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Abbreviations 

 

DIA: data independent acquisition 

DDA: data dependent acquisition 

SRM: selected reaction monitoring 

MRM: multiple reaction monitoring 

PRM: parallel reaction monitoring 

SWATH: sequential window acquisition of all theoretical mass spectra 

CIP: characteristic intensity pattern 

MCIP: multiple characteristic intensity patterns 

FA: formic acid 

TFA: trifluoroacetic acid 

ACN: aceonitrile 

PSM: peptide spectrum match 

cps: counts per second 

NRFV: normalized replicate fragmentation vector 

TPP: trans proteomic pipeline 

SVM: support vector machine 
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Summary 

Spectral libraries play a central role in the analysis of data independent acquisition (DIA) 

proteomics experiments. DIA experiments require spectral libraries, as most current methods 

cannot apply traditional peptide identification via database searching on DIA data. A central 

assumption in current spectral library tools is that a single characteristic intensity pattern (CIP) 

suffices to describe the fragmentation of an unmodified peptide in a particular parent ion charge 

state (peptide charge pair). However, we find that this is often not the case. 

We analyze a heterogeneous dataset of 440.000 MaxQuant - preprocessed peptide spectra from 

a QToF mass spectrometer, stemming from over 100 different LC-MS/MS runs. The dataset 

corresponds to 10.580 peptide charge pairs, which have each been measured and identified at 

least 20 times. We demonstrate that the same charged and unmodified peptide can fragment in 

multiple reproducible ways, even within the same LC-MS/MS run. We integrate multiple 

reference CIPs (MCIPs) in our model library and observe a >99% coverage of replicate 

fragmentation spectra for 95% of peptide charge pairs (using up to four CIPs). Using a single CIP 

(as in current spectral library approaches), we find >99% coverage for only 50% of the peptide 

charge pairs. 

Our approach achieves substantially greater sensitivity in comparison to the popular SpectraST 

library generation tool. Using randomized decoy spectra, we demonstrate that identification 

accuracy of the MCIP approach is improved by up to 12% compared to a single CIP approach. 

We test the MCIP approach on a SWATH data set and observe a ~30% increase in peptide 

recognition. We conclude that including MCIPs in spectral library approaches would yield 

increased sensitivity without compromising the false discovery rate. 
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Introduction 

 

For the standard data dependent acquisition (DDA) approaches of proteomics, selected 

precursor ions are isolated in a small mass window and subsequently submitted for 

fragmentation and MS2 measurement (1,2). In the most widely used DDA approach (Top-N), 

also called shotgun proteomics, the fragmentation spectra of the N most intense precursor ions 

are acquired in each duty cycle and analyzed by scoring the mass to charge (m/z) values of the 

most intense fragment peaks against a theoretical prediction of m/z values of fragment ions 

derived from sequence databases (3). The theoretical m/z values of fragment ions are 

discriminative as, in most cases, each peak in the MS2 fragmentation spectrum stems from the 

same precursor ion. Additionally, the m/z value of the submitted precursor ion is known, which 

narrows down the number of possible matches in the sequence database. This high confidence 

approach comes at the price of decreased coverage, as all peptide precursors not selected for 

fragmentation cannot be analyzed (4). As precursor ion selection can be described as semi-

random (5), DDA approaches are also problematic for quantification, as a peptide measured in 

a first run, might not be selected in a second run, even though it is abundant.  

Selected reaction monitoring (SRM, alternatively multiple reaction monitoring (MRM) or parallel 

reaction monitoring (PRM)) approaches (6, 7) address this problem by a fixed preselection of 

precursor ions. This approach allows very sensitive and accurate quantitation of proteins, 

however, due to preselection of features, the overall coverage of the proteome is low and all 

information that is excluded from the feature list is lost. 

Data independent acquisition (DIA) approaches try to overcome these limitations by leaving out 

the preselection of precursor ions (8-10). To reduce complexity, many implementations scan 

repeatedly over a wide m/z range in short fragmentation windows (11-17). The whole m/z range 

is covered in a few seconds cycle time. Due to their high sensitivity, DIA approaches like the 
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sequential window acquisition of all theoretical mass spectra (SWATH) (16, 17) have recently 

gained attention. 

