the pipelines (with a few exceptions) 79 

have been developed for spatial molecular expression data obtained through methods such as mass 80 

cytometry, specialized high-resolution imaging, and/or scRNA-seq, with inherent idiosyncrasies. 81 

Others have focused on histology and samples obtained for medical applications. As a result, these 82 

techniques are not applicable to many standard imaging datasets obtained through routine 83 

biological experiments. Further, many pipelines require the user to be familiar with programming 84 

and involve the use of customized scripts. All of these limitations mean the most advanced spatial 85 

analysis platforms are not commonly employed by biologists. Instead, the spatial analysis 86 

platforms are largely used by a subset of labs heavily invested in computational analysis, by core 87 

users of specialized microscopy, or by imaging experts themselves. There remains a need for a 88 

generalizable, easy-to-use analysis method to test spatial hypotheses applicable to a wide variety 89 

of biological imaging data.  90 

 91 

 92 

 93 
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Need to capture time-dependency in structure-function relationships 94 

 95 

In addition to spatial and morphological characteristics, time-dependent properties of cell function 96 

also define phenotype. The behavior of cell groups often includes coordinated responses of 97 

subgroups (such as in brain and heart tissue) that require intricate communication, and the role a 98 

cell plays in this communication is part of its phenotype. Live reporters and activity-based dyes 99 

can provide insight into this time-dependent cell communication. As an example, calcium imaging 100 

is a versatile technique to investigate the dynamics of cell signaling, particularly in neural and 101 

cardiac tissue. While there exist many automated tools for calcium signal analysis (Table 2), 102 

combined analysis of spatial and functional topology has the potential to reveal fundamental 103 

insight into the nature of structure-function coupling in biological systems. 104 

 105 

Network science framework 106 

 107 

A single modeling framework to represent multiple descriptors of cell community is necessary to 108 

provide continuity across spatial and temporal scales. Network science offers this modeling 109 

framework. Network science seeks to understand complex systems by representing individual 110 

functional units of the system as nodes and their relationships as edges. This abstract representation 111 

is then used to describe, explain or predict the behavior of the system (13). Network models have 112 

been tremendously useful in studying complex biological systems, most prominently in 113 

neuroscience (13, 14). We posit that network models provide a flexible, intuitive method to model 114 

spatial and functional cell community relationships. Among existing image-based analyses that 115 

employ network science, the cell-graph technique (15) has been employed to great effect in 116 

analyzing structure-function relationships in fixed tissue sections. Our early work applying 117 

network analysis to fixed samples also enabled rapid classification of cell phenotypes (16, 17). 118 

However, the scope of network models in describing cell community structure and dynamics has 119 

yet to be fully explored. 120 

 121 

Here we introduce cytoNet, a user-friendly method to analyze spatial and functional cell 122 

community structure from microscope images, using the formalism of network science (Figure 123 

1). cytoNet is available as a web-based interface run on Amazon cloud. Users can choose to 124 
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analyze image files from their desktops or online servers. Coupled with its ease-of-use, cytoNet’s 125 

versatility makes it accessible to researchers across domains. We originally designed the network 126 

modeling approach to study populations of developing neurons (2) and characterize how vascular 127 

cells respond to neurotrophic factors (16, 17). Here we extend the approach to case studies in a 128 

number of other biological systems. We partnered with labs from across research domains to 129 

illustrate applications of the cytoNet platform to stem cell biology, tissue engineering, and 130 

neuroscience in both in vitro and in vivo settings. The case studies demonstrate the broad utility of 131 

the network modeling approach in studying spatial and functional community structure in complex 132 

biological systems.133 
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Results 134 

 135 

The cytoNet pipeline enabled us to investigate spatial and functional topology of cell communities 136 

in a variety of biological systems. Four case studies are described in the sections below. 137 

 138 

Case Study 1: Spatial and functional dynamics of neural progenitor cells (NPCs) during neural 139 

differentiation 140 

 141 

We designed an in vitro model of neural differentiation to analyze the dynamics of spatial and 142 

functional topology during formation of neural circuits from neural progenitor cells (NPCs)12. 143 

NPCs are known to display structured intercellular communication prior to formation of synapses, 144 

which plays an important role in controlling self-renewal and differentiation (18-20). By 145 

leveraging the cytoNet method, we sought to capture the dynamic structure of NPC communities 146 

and the effect of such community structure on the phenotypes of individual cells. 147 

 148 

In this case study, we describe data obtained using ReNCell VM human neural progenitor cells, in 149 

which spontaneous differentiation was triggered through withdrawal of growth factors, leading to 150 

rapid cell cycle exit and formation of dense neuronal networks in 5 days (2). We captured 151 

spontaneous calcium activity at days 1, 3, and 5 after withdrawal of growth factors. Following 152 

calcium imaging, cells were fixed, and nuclei were stained and reimaged. Nuclei images were then 153 

manually aligned by fiducial markers with their corresponding calcium images. The paired image 154 

sets allowed the creation of both functional and spatial graphs for the same communities of cells. 155 

 156 

Spatial type II graphs (Figure 2a) showed a rise and fall in global network efficiency during neural 157 

differentiation (compared to randomized null models in which edges were rewired while 158 

preserving degree distribution; Figure 2b). We hypothesize that these trends, independently 159 

confirmed in multiple NPC lines (2),  reflect a transition from topologies favoring global to 160 

hierarchical information flow. We further explored this possibility through calcium imaging. 161 

Functional networks constructed from spontaneous calcium activity (Figure 2c) revealed network-162 

wide signal correlations, with trends in spontaneous network activity mirroring spatial network 163 

parameters (Figure 2d). These results suggest that spatial topology predicts functional 164 
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communication patterns in differentiating NPCs, with high spatial network efficiency at 165 

intermediate time points facilitating network-wide communication and low spatial network 166 

efficiency at early and late time points mirroring more clustered communication. 167 