In general, the possibilities for spectral searches via sequence databases are challenging for 

DIA data (18, 19) due to the ambiguity of m/z values in complex peptide mixtures. Thus, many 

commonly used approaches rely on spectral libraries, also considering fragment ion intensities 

(17). These libraries are obtained from DDA proteomics experiments, by generating a 

characteristic intensity pattern (CIP) of (m/z – ion intensity) pairs from confidently identified MS2 

spectra for each peptide in a distinct charge state (peptide charge pair) (20 - 23).  

A library pattern must be constructed such that it is sufficiently specific (few false positives) 

while maintaining high sensitivity (few false negatives). A library of CIPs is then compared to the 

measured fragmentation spectrum using a similarity measure. Most current approaches for the 

construction of library patterns employ the scoring measure dot product (24 – 27) or the related 

spectral contrast angle (28 – 30). To our knowledge, all tools try to approximate one unique CIP 

from the available measured fragmentation spectra. 

Prior to their use in DIA approaches, spectral libraries have been employed to speed up and 

increase confidence in peptide recognition (20) and currently, large spectral repositories (31-34) 

exist. In current DIA applications like OpenSWATH (17), chromatography-based scores are 

used to identify consistent MS2 fragmentation spectra, which are then matched with a library 

CIP. Hence, having an accurate spectral library and a highly reproducible and calibrated LC 

system are key factors determining the quality of a DIA experiment. Nevertheless, even under 

optimal experimental conditions, the applied collision energy differs between the acquisition 

modes. In DDA mode, the charge of the precursor ion is determined during a MS1 survey scan 

before submission to fragmentation. The collision energy is adjusted to an average optimum 

depending on mass and charge using machine-specific equations for each charge. In SWATH-

acquisition, the collision energy is determined using the same linear equation under the 

assumption of a default charge state 2+ (16), resulting in sub-optimal fragmentation energies for 
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peptides with higher charges. In MRM, fragmentation energies are often optimized for each 

precursor – fragment pair (transition) in order to maximize the signal intensity, in PRM 

experiments, a single fragmentation with optimized collision energy is performed and all 

fragments are acquired in one spectrum.  

In the context of these developments, improving spectral libraries gains renewed importance. In 

this study, we present a systematic analysis of fragmentation spectra identified with high 

confidence, by generating and evaluating a model spectral library. Our Multiple Characteristic 

Intensity Pattern (MCIP) method is similar to the SpectraST approach by Lam et al. (20), but 

differs in three key points: (i) We conduct our library generation on MaxQuant (35) preprocessed 

peptide identifications without modifications and considering only b- and y- ions (with molecular 

losses). This reductionist approach enables us to focus on the core properties of peptide 

fragmentation, while utilizing the preprocessing algorithms of the MaxQuant software, which 

have shown to drastically improve peptide recognition (35). SpectraST uses semi-raw (.mzXML) 

fragmentation spectra for the generation of spectral libraries, without further preprocessing (23). 

(ii) As we have already preprocessed the spectra, we can apply either a ranking by signal to 

noise previous to the clustering or use an unranked approach. In both cases, we apply a 

systematic clustering until all spectra are contained in a cluster and retain all clusters involved. 

(iii) We determine one CIP from each cluster. This can yield more than one CIP per peptide 

charge pair. 

Table 1 gives an overview and more details of our MCIP method and compares it to state-of-

the-art approaches.  

 [Table 1] 

In the following analysis, we use peptides, which have been measured and identified at least 20 

times across several experiments, yielding ≥ 20 replicate fragmentation spectra for each peptide 

charge pair. To our knowledge, there is currently no spectral library analysis, which restricts to 

such a high number of replicate spectra. We observe that for many peptide charge pairs, a 
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limited set of distinct patterns, which are each highly reproducible, is measured within and 

across different LC-MS/MS runs. In this paper, we describe the MCIP method in detail, evaluate 

its performance compared to a single CIP approach (as is currently the default for spectral 

library approaches) and show that MCIP yields significantly increased sensitivity with similar 

specificity in benchmarks. We demonstrate that the increase in spectral recognition by MCIP 

also applies to SWATH data. Finally, we investigate possible experimental factors influencing 

the MCIP phenomenon (different reproducible fragmentation of peptide charge pairs and the 

measurement of MCIPs). We carry out tailored LC-MS/MS runs, where we vary the collision 

energy and width of the precursor isolation window. These runs show an enrichment of 

differently fragmenting spectra for wider isolation windows, suggesting that interferences with 

the background matrix influence the reproducibility of peptide fragmentation. A software to 

check MaxQuant processed proteomics runs is available on 

https://www.bio.ifi.lmu.de/forschung/proteomics/mcip/index.html. 

 

 

Experimental Procedures 

Proteomic analysis via LC-MS/MS on Q-TOF mass spectrometer 

Samples were injected into an Ultimate 3000 HPLC system (Thermo Fisher Scientific). For 

nano-reversed phase separation of tryptic peptide mixtures before MS analysis, peptides were 

desalted on a trapping column (5 x 0.3 mm inner diameter; packed with C18 PepMap100, 5 µm 

particle size, 100 Å pore diameter, Thermo-Fisher Scientific). The loading pump flow of 0.1 % 

formic acid (FA) was set to 25 µl/minute with a washing time of 10 min under isocratic 

conditions. Samples were separated on an analytical column (150 x 0.075 mm inner diameter; 

packed with C18RP Reposil-Pur AQ, 2.4 µm particle size, 100 Å pore diameter, Dr. Maisch) 

using a linear gradient from 4 % to 40 % B in 170 min with a gradient flow of 270 nl/minute. 
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Solvents for sample separation were A 0.1 % FA in water and B: 80 % acetonitrile (ACN), 0.1 % 

FA in water. The HPLC was directly coupled to the 6600 TOF mass spectrometer using a nano-

ESI source (both Sciex). A data-dependent method was selected for MS detection and 

fragmentation of eluting peptides comprising one survey scan for 225 ms from 300 to 1800 m/z 

and up to 40 tandem MS scans for putative precursors (100-1800 m/z). Precursors were 

selected according to their intensity. Previously fragmented precursors were excluded from 

reanalysis for a timespan between 10 and 50 seconds, depending on the experiment (see 

supplemental table 2). Rolling collision energy setting was enabled allowing to perform 

fragmentation at the optimized collision energy for the peptide charge pairs. Precursor charge 

states from +2 to +5 were specifically detected. 

 

SWATH data acquisition 

Peptides from tryptic digestion were resuspended in 10 µl 0.1 % trifluoroacetic acid (TFA) and 

injected into a Ultimate 3000 nano-chromatography system equipped with trapping column (C18 

AcclaimPepMap, 5 x 0.2 mm, 5 µm 100 Å) and a separation column (C18RP Reposil-Pur AQ, 

150 x 0.075 mm x 2.4 µm, 100 Å, Dr. Maisch, Germany) poured into a nano-ESI emitter tip 

(New Objective, Woburn MA). After washing for 10 min on the precolumn with 0.05 % TFA, 

peptides were separated by a linear gradient from 4 % to 40 % B (solvent A 0.1 % FA in water, 

solvent B 80 % ACN, 0.1 % FA in water) for 150 min at a flow rate of 270 nl/min. Eluting 

peptides were detected on a Triple TOF quadrupol-TOF hybrid mass spectrometer (Sciex, 

Framingham, MA). First, a mixture of all conditions was run in data-dependent mode to 

generate an ion library for the data-independent SWATH measurements and optimize the 

isolation window distribution over the mass range for SWATH-data acquisition. Data-dependent 

acquisition consisted of a survey scan and up to 40 tandem MS scans for precursors with 

charge 2-5 and more than 200 counts per second (cps) abundance. Rolling collision energy was 

set to generate peptide fragments. The overall cycle time for the DDA experiment was 2.676 
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seconds. Previously analyzed precursors were excluded from repeated fragmentation for 30 

seconds employing a mass window of 20 ppm around the precursor mass. 