 168 

We next studied the role of cell-cell communication on cell cycle regulation of NPCs. Cell cycle 169 

regulation in NPCs is of interest as it has implications for the genetic basis of brain size in different 170 

species (21) and aberrant regulation can cause diseases like microcephaly (22). Studies in the 171 

ventricular zone of the embryonic mouse neocortex have shown that clusters of clonally-related 172 

neural progenitor cells go through the cell cycle together (23, 24). However, it is unclear whether 173 

this community effect is a ubiquitous feature of neural progenitor cells. To this end, we employed 174 

the cytoNet workflow to determine whether cell cycle synchronization is a feature of 175 

differentiating NPCs cultured in vitro. 176 

 177 

For this part of the investigation, ReNCell VM human neural progenitor cells were stably 178 

transfected with the FUCCI cell cycle reporters (25) to generate Geminin-Venus/Cdt1-179 

mCherry/H2B-Cerulean (FUCCI-ReN) cells. We captured time-lapse movies of FUCCI-ReN cells 180 

after withdrawing growth factors to induce differentiation and built network representations from 181 

nucleus images. Adjacency was determined by comparing centroid-centroid distance to a threshold 182 

(type II graphs).  183 

 184 

In order to evaluate spatiotemporal synchronization in cell cycle, for each individual cell in a 185 

frame, we evaluated the average fraction of neighboring cells in a similar phase of the cell cycle 186 

(G1 phase – mCherry+ and S/G2/M phases – Venus+), normalized by total fraction of that cell 187 

type in the population. We called the average value of this fraction across all cells in an image the 188 

neighborhood similarity score, . Frames from time-lapse movies for low- and medium-density 189 

cultures are shown in Figure 2e (see also Supplementary Videos 1-4). We observed that groups 190 

of cells in the low-density culture moved through the cell cycle in unison, which was reflected in 191 

periodically high values of the neighborhood similarity score (Figure 2f, Supplementary Video 192 

1-2). In contrast, the composition of cell clusters in the medium density culture was relatively 193 

heterogeneous, resulting in relatively low values of the neighborhood similarity score over time 194 

(Figure 2g, Supplementary Video 3-4). Neighboring cells in very low-density cultures are likely 195 
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to be derived from the same clonal lineage, which explains the high level of synchronization in 196 

these cultures (23). This example highlights how cytoNet can be used to derive insight into the 197 

role of cell-cell interactions on dynamic cell behavior. 198 

 199 

Case Study 2: Dynamics of Coupled Functional & Spatial Analysis In Vivo  200 

 201 

In vivo calcium analysis is an avenue for exploring and understanding the role that individual cells 202 

of the nervous system play in processing external stimuli including pain. Pain is mainly mediated 203 

by a subset of primary sensory neurons known as nociceptors in Dorsal Root Ganglia (DRG) and 204 

Trigeminal Ganglia (TG) (26). How DRG neurons function at a population level under 205 

physiological and pathological conditions is unknown. Imaging methods developed to record from 206 

hundreds to thousands of neurons simultaneously in the brains of live mice are helping elucidate 207 

this (27, 28). To investigate population characteristics of pain-sensing neurons, we used cytoNet 208 

to evaluate spatial and functional networks from calcium image sequences obtained in a mouse 209 

DRG model. 210 

 211 

Calcium image sequences, along with single masks identifying individual cells, were inputs to 212 

cytoNet (see Methods for details on generation of masks) (Figure 3). Sensory stimulation 213 

experiments produced a single, major signal spike in each segmented cell (27). Measurement of 214 

the magnitude (ΔF/F0) of each spike is sensitive to the quality of segmentation; to mitigate this, 215 

we characterized each cell not by its spike magnitude, but by the time a cell took to reach its peak 216 

value from 20% of that value (ramp-up) and the time needed for the signal to return to 20% (ramp-217 

down). Inspection of 44 segmented cells revealed 6 unique combinations of ramp-up times and 218 

ramp-down times (Figure 3b). Ramp-up times were either 5 or 10 seconds while ramp-down times 219 

varied between 5 and 35 seconds. This categorization of cells according to functional similarity 220 

was combined with the spatial graph of the segmented cells in order to identify spatial patterns of 221 

cells with similar behavior (Figure 3a). In addition, we note that although the vast majority of 222 

segmented cells reached their peak intensity at 20 seconds, a small group of cells along the left 223 

side of the tissue peaked at 25 seconds suggesting a right-to-left wave of response (Figure 3). This 224 

case study highlights the utility of cytoNet in analyzing spatial patterns of neural populations with 225 

unique functional signatures in an in vivo model. 226 
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Case Study 3: Disentangling the effect of cell community and growth factor stimulation on 227 

endothelial cell morphology 228 

 229 

In a second application to studying human cells in vitro, we used cytoNet to evaluate the relative 230 

influence of local neighborhood density and growth factor perturbations on endothelial cell 231 

morphology. From a regenerative medicine perspective, studying the morphological response of 232 

endothelial cells to neurotrophic stimuli can help assess the cells’ potential angiogenic response 233 

following brain injuries that induce the secretion of neurotrophic factors, like ischemic stroke or 234 

transient hypoxia (29, 30). Common high-throughput angiogenic assays focus on migration and 235 

proliferation as the main cell processes defining angiogenesis, or the growth of new capillaries 236 

from existing ones (31). Distinct morphology and cytoskeletal organization of endothelial cells 237 

indicate the cell’s migratory or proliferative nature, and hence their angiogenic contribution within 238 

a sprouting capillary (32). Reproducibly quantifying the morphological response of endothelial 239 

cells to neurotrophic factors would enable more targeted approaches to enhancing brain 240 

angiogenesis. 241 

 242 

We took an image-based approach to this problem, building a library of immunofluorescence 243 

images of human umbilical vein endothelial cells (HUVECs) stained for cytoskeletal structural 244 

proteins (actin, α-tubulin) and nuclei, in response to various combinations of vascular endothelial 245 

growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) treatment. Cell morphology 246 

was annotated using 21 metrics described in our previous study (33) (Supplementary Table 1), 247 

which included cell shape metrics like circularity and elongation, and texture metrics for 248 

cytoskeletal stains such as actin polarity, smoothness etc. Network representations were designated 249 

based on shared cell pixels (type I graphs) and local network properties were described using the 250 

metrics in Table 3. 251 

 252 

First, we quantified density-dependent effects on endothelial cell morphology in control cultures 253 

(without any growth factor perturbation). Our analysis showed correlations between cell 254 

morphological features and local network properties (Supplementary Figure 3). Some of these 255 

relationships were expected, for instance the positive correlation between shared cell border and 256 

cell size. Other relationships, such as the negative correlation between cell circularity and 257 
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closeness centrality, capture intuitive notions of the influence of cell packing on morphology 258 

(Figure 4a-c). The closeness centrality of a cell (Table 3) describes its relative position in a colony 259 

– cells in the middle of a colony will have higher centrality values than cells at the edge of a colony 260 

or isolated cells. The negative relationship between circularity and closeness centrality implies that 261 

isolated cells and cells located at the edge of colonies are more likely to have a circular 262 

morphology, while cells located at the center of colonies tend to be less circular (Figure 4a-c). 263 

Thus, our analysis revealed that local network properties have a quantifiable effect on cell 264 

morphology. 265 

 266 

To determine dominant cell phenotypes, we performed cluster analysis on our dataset consisting 267 

of 25,068 cells. This analysis revealed 3 major categories of endothelial cells, with unique 268 

morphological and network signatures (Figure 4d-e). Cluster 1 comprised cells with migratory 269 

features, including low circularity and intermediate centrality indicative of their position at the 270 

edges of colonies. Cluster 2 contained small, circular cells with low centrality indicative of their 271 

isolation. Cells in cluster 3 showed proliferative features with large non-circular shapes, and high 272 

centrality indicating their positions in the center of colonies. Through this cluster-based 273 

phenotyping, we show how cytoNet can be used to infer the local environment and topological 274 

arrangement of distinct cell categories within a culture. 275 

 276 

Next, we developed a workflow to analyze the effect of growth factor treatments on cell 277 

morphology, while correcting for the effect of local network properties. We did this to infer the 278 

independent effects of chemical perturbation and local cell crowding on cell morphology. First, 279 

we applied a quantile multidimensional binning approach (34, 35) to calculate the variance in 280 

morphology metrics that could be individually explained by all local network metrics and growth 281 

factor treatments (Figure 4f). We then calculated the values for each morphology metric after 282 

correcting for the effect of local network metrics (see Methods). The raw and network-corrected 283 

values for two metrics, cell size and mean actin intensity, are shown in Figure 4g-h. The influence 284 

of network properties can be clearly seen on cell size, where at 6 hours, large cell sizes are seen in 285 

the uncorrected but not corrected plots (Figure 4g). The effect of growth factor treatment can be 286 

clearly seen in network-corrected mean actin intensity (Figure 4h, Supplementary Table 3), 287 

where VEGF and BDNF treatment have dose-dependent effects on mean actin intensity 288 
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independent of cell crowding effects. Thus, this case study demonstrates the utility of cytoNet in 289 

detecting the independent effects of local cell crowding and growth factor perturbations on cell 290 

morphology. 291 

 292 

Case Study 4: Spatial Analysis of the Pericapillary Niche in Adipose Tissue 293 

 294 

In a second illustration of cytoNet’s utility to analyze intact tissue, we used cytoNet to characterize 295 

the pericapillary niche within adipose tissue. Specifically, we sought to understand the role of 296 

laminin α4, an extracellular matrix glycoprotein, in adipose tissue. Mice with a null mutation in 297 

the laminin α4 gene exhibit resistance to obesity and enhanced insulin sensitivity (36, 37). 298 

Understanding how the deletion of laminin α4 affects the spatial distribution of cells present in the 299 

adipose tissue can provide insight into the mechanisms underlying the functional change, and 300 

guide biomimetic models of the adipose perivascular niche (1, 38, 39). In this Case Study example, 301 

the confocal images of adipose tissue and capillaries were segmented by manual tracing on the 302 

computer, and provided as input to cytoNet.  Because blood vessels have noncircular shapes, the 303 

distance between the centroids of vessels and other objects may not give a good sense of proximity. 304 

As an alternative graph-generation approach, cytoNet can compute the minimum distance between 305 

object perimeters in order to define graph edges. The resulting cell-to-cell perimeter distance table 306 

and cell area computations were used to determine differences between wild-type and knockout 307 

cells (Figure 5).  The observed adipocytes stained with the BODIPY lipid dye tended to be smaller 308 

in knockout tissue compared to wild type (Figure 5c). This characterization is consistent with the 309 

observation that adipose in knockout mice is more similar to beige adipose tissue. In addition, we 310 

observed numerical differences in the “distance to capillary” metric for integrin α7 expressing cells 311 

between the laminin α4 knockout and wild-type mice models (Figure 5f), though for the limited 312 

sample size they were not statistically significant. Overall, these observations align with findings 313 

that the absence of laminin α4 leads to changes in stromal cell structure and distribution in 314 

pericapillary niches within adipose tissue (1).  The resulting data can be used to guide studies into 315 

understanding the mechanisms underlying the effect of laminin α4 on adipose tissue function. 316 

Thus, this case study demonstrates the utility of cytoNet in detecting regional variations of cell 317 

structure within tissues and in addressing testable spatial hypotheses about tissue function.318 
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Discussion 319 

 320 

Advances in in situ profiling techniques have led to the generation of highly multiplexed imaging 321 

datasets describing tissue archicture in great spatial detail (4, 8-12). Spatially detailed imaging 322 

datasets have led to a proliferation of computational pipelines designed to test spatially driven 323 

biological hypotheses (Table 1). However, many of these analysis pipelines are designed 324 

specifically for spatial molecular expression data and are not generalizable to data obtained from 325 

other microscopy techniques. Further, due to their reliance on specialized scripts, many pipelines 326 

are not readily accessible to biological researchers without programming background.  327 

 328 

Here we present cytoNet, a user-friendly pipeline for investigation of spatial hypotheses in cell-329 

and tissue-based biological experiments. cytoNet is available through an intuitive web interface, 330 

eliminating the need to download and install software. Source code is also provided as MATLAB 331 

scripts for more advanced users. Pre-segmented masks provided as input to cytoNet are used to 332 

build network representations of spatial topography. Accompanying fluorescence or confocal 333 

images are used to extract single-cell features and functional relationships. Lastly, network 334 

descriptors are combined with single-cell features to explore cell community effects on cell 335 

phenotypes. 336 

 337 

We demonstrate the utility of cytoNet through four case studies. As shown in detail in our previous 338 

study (2), we harness an in vitro model of neuronal network formation from neural progenitor cells 339 