MS data with data-independent SWATH acquisition were generated using the same HPLC 

conditions as used for the generation of the ion library. Based on the distribution of the m/z 

values of identified peptides in the ion library, the mass range from 300-1200 m/z was split into 

40 SWATH mass windows. First, precursors were monitored from 300-1500 m/z in a survey 

scan of 50 ms, followed by the SWATH data acquisition for 65 ms/mass window, resulting in an 

overall cycle time of 2.7 seconds. The fragmentation energy was adjusted to fragment 2+ 

charged ions in the center of the mass window and a collision energy spread over 7 units was 

allowed. 

 

Targeted LC-MS/MS experiments to study fragmentation settings 

To investigate the influence of isolation width and collision energy on occurrence of distinct 

fragmentation patterns, targeted LC-MS/MS runs were carried out on a subset of 30 peptides 

associated with multiple fragmentation patterns and 30 control peptides. Control peptides were 

selected with similar number of identified mass spectra, to avoid comparison to highly abundant 

peptides. For this experiment, a special SWATH setup with a 60 min gradient on a uLC system 

was employed. The SWATH windows were specifically set for each precursor to meet the 

requirements of the study. Fragmentation settings were kept stable throughout a single run. 5 

different collision energy settings and 5 different isolation windows were selected and measured 

in two replicates per condition. The optimal collision energy depends on correct charge state 

assignment, to study if too high or low collision energy alters the peptide fragmentation, we 

applied collision energies -3 V and -1.5 V lower than the calculated optimal collision energy as 

well as 1.5 V and 3 V higher. As reference the calculated optimal collision energy was selected, 

for this study the isolation window was kept at 1 Da around the precursor. An sub-optimally 

designed isolation window can cause co-isolation of other peptides and therefore mixed 
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fragment ion spectra. Therefore, we applied isolation windows of 1 to 5 Da to study the effect of 

the matrix background on reproducibility of fragmentation. Peptide sequences and mass 

spectrometer settings are listed in supplemental table T5. 

 

 

Data analysis of data-dependent LC-MS/MS experiments 

Data-dependent experiments performed on the QToF mass spectrometer were analyzed in 

MaxQuant (version 1.5.1.2 and higher) using the Andromeda search engine (36) and a sample 

specific protein database in FASTA format (see supplemental table 1). The settings for 

database search were as follows: fixed modification carbamidomethylation of cysteine, variable 

modifications oxidation of methionine and acetylation at the protein N-terminus ; Δmass = 30 

ppm for precursors for the first search and 6 ppm for the second search, Δmass = 60 ppm for 

TOF fragment ions, enzyme trypsin with specific cleavage and max. two missed cleaveages. 

Peptide hits required a minimum length of 7 amino acids and a minimum score of 10 for 

unmodified and 40 for modified peptides. PSM-FDR was set to 1%. 

MaxQuant preprocessing included mass-centroiding of peaks and corresponding intensity 

adaption, de-isotoping and detection of co-fragmented peptides (35). The results were returned 

as msms.txt files, containing the relevant spectral information of fragment ion intensities, 

retention times, fragment masses as well as charge and modification states of the identified 

peptide. 

The MS proteomics data, including MaxQuant results have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 

partner repository with the data set identifiers PXD005060, PXD005063, PXD005100, 

PXD005111, PXD006245 and PXD006691. More details on the datasets used are displayed in 

supplemental table 1. Supplemental table 2 contains all information on the peptide 

identifications. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2017. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

The spectra have been uploaded to the MS-Viewer database and the search keys are listed in 

supplemental table T3. 

 

Selection of processed fragmentation spectra 

Peptides were separated by charge into peptide charge pairs, because differences in the charge 

state significantly alter the fragmentation pattern (see supplemental Fig. S1). Only peptide 

charge pairs, which had at least 20 replicate spectra (see supplemental Fig. S2), were included 

to enable the statistical analysis of repeated fragmentation of chemically identical peptides. In 

our main analysis, we restricted our MCIP approach to only b- and y- ions in all charge states 

with different molecular losses (examples: b3, y4-NH3, y6(2+), b5(2+)-H2O). In additional 

supplemental analyses, we also consider other ions for comparison (supplemental Fig. S6). 