(NPCs) to demonstrate a rise and fall in network efficiency during neural differentiation. 340 

Accompanying functional network analysis through calcium imaging shows that these trends in 341 

community structure likely reflect a transition from global to hierarchical communication during 342 

the formation of neural circuits. We further use local neighborhood measures to explore the effect 343 

of cell community on cell cycle regulation, showing a density-dependent effect on cell cycle 344 

synchronization. 345 

 346 

Our second case study showed cytoNet's capability for analyzing time-varying functional image 347 

sets. In this case, we characterized spatiotemporal calcium signaling recorded from intact brain 348 

tissue. Networks can be constructed based on the similarity of temporal behaviors of cells. The 349 
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combination of the functional networks and spatial networks reveals local groups of cells with 350 

similar behaviors and assists in the development and testing of hypotheses of functional 351 

subsystems in neuronal tissue.   352 

 353 

We also explored the differential effects of cell density and growth factor stimulation on human 354 

endothelial cells using cytoNet. By applying unsupervised clustering approaches on a suite of 355 

cytoNet-generated metrics describing cell morphology and local neighborhood, we show the 356 

presence of three cell phenotypes. These phenotypes reflect different cytoskeletal states and 357 

multicellular interactions indicative of collective behaviors like migration and proliferation. 358 

Further, we leverage a quantile multidimensional binning approach to investigate the differential 359 

effects of cell density and growth factor perturbations on cell morphology. This workflow can be 360 

used to comprehensively characterize the response of cells to chemical perturbations and aid in 361 

drug discovery. Case Study 4 illustrated another translational application of cytoNet: this time to 362 

study the effect of an extracellular matrix protein on the phenotype of adipose cells within 363 

perivascular niches.   364 

 365 

Notably, two of the case studies were applied in vitro to human cells, and two were applied to in 366 

vivo image sets.  Case Study 1 and 2 capitalized on cytoNet’s ability to integrate functional and 367 

structural graphs across time in a single mathematical framework. The other two cases illustrated 368 

the how cytoNet can be applied to optimize cell phenotyping (Case Study 3 and 4). All of the cases 369 

show how cytoNet can help guide hypotheses, inform biomimetic models or tailor therapeutic 370 

interventions that reflect a cell’s microenvironment. 371 

 372 

The network model utilized by cytoNet is a versatile modeling framework that can be used to 373 

incorporate many hypotheses on cell-cell interactions and their role in cellular behavior. In future 374 

iterations, this framework can be expanded to incorporate non-binary interactions through 375 

weighted networks, shift the focus from individual nodes to motifs through simplicial complexes, 376 

and include dynamic reconfiguration of networks over time through multilayer networks. Further, 377 

once graphs have been defined, graph theory affords a rich array of metrics that can be used to 378 

probe network structure, only some of which were studied here. These include a variety of null 379 

graph models that can be used to test specific spatial hypotheses. 380 
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 381 

In summary, the cytoNet method provides a user-friendly spatial analysis software, leveraging 382 

network science to model spatial topography and functional relationships in cell communities. This 383 

framework can be used to quantify the structure of multi-cellular communities and to investigate 384 

the effect of cell-cell interactions on individual cell phenotypes. 385 

  386 
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Methods 387 

 388 

Software 389 

cytoNet is available as a web-based interface at https://www.QutubLab.org/how and associated 390 

scripts are available at https://github.com/arunsm/cytoNet-master.git. An overview of cytoNet as 391 

a resource for the Brain Initiative Alliance community is provided here, along with video tutorials: 392 

https://www.braininitiative.org/toolmakers/resources/cytonet/ 393 

See Supplementary Methods 1 for instructions on using cytoNet. 394 

 395 

cytoNet image analysis pipeline 396 

The cytoNet pipeline begins with masks and accompanying microscope images. The microscope 397 

images may be any color or gray-scale based microscopy images (e.g., immunofluorescence, 398 

confocal) or a sequence of calcium images (Figure 1a). The provided mask is used to extract 399 

features of cells and to construct spatial and functional graphs (Figure 1b). Spatial graphs are 400 

created by having nodes represent mask objects and edges determined by object distance. Edges 401 

can be found by one of two methods for spatial graphs: by evaluating the distance between cell 402 

boundaries (type I graphs), or by evaluating the proximity of cells in relation to a threshold distance 403 

(type II graphs) (Figure 1b). The type I graphs are useful when detailed information of cell 404 

boundaries and morphology is available, such as in the case of membrane stains or cells stained 405 

for certain cytoskeletal proteins. The type II graphs work well with images of cell nuclei, where 406 

detection of exact cell boundaries is not possible. In both approaches, cells deemed adjacent to 407 

each other are connected through edges, resulting in a network representation. If calcium imaging 408 

sequences are provided as input, a functional graph is created based on correlations among calcium 409 

time series of different mask objects (Figure 1b). 410 

 411 

Image Segmentation 412 

Image segmentation – the identification of salient foreground objects such as cells – is often the 413 

first step in image analysis. The cytoNet pipeline works with pre-segmented masks of images and 414 

accompanying microscope images. For users who do not have mask files, cytoNet includes basic 415 

image segmentation algorithms including thresholding and watershed operations to generate these 416 

masks. The segmentation algorithms included in cytoNet can be parameterized to work well for 417 
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images with clear delineation of nuclei and cell borders, like the endothelial cell examples provided 418 

on the cytoNet website. The cytoNet code also provides frequency detection of cells, where a 419 

change in a functional marker (e.g., Ca2+ or FUCCI) delinates cell location. For object detection 420 

in most other image sets, we point the user to programs that focus on cell segmentation (40-42). 421 