Modified peptides were excluded.  

 

Import of semi-raw fragmentation spectra 

To quantify the impact of using all peaks without filtering, an additional analysis with raw spectra 

was carried out. To assess the influence of the preprocessing method, two different methods of 

preprocessing the data were applied. In the first approach, the raw spectra were imported from 

the MaxQuant .apl files contained in the “andromeda” folder in the MaxQuant output folder. The 

files were parsed using a self written parser. From these files we extracted a list of m/z values 

with corresponding intensities, without b- and y- ion annotation for each spectrum. The spectra 

were assigned to their respective MaxQuant identification via the spectrum index. In the second 

approach, the raw .wiff files were processed into the .mzXML format with the MSConvert tool 

(38) without any additional filters (yielding profile data) and analogously imported using a self 

written parser and assigned to their respective MaxQuant identification via the spectrum index. 

To avoid problems with false indexing, the .mzXML files were additionally scored with the in-

house scoring ReScore described below. The differences between the preprocessing methods 
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can be seen in supplemental figure S6. 

 

Assessment of the similarity of fragmentation spectra 

The similarity among spectra of the same peptide charge pair (replicate spectra) can be used as 

a measure to characterize the fragmentation behavior of peptide charge pairs. As spectra are 

vectors of (m/z, intensity)-pairs, they can differ in the m/z-values (different peaks) or their 

intensities, or both. If replicate spectra are highly similar, the fragmentation process can be 

described as distinct and reproducible. If replicate spectra are very dissimilar, a reason could be 

different fragmentations of the precursor ion.   

To assess similarity between replicate spectra, all replicate spectra (at least 20, see previous 

section) available for a peptide charge pair were pairwise compared to each other. 

Each fragmentation spectrum was represented as a normalized replicate fragmentation vector 

(NRFV) I of length 1 

[equation 1] 

with i1 to in denoting the intensities in the pattern and the indices of the vector implicitly denoting 

the different fragmentation ions (m/z values). To get vectors of equal length, each fragmentation 

ion with intensity >0 in any of the replicate spectra was included in every vector. Imputed 0 

values were used, if a corresponding ion was not observed. A best bipartite matching method 

was used for raw spectra at different ppm precisions. Only vectors with length >4 were used. 

Each vector was normalized to length 1 (unit vector). 

After determining which intensities were included in the NRFVs, the spectral similarities 

between all NRFVs of a peptide charge pair were assessed in a pairwise fashion. For each pair 

X and Y of NRFVs, the dot score was calculated using the dot product similarity measure DP, 

defined as  

 [equation 2] 

with xk and yk denoting the k-th element of X and Y, respectively. If the dot score was 
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calculated between b- and y- ions of the spectra, it was called dot score, if it was calculated 

among semi-raw spectra it was called raw dot score. For the raw dot scores, the score was 

determined for four different ppm precisions (50 ppm, 100 ppm, 150 ppm, 200 ppm). 

A pair of fragmentation spectra was called similar, if the dot score of their two corresponding 

NRFVs was larger than a predefined similarity threshold (see below). 

 

Centroid clustering and CIPs 

A central goal of this study is to find a minimal set of characteristic intensity patterns (CIPs), 

able to characterize all observed fragmentation spectra of a peptide charge pair. In order to 

derive these, a centroid clustering approach was employed to determine clusters of similar 

NRFVs. For each NRFV, the neighborhood (all fragmentation spectra with a similarity score 

greater than the chosen similarity threshold) was determined. The NRFV corresponding to the 

spectrum with the best signal to noise ratio (defined via the average intensity of the 2nd to 6th 

highest peak divided through the median of the remaining peaks) was defined as a CIP, 

analogous to the SpectraST approach (20). Additionally, also NRFVs with the largest number of 

neighbors were defined as CIPs (see supplemental figure S5). If not all NRFVs were neighbors 

to this CIP, it was removed with all its neighbors and the procedure was repeated on the 

remaining NRFVs. This determined more CIPs for the peptide charge pair in question. 