Multiple research teams have made significant inroads into designing generalizable image 422 

segmentation algorithms, among them classic thresholding and watershed approaches (43), pixel-423 

based classifiers (40) and more recently deep learning approaches (4, 41, 42). These programs 424 

generate masks as output. Users may wish to implement them prior to analyzing community 425 

structure through cytoNet. Image segmentation and graph creation are handled separately by 426 

cytoNet, enabling flexibility for the user. 427 

 428 

Generation of spatial networks 429 

Type I graphs are generated as follows. Mask boundaries are expanded by 2 pixels and overlap of 430 

expanded masks is used to assign edges and build an adjacency matrix. Cells touching the image 431 

border are included in calculations of local network properties (Table 3) for cells not touching the 432 

boundary but are excluded for the construction of the adjacency matrix. Type II graphs are 433 

generated as follows: for each pair of objects (nuclei), a threshold distance for proximity is defined 434 

as the average of the two object diameters, multiplied by a scaling factor (S). If the Euclidean 435 

distance between the object centroids is lower than the threshold distance computed, the pair of 436 

objects is connected with an edge. We chose a default scaling factor S = 2 for all our analyses, 437 

through visual inspection of cell adjacency. 438 

 439 

Generation of functional networks 440 

Functional networks are created using the method described by Smedler et al, (44) where cross-441 

covariance between signals is used to assign functional connections between pairs of cells (Figure 442 

1b). A randomized dataset is generated by shuffling each signal in the original dataset at a random 443 

time point. The 99th percentile of cross-covariance values for the randomized dataset is used as a 444 

threshold for determining significant correlations. 445 

 446 

 447 

 448 
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Network Metric Computation 449 

For both spatial and functional graphs, connectivity is denoted mathematically using an adjacency 450 

matrix, , where ,  if there exists an edge between cells  and , and  otherwise. This 451 

concise representation of hypothesized interactions among cells can be used to generate multiple 452 

descriptors at a local level for individual nodes and at a global level for the entire graph (Figure 453 

1c). Extracted metrics are used to visualize and analyze local neighborhood effects on individual 454 

cell phenotypes (Table 3), as well as global cell community characteristics (Table 4). Examples 455 

of local metrics are number of connections (degree) or notions of centrality, such as ability to act 456 

as a bridge between different cell communities (betweenness centrality). Examples of global 457 

metrics include measures of modularity such as the number of connected components, and 458 

measures of information flow such as path length. All the network metrics described in Table 3 459 

and Table 4 were computed using custom-written code, building upon routines provided in (45). 460 

 461 

Cell Culture 462 

Human umbilical vein endothelial cells (HUVEC) were obtained from Lonza and cultured in 463 

EBM-2 medium (Lonza) supplemented with penicillin-streptomycin (Fisher Scientific) and EGM-464 

2 SingleQuot bullet kit (Lonza). For imaging experiments, cells were cultured for different periods 465 

(6, 12 or 24 hours) in different combinations of vascular endothelial growth factor (VEGF, human 466 

recombinant; Millipore) and brain-derived neurotrophic factor (BDNF, human recombinant, 467 

Sigma-Aldrich). Concentrations used were in the range 50-100 ng/ml. Controls were the same 468 

culture period without growth factor treatments. 469 

 470 

Immortalized human neural progenitor cells derived from the ventral midbrain (ReNCell VM) 471 

were obtained from Millipore. Cells were expanded on laminin-coated tissue culture flasks, in 472 

media containing DMEM/F12 supplemented with B27 (both Life Technologies), 2 μg/ml Heparin 473 

(STEMCELL Technologies), 20 ng/ml bFGF (Millipore), 20 ng/ml EGF (Sigma) and 474 

penicillin/streptomycin. For differentiation experiments, cells were cultured in medium lacking 475 

bFGF and EGF. 476 

 477 

 478 

 479 
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Dorsal Root Ganglion Mouse Model 480 

Dorsal laminectomies were performed on anesthetized mice exposing the dorsal root ganglia in 481 

the spinal L5 region. The spinal columns were stabilized under a laser-scanning confocal 482 

microscope. Stimuli were applied to the hind paw in one of four ways: 1) pressure (rodent pincher 483 

analgesia meter), 2) gentle mechanical stroke (brush or von Frey filament), 3) thermal stimuli 484 

(immersion in hot or cold water), 4) chemical stimuli (KCl, capsaicin, or TRPV1 agonist applied 485 

subcutaneously). Calcium image sequences were acquired at depths of up to 100 µm at 1-3 Hz at 486 

intervals of 4-6 seconds. 487 

 488 

Laminin α4 Knockout Mouse Model 489 

Subcutaneous fat was separately collected from laminin α4 knock out mice and wild-type mice. 490 

The samples were processed and incubated with integrin α7 antibody (1:100, Novus Biologics 491 

NBP1-86118) and Griffonia simplicifolia isolectin conjugated with Rhodamine (labels endothelial 492 

cells/blood vessels) followed by incubation with a second antibody (Alexa Fluor 647 Donkey Anti-493 

Rabbit IgG, Abcam ab150075) and BODIPY to stain lipid. Images were collected by a Leica TCS 494 

SP8 Confocal Microscope. 495 

 496 

NPC calcium image acquisition and processing 497 

ReNCell VM neural progenitor cells were plated on LabTek chambered cover glasses for calcium 498 

imaging experiments. Cells were loaded with culture medium containing 3 μM of the fluorescent 499 

calcium indicator Fluo-4/AM (Life Technologies) and Pluronic F-127 (0.2% w/v, Life 500 

Technologies) for 30 min at 37oC. Imaging of spontaneous calcium activity was performed at 37oC 501 

using a 20X objective lens (N.A. = 0.75), with 488 nm excitation provided through a SOLA SE 502 

Light Engine (Lumencor). 16-bit fluorescence images were acquired at a sampling frequency of 1 503 

Hz for a total duration of 15 min, using a Zyla 5.5 sCMOS camera (Andor). Following calcium 504 

imaging, samples were fixed, and nuclei were stained using DAPI. By navigating to the locations 505 

where calcium imaging was performed, manual co-registration was done to obtain 506 

immunofluorescence images for the same fields of view. 507 

 508 

Regions of interest (ROIs) were obtained by segmenting nucleus images using a local thresholding 509 

approach followed by the watershed algorithm. Undersegmented objects were algorithmically 510 
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removed by discarding the top two percentile of object sizes obtained after segmentation. Next, a 511 

time-varying fluorescence trace was calculated for each ROI. For each frame in the calcium 512 

fluorescence image stack, background (average pixel intensity of non-ROI regions in the image) 513 

was subtracted. Average fluorescence intensity for each ROI ( ) was obtained by averaging pixel 514 

intensity values within the ROI for each time point. Baseline fluorescence ( ) for each ROI was 515 

calculated as the minimum intensity value in a window 90s before and after each time point. The 516 

normalized fluorescence trace for the ROI was then calculated as . Cells with low 517 

activity were filtered out by discarding traces with less than three peaks and traces whose signal-518 

to-noise ratio was lower than 1. Quality of the remaining traces was confirmed by manual 519 

inspection. This was done to avoid false positives in the cross-correlation analysis. 520 

 521 

Generation of FUCCI Reporter Neural Progenitor Cell Lines 522 

Stable reporter cell lines (FUCCI-ReN) were generated by sequentially nucleofecting ReNcell VM 523 

neural progenitor cells with an ePiggyBac (46) construct encoding mCherry-Cdt, Venus-Geminin, 524 

or Cerulean-H2B.  Each construct introduced to the cells was driven by a CAG promoter 525 

containing a blasticidin (ePB-B-CAG-mCherry-Cdt1), puromycin (ePB-P-Venus-Geminin), or 526 

neomycin (ePB-N-Cerulean-H2B) resistance gene. Following each round of nucleofection, cells 527 

were cultured in the presence of appropriate antibiotics (2 μg/ml blasticidin, 0.1 μg/ml puromycin 528 

and 100 μg/ml neomycin). 529 

 530 

Acquisition and processing of FUCCI-ReN time lapse videos 531 

FUCCI-ReN cells were plated at different densities on chambered cover glasses (Fisher Scientific) 532 

coated with laminin. Cells were imaged after switching to differentiation medium containing 533 

phenol red-free DMEM/F12. Time-lapse imaging was performed using a Nikon Ti-E microscope 534 

equipped with a motorized stage, a cage incubator for environmental control (Okolab), a 20X 535 

objective lens (N.A. = 0.75), SOLA SE Light Engine for LED-based fluorescence excitation 536 

(Lumencor), appropriate filters for visualizing mCherry, Venus and Cerulean fluorescent proteins 537 

and a Zyla 5.5 sCMOS camera (ANDOR). 16-bit composite fluorescence images were acquired at 538 

10-minute intervals for a total duration of 57.5 hours. 539 

 540 
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Grayscale images for each channel (H2B-Cerulean, Geminin-Venus and Cdt1-mCherry) were 541 

binarized using locally adaptive thresholding. Seeds for the watershed transform were generated 542 

using the regional minima from the distance transform of the grayscale images. Next, the 543 

watershed algorithm was applied to detect boundaries between overlapping cell nuclei. Finally, 544 

information from different channels were used to correct undersegmented nuclei (Supplementary 545 

Figure 2). 546 

 547 

Acquisition and processing of HUVEC immunocytochemistry images 548 

For imaging experiments, HUVECs were cultured on glass dishes coated with fibronectin (Sigma-549 

Aldrich). After appropriate growth factor treatments, cultures were fixed with 4% 550 

paraformaldehyde, free aldehyde groups were quenched using 1 mg/mL sodium borohydride, and 551 

membranes were permeabilized with 0.2% Triton-X-100 solution in PBS. Actin fibers were 552 

visualized using an Alexa Fluor 488-phalloidin antibody (1:40, Molecular Probes) and 553 

microtubules were visualized using a mouse monoclonal anti-α-Tubulin antibody (1:250, Sigma-554 

Aldrich) followed by a goat anti-mouse Alexa Fluor 647 secondary antibody. Nuclei were stained 555 

using Hoescht (Molecular Probes). 16-bit composite immunofluorescence images were acquired 556 

through a 20X objective (N.A. = 0.75) on a Nikon Ti-E epifluorescence microscope. Physical pixel 557 

size was 0.32 μm. 558 

 559 

Fluorescence images were processed as described previously (47) (Supplementary Figure 1). 560 

Briefly, the following steps were used. 561 

1. Contrast was enhanced using histogram equalization. 562 

2. Images were smoothed using a 2D Gaussian lowpass filter.  563 

3. Initial binarization was performed using Otsu’s method. 564 

4. The binary image was dilated to fill in individual cell areas. 565 

5. All objects <1% of the total image area were removed. This was called the final binary 566 

image. 567 

6. A binary representation of the nuclear and microtubule image layers was generated using 568 

a high input threshold value. This was called the marker image. 569 

7. Another binary image was created with values of 0 where either the final binary image 570 

(step 5) or the marker image (step 6) had a value of 1. 571 
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8. Watershed markers were generated by imposing the minimum of the complement of 572 

images obtained in steps 2 and 7. This image had black markers contained within cells to 573 

serve as basins for flooding, while cell areas themselves were represented by lighter pixels 574 

that served as the rising contours of the basins. 575 

9. The watershed algorithm was implemented using Matlab’s built-in function to generate 576 

cell boundaries. 577 

10. Masks generated in step 9 were refined by using composite images of microtubules and 578 

actin as the marker image (step 6). 579 

In order to automate the threshold generation, the area of cell masks obtained from segmentation 580 

were compared to those obtained through thresholding with a high threshold. The entire process 581 

was then iterated until an acceptable area ratio was achieved. 582 

 583 

Processing of In Vivo Calcium Image Sequences 584 

Calcium image sequences from dorsal root ganglion models were processed as follows. To 585 

generate a mask, the calcium image sequence was first decomposed into individual grayscale 586 

frames. Next, for each pixel location, the maximum and minimum intensities were found across 587 

all frames. The differences between the maximum and minimum intensities were stored in an array 588 