Depending on the number of CIPs resulting from this procedure, each peptide charge pair was 

assigned either a single CIP (all spectra of a peptide charge pair assembled in a single cluster) 

or multiple CIPs (MCIPs). The CIPs were referred to by size of their respective cluster: CIP1 

corresponds to the largest cluster, CIPi to the i-th largest cluster. 

 

Spectral coverage 

The spectral coverage was introduced as a measure for the sensitivity of the approach. A 

spectral library was constructed with the entries for each peptide charge pair consisting either of 
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a single CIP of the largest cluster, or of MCIPs  of the n largest clusters. 

The single CIP or each element of the MCIPs  was then compared to all 

NRFVs of the peptide charge pair using the dot score. If the dot score was above the similarity 

threshold for any of the CIPs, the respective spectrum was marked as covered. The spectral 

coverage denotes the fraction of replicate spectra covered.  

 

Comparison with SpectraST 

A comparison of the spectral coverage with the popular SpectraST search engine (23) was 

carried out. For this, raw spectra (.wiff format) of human cell lines (see supplemental table 1) 

were submitted to the Trans-Proteomic Pipeline (TPP) (37) software suite v.4.8.0, which 

contained all tools used in the further processing. In parallel, the same .wiff files were processed 

using the MCIP approach described above. The .wiff files submitted to the TPP were converted 

into the .mzXML format using msconvert (38) and files were searched using the spectrum 

search engine X!Tandem (39) under the “isb_default_input_kscore.xml” configuration included 

in the TPP. The Ensembl v.75 Homo sapiens GRCh37 sequence database was used. The 

resulting .pep.XML output files were evaluated using PeptideProphet (40). The PeptideProphet 

ranked .pep.XML output files were submitted to SpectraST in library create mode using the 

default configurations. The resulting raw library was processed to a consensus library using the 

corresponding option included in SpectraST. The consensus library mode was chosen, because 

it has been shown to give the highest number of positive identifications (20). The consensus 

library was then quality filtered using the highest quality level (option -cL5) in SpectraST.  

In order to systematically compare SpectraST and the MCIP approach, a similar spectral 

coverage approach as discussed above was used for SpectraST. The PeptideProphet ranked 

.pep.XML file was parsed and the input spectra for each SpectraST library entry were 

determined. Then, the SpectraST library was used to search these spectra in the .mzXML files. 
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The search is applied to the same data used for the construction of the library. This idealized 

search scenario conservatively measures whether the CIP constructed by SpectraST suffices to 

recapture all previously identified replicate spectra of a peptide. The resulting .xml output file of 

the search was parsed and, analogous to the MCIP library creation approach, a spectrum was 

marked as covered, if the dot score of the library consensus pattern with the spectrum was 

greater than 0.6. 

To compare with the MCIP approach, only spectra that were identified in both the MaxQuant 

and the PeptideProphet output were further processed. Additionally, only peptides that had at 

least 10 replicate spectra in both the MaxQuant and PeptideProphet output were included. The 

number of replicate spectra was lowered to 10 (from 20) to increase the number of identified 

peptide charge pairs. 

 

 

Benchmarking via cross validation 

To conduct performance testing, the setup visualized in Fig. 1 was used to determine false 

positives and false negatives. The replicate spectra of each peptide charge pair were split into 

two fractions. The first fraction consisted of 20% of the spectra and each spectrum was 

assigned a decoy spectrum  which contained m/z-shuffled intensities of the original 

spectrum. By shuffling the spectra, the total intensity and the m/z values were preserved, while 

the spectrum represented changed completely. A 1:1 mixed test set containing original and 

decoy spectra was then generated. The second fraction consisted of the remaining 80% of 

spectra. On this fraction, CIP(s) were created as described in the previous sections. The CIP(s) 

were then similarity scored against the test set using the dot score. A similarity score below the 

similarity threshold for an original spectrum  was marked as false negative, a score above 

the threshold with a decoy spectrum  was marked as a false positive. The m/z-shuffling 
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approach is similar to the method employed by Lam et al. (41), where counting of decoy 

matches is used library wide to estimate the FDR. Different from Lam et al. (41), each set of 

replicate spectra was individually checked via fivefold cross validation in this study. This allowed 

estimating the relative fractions of false positives and false negatives per peptide charge pair, 

rather than library wide. 