(of delta values) and normalized. An initial segmentation of the delta values was done by 589 

thresholding using Otsu’s method, resulting in an initial binary mask. The initial mask was refined 590 

by computing a new threshold by applying Otsu’s method to only those delta values that were 591 

identified as foreground objects in the initial segmentation. The resulting binary image underwent 592 

a morphological closing with a disk of radius 3, and objects of fewer than 10 pixels were removed 593 

to generate the final mask. 594 

 595 

To generate functional networks, edges were placed between two cells whenever: a) the two cells 596 

had the same ramp-up and ramp-down times, and b) the Euclidean distance between the centroids 597 

of the two cells was less than or equal to 10 times the mean of the diameter of each of the two 598 

cells. 599 

 600 

 601 

 602 
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Cluster Analysis 603 

We performed cluster analysis on the HUVEC imaging dataset using Shrinkage Clustering (48), a 604 

two-in-one clustering and cluster optimization algorithm based on matrix factorization that 605 

simultaneously finds the optimal number of clusters while partitioning the data. Cells whose 606 

features had the smallest sum of squares distance to the median values for each cluster were 607 

identified as representative cells for each cluster. 608 

 609 

Correction of Morphology Metrics for Effects of Local Network Properties and Treatment 610 

Conditions 611 

We performed quantile multidimensional binning (49) of cells for all 7 network metrics (5 bins 612 

per metric). The mean of each morphology metric was calculated for each multidimensional bin, 613 

and this mean was subtracted from the raw measurements to generate the network-corrected 614 

measurements for each cell. Treatment-corrected measurements were generated similarly by 615 

calculating the mean of each morphology metric under each treatment condition and then 616 

subtracting it from the raw measurements. 617 

 618 

Variance Explained by Local Network Properties and Treatment Conditions 619 

The variance explained by each factor was calculated using the following formula (35) 620 

 621 

 is the variance of the corrected measurements, and  is the variance of the uncorrected 622 

measurements.623 
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645 

Figure 1. cytoNet workflow. (a) The cytoNet pipeline begins with masks and optionally 
microscope images, which can be static immunofluorescence images or calcium image sequences. 
(b) Spatial proximity is determined either by measuring shared pixels between cell pairs – type I 
networks, or by comparing the distance between cell centroids to a threshold distance – type II 
networks (right panel). Functional networks are estimated from correlations in calcium time series 
data. (c) Cell community descriptors provide information on local neighbrhood characteristics of
individual cells, like degree and centrality measures, and global neighborhood characteristics like 
modularity and path lengths. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2021. ; https://doi.org/10.1101/180273doi: bioRxiv preprint 

https://doi.org/10.1101/180273
http://creativecommons.org/licenses/by/4.0/


  646 

Figure 2. Dynamics of spatial and functional topology in developing neural progenitor cells (NPCs). (a) Spatial NPC networks at day 
1, 3 and 5 of differentiation, overlaid on immunofluorescence images of nuclei stained with Hoescht dye; segmented cells are outlined in 
red, and spatial proximity edges are shown as yellow lines. (b) Network efficiency of spatial NPC networks peaks at day 3; red notches 
show mean and standard deviation; *p < 0.005 from two-sample t-test. (c) Functional networks obtained through calcium imaging with 
Fluo‐4 in developing NPC networks at days 1, 3 and 5. Correlations between calcium traces from individual cells are shown as a network 
plot overlaid on the maximum intensity image from calcium image sequences; scale bar = 50 μm for panels a and c. (d) Fraction of active 
cells in the network; *p < 0.005 from two-sample t-test.  Active cells are defined as cells whose normalized fluorescence traces have three 
or more calcium transients. (e) Frames from time‐lapse movies of differentiating NPCs transfected with FUCCI cell cycle reporters. Borders 
of mCherry+ nuclei (G1) are outlined in magenta, Venus+ nuclei (S/G2/M) are outlined in green, and mCherry‐/Venus‐nuclei (quiescent) 
are outlined in blue, spatial edges are overlaid in yellow; scale bar = 50μm.  (f) Neighborhood similarity score for low‐density culture across 
time. (g) Neighborhood similarity score across time for medium‐density culture. Figures 2a-d adapted from reference (2). 
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647 

Figure 3. Dynamics of Coupled Functional & Spatial Analysis In Vivo. cytoNet captures relationships between spatial proximity of 
neurons and functional features of multicellular modules in vivo. (a) Cells classified according to the time required to first reach their 
maximum ΔF/F0 values from 20% of that value (ramp-up) and the time required to return to 20% (ramp-down). Edges connect similarly 
classified cells that are within 10 cell diameters of each other. All cells reached their peak values at 20 seconds except for those circled 
which reached their peak values at 25 seconds. (b) Calcium time series (ΔF/F0) plotted for 6 categories of cells with unique combinations
of ramp-up and ramp-down times. The blue braces indicate a cell’s ramp-up and ramp-down. Each inset image is a spatial pattern of cells 
with the same ramp-up and ramp-down times. RU = ramp-up time; RD = ramp-down. 
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648 
Figure 4. Influence of local neighborhood density on primary human endothelial cell 
(HUVEC) morphology. (a) Distribution of cell circularity values grouped under different 
levels of closeness centrality; sample size, n=786 cells (group 1; cn < 0.025), 741 cells (group 
2; 0.025 < cn < 0.05) and 782 cells (group 3; cn > 0.05); Cohen’s d effect size: groups (1, 2) = 
0.34, groups (1, 3) = 0.62 (b) Sample immunofluorescence image with graph representation 
overlaid; scale bar = 50 μm. (c) Heatmap depicting closeness centrality of each cell, with 
circularity values overlaid in text. (d) Representative cells from cluster analysis, highlighted in 
magenta. (e) Cell size, closeness centrality and circularity distribution plots for each cluster. (f)
Bar plot of variance explained by growth factor treatment and local network metrics. (g) Box 
plot of cell size as a function of growth factor treatment. (h) Box plot of mean actin intensity as 
a function of growth factor treatment. Legends and axes in (f-h) contain information on 
treatment (BDNF, VEGF), concentration (50ng/ml, 100ng/ml) and time of treatment (6 hours 
and 12 hours). Cohen’s d effect size for (f-h) is shown in Supplementary Table 2. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2021. ; https://doi.org/10.1101/180273doi: bioRxiv preprint 

https://doi.org/10.1101/180273
http://creativecommons.org/licenses/by/4.0/


 649 
  650  Figure 5.  Spatial Analysis of the Pericapillary Niche in Adipose Tissue. Example confocal images of wild type (a) and knock 

out (b) adipose tissue and the corresponding output graph for the wild type image (e). Red = lectin (capillaries). Green = Bodipy
(adipocytes). Yellow: integrin 7 positive cells. Violin plots of cell properties comparing wild-type and knockout (c, d, f-h). 
Distances are measured between the closest border pixels of pairs of objects. Figure 5f is adapted from reference (1). Error bars 
are mean +/- standard deviation. p-values were computed using the Wilcoxon rank sum test (***: p ≤ 0.001). 
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 651 
Table 1. Software tools for spatial analysis  652 
Software Platform Input  Output Reference 

histoCAT MATLAB, 
standalone 
program 

Imaging mass 
cytometry 

User-guided cell neighborhood for 
selected cells, enrichments/depletion of 
cell-cell interactions based on comparison 
to spatially randomized data  

(50) 

Pelkmans lab  Module 
compatible with 
CellProfiler 

Cell cultures Local cell density, population size, cell 
islet edges 

(34, 49, 51, 52) 

Cell-graph Standalone tool H&E stained tissue 
samples 

Multiple graph metrics, e.g. clustering 
coefficient, network diameter 

(15) 

PySpacell Python Cell cultures Statistical tests of magnitude and scale of 
spatial effects 

(53) 

SpatialDE Python Spatial transcriptomics 
datasets 

Statistical tests of genes with spatial 
variation, spatial gene-clustering 

(54) 

trendsceek R Spatial transcriptomics 
datasets 

Statistical tests of genes with spatial 
variation 

(55) 

cytoMAP MATLAB Histo-cytometry data Multi-scale characterization of tissue 
structure 

(56) 

MuSIC Cytoscape Immunofluorescence 
and affinity 
purification mass 
spectrometry data 

Intracellular protein positions and 
distances 

(57) 
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Table 2. Software tools for calcium signal analysis. 654 

Software Platform Input Output Reference 
unnamed MATLAB Images Segmentation, signal extraction, stimulus response analysis, 

assembly detection, network dynamics analysis 
(58) 

CaImAn Python Images Motion correction, source extraction, deconvolution, registration (59) 
EZcalcium MATLAB Images Motion correction, segmentation, signal extraction, deconvolution (60) 
NA3 ImageJ, R Images Total activity value, variance area (61) 
CAVE MATLAB Images Motion correction, ΔF/F calculation, cell detection, calcium trace 

analysis 
(62) 

CaSiAn Java Signal 
data 

Peak and nadir detection, interspike interval and average period 
regression, signal correlation 

(63) 

SIMA Python Images Motion correction, segmentation, signal extraction, ROI registration (64) 
Suite2p MATLAB, 

Python 
Images Image registration, ROI detection, cell determination, activity and 

neuropil extraction, spike deconvolution 
(65) 

CNMF-E MATLAB Images Contour detection, signal extraction (66) 
ABLE MATLAB Images Contour detection, neuropil correction, signal extraction (67) 
SCALPEL R Images Segmentation, signal extraction (68) 
MIN1PIPE MATLAB Images Motion correction, segmentation, signal extraction, deconvolution (69) 
SamuROI Python Images Image stabilization, event detection (70) 

  655 

.
C

C
-B

Y
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted F
ebruary 11, 2021. 

; 
https://doi.org/10.1101/180273

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/180273
http://creativecommons.org/licenses/by/4.0/


Table 3. Local neighborhood metrics calculated at the individual cell level 656 

Graph Metrics  Symbol  Definition  

Degree  Number of neighbors one link away from cell of interest 

Average Neighbor Degree   Average degree of all neighboring cells 

Clustering Coefficient  Number of edges in local neighborhood of a cell, divided by total possible connections 

Local Efficiency  Average shortest path length in local neighborhood 

Node Closeness Centrality  Sum of reciprocal distances in number of links to all other nodes 

Node Betweenness Centrality  Number of shortest paths that pass through a node 

Shared Cell Border1  Total number of pixels shared with neighbors 
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Table 4. Global graph metrics and their normalization to account for network size. n = number of nodes, m = number of edges. 658 

659  Graph Metrics Symbol Definition 
Node Count n Number of nodes 
Edge Count m Number of edges 
Fraction Area Cells A Fraction of total surface area in field of view covered by cells 
Average Degree avgeK Average number of connections for a node in the network 
Variance in Degree varK Variance of node degree sequence 
Network Heterogeneity NetworkHeterogeneity Standard deviation of node degree sequence divided by mean of degree sequence 

– reflects tendency of network to contain hub nodes 
Average Neighbor Degree avgeNeighborK Average degree of local neighborhood, averaged across all nodes 
Variance in Neighbor Degree varNeighborK Variance of the average neighbor degree sequence 
Network Efficiency E The average reciprocal of shortest path length across all pairs of nodes,  
Average Clustering Coefficient C Fraction of total possible links among the neighbors of a node that are actually 

present, averaged across all nodes,    
Number of connected 
components 

nConnectedComponents Number of disconnected sub-graphs in main graph 

Average Size of Connected 
Components 

avgeComponentSize Average number of nodes in each connected component 

Variance in size of connected 
components 

varComponentSize Variance in component size sequence 

Network Diameter networkDiameter Longest shortest path length of network 
Isolated Node Count nIsolatedNodes Number of nodes with no neighbors 
Pair Node Count nPairNodes Number of independent pairs of nodes 
Triangular loop count nLoops3 Number of loops of 3 nodes 
4-star motif Count nStar4 Number of star motifs with one hub and three spokes 
5-star motif count nStar5 Number of star motifs with one hub and four spokes 
6-star motif count nStar6 Number of star motifs with one hub and five spokes 
Rich-Club Metric Average avgeRichClubMetric Measure of the tendency of nodes with high number of links to be well connected 

among each other (71); Computed for threshold degrees between 1 and (n-1) 
Rich-Club Metric Variance varRiceClubMetric Variance in rich-club metric for thresholds from 1 to (n-1) 
Assortativity Assortativity Pearson correlation coefficient of degrees between pairs of linked nodes(72).  
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