[Fig. 1] 

 

 

Validation of the global similarity threshold 

A global similarity threshold of dot score 0.6 was adapted from the SpectraST search engine 

(23) and was subsequently validated using the sampling analysis approach discussed above. 

This was done to check, whether this threshold would give overall discriminative results.  

Each spectrum in the dataset was represented as a NRFV and assigned 1000 differently 

shuffled decoy vectors. Each NRFV was then dot scored against each decoy vector, which 

resulted in a distribution of 1000 shuffled dot scores for each NRFV. From each distribution of 

shuffled dot scores, a local discriminative dot score was extracted, such that less than 5% of the 

shuffled dot scores were above this threshold (in other words, the 95% quantile was extracted). 

This meant, that the use of this dot score would result in 5% acceptance of decoy spectra for a 

particular NRFV. All local discriminative dot scores were collected, which resulted in a new 

distribution. From this new distribution, again the 95% quantile was extracted (see supplemental 

Fig S3). This 95% quantile was 0.62 in this study, which agreed well with the global similarity 

threshold of 0.6. The approach of extracting two quantiles was taken, because the distribution of 

shuffled dot scores varied distinctly for different spectra. Hence, taking only one quantile on the 

distribution of all shuffled dot scores of all spectra combined would result in some spectra (the 

spectra with generally large shuffled dot scores) being completely ambiguous. 
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Testing the implications for SWATH data 

To get comparable results with SWATH, a whole cell extract from the fruitfly Drosophila 

simulans that had been analyzed using both DDA and SWATH was used (see supplemental 

table 1, Id 5). The input samples for both measurements were identical, hence the peptides 

discovered in the DDA run could be expected to be present in the SWATH dataset at the same 

retention time (+/- 1min). The peptides identified in the Drosophila simulans DDA run were 

compared against all other DDA results and only peptides with at least 20 replicate spectra 

observed in the other DDA results were included in the analysis. This applied to 29% of all 

identified peptides in the Drosophila simulans DDA run. The CIPs derived from the other DDA 

results were then separately dot scored against the output spectra of the DDA and the SWATH 

run in their respective retention time windows (similarity threshold 0.6).  

 

Processing of targeted LC-MS/MS runs for CE and isolation window study  

Due to the special data acquisition setup described above, the output of the targeted LC-MS/MS 

experiments was not accessible to standard DDA processing via MaxQuant. The .wiff files were 

converted to .mzXML using MSConvert (38) and the .mzXML files were then processed using 

an in-house scoring method, termed ReScore. ReScore is based on the scoring described in the 

publication of the MaxQuant search engine Andromeda (36). Using IDA runs that were carried 

out along with the the targeted LC-MS/MS runs on the same standardized HeLa Pierce lysate 

(PXD006691), the scores were compared with Andromeda. The scores show strong correlation 

with the Andromeda scoring and the vast majority of Andromeda scores is higher than the 

corresponding ReScore (supplemental Figure S7). Hence, a certain ReScore cutoff can be used 

as a reliable cutoff for the Andromeda score. 
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Results 

Library generation settings 

The spectral library was solely generated from DDA data only, with the explicit runs marked in 

supplemental table 1. For the instrument, the standard configurations as recommended by 

Sciex were applied to all setups with the vast majority of parameters fixed between all runs. 

Different settings were only applied to the parameters “Exclude for:” (range 10s - 50s), “Mass 

tolerance:” (15ppm – 50ppm), “Switch After” (30 spectra – 40 spectra) and “With intensity 

greater than” (100 - 150). Rolling collision energy was set in all cases. The specific parameters 

for each input sample are listed in supplemental table T2. 

MCIPs are frequent and reproducible 

We used the centroid clustering approach on all peptide charge pairs with 20 or more replicate 

spectra. The centroid(s) of the neighborhood(s) of normalized replicate fragmentation vectors 

(NRFVs) were taken as the characteristic intensity pattern(s) (CIP(s)) for each peptide charge 

pair. For reasonable similarity thresholds, we observed a large fraction of peptide charge pairs, 

which had multiple CIPs (MCIPs). Additionally, we applied a rematch constraint, meaning that a 

minimum number of spectra (up to six) should match with CIP2 (corresponding to the second 

largest cluster) (Fig. 2a). We called these peptide charge pairs MCIP peptide charge pairs. For 

our global similarity threshold of 0.6 and using a rematch constraint of at least four replicate 

spectra, we observe 23% MCIP peptide charge pairs. Even at an over-sensitive, low specificity 

similarity threshold of 0.4 (see supplemental Fig. S3), we observe MCIP peptide charge pairs in 

approximately 9% of all peptide charge pairs. At very high similarity thresholds, over-clustering 

occurs, with the number of spectra per cluster decreasing. A decrease in the percentage of 

MCIP peptide charge pairs then becomes visible, because the rematch constraint is not fulfilled 

anymore. 

We further tested if the MaxQuant false discovery rate (FDR) of 1% could significantly influence 
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the phenomenon. This was necessary, because false identifications by MaxQuant could cluster 

separately from the correctly identified spectra and give incorrect CIPs. As the MaxQuant FDR 

is defined per LC-MS/MS experiment, we calculated the fraction of spectra outside of the largest 

cluster 1 for every experiment (supplemental Fig. S4), which shows, that this fraction is often 

more than 30 times the MaxQuant FDR at a threshold of 0.6. Additionally, it is shown that even 

with a rematch constraint of four replicate spectra, the MaxQuant FDR is often exceeded more 

than tenfold. 

As an additional test, we checked whether different fragmentation patterns also occurred within 

the same experiment, considering only replicate spectra with precursor m/z difference  <0.01 

and a retention time difference of <2min. Additionally we applied a rematch constraint of four 

replicate spectra. Even with these strong constraints, we found 712 examples of peptides with 

diverging patterns within the same experimental run. Examples of diverging spectra within the 

same run can be interactively viewed and compared via the viewer on the webpage 

https://www.bio.ifi.lmu.de/forschung/proteomics/mcip/index.html. 

As a visualization of MCIPs, NRFVs of cluster 1 (blue) and cluster 2 (red) are plotted on top of 

each other in Fig. 2b. The examples show that clusters of replicate fragmentation spectra can 

be very different from each other, while being highly similar within the cluster. An interactive 

viewer on differing clusters is also available on the webpage. To further understand the 

clustering observed in these figures, we searched for possible macroscopic parameters 

correlating with the different clusters. However the machine settings were fixed over the 

different experiments in this case (see supplemental table T2). 

We examined the dependence of the number of CIPs on the number of replicate patterns. This 

revealed that the number of CIPs per peptide charge pair saturates quickly and is rarely larger 

than six, even for peptide charge pairs for which hundreds of replicate patterns are available 

(Fig. 1c). The average number of CIPs is about 2 (1.96). 

[Fig. 2] 
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Usage of MCIPs yields almost complete spectral coverage  

To test the sensitivity of the MCIP approach, we assessed the spectral coverage (see method 

section) for all peptide charge pairs. The spectra were either compared with one CIP (in 

accordance with the current library approaches) or with MCIPs. Fig. 3a shows a striking 

improvement upon successive integration of more and more CIPs (red up to orange line) until 

near-complete coverage is reached. The largest gain is visible upon integration of the second 

CIP (blue line), which corresponds to the second largest cluster. This improvement clearly 

shows that significantly higher peptide recognition is possible by simply integrating one more 

CIP into the library. Improvement is seen for adding additional CIPs, but is decreasing with each 

additional cluster. This effect is for one an intrinsic property of choosing the next CIP 

corresponding to the next smaller cluster. Nevertheless, the strong variation, especially between 

the first and the second cluster (red and blue line respectively) is highly unlikely due to random 

divergences. The cumulative distribution of the relative fractions of the different clusters is 

displayed in Fig. 3b. 

[Fig. 3] 

 

Direct comparison with SpectraST shows significantly increased spectral coverage 

We compared the spectral coverage of our MCIP approach with the coverage of the SpectraST 

(20) spectral search engine, which is among the most popular in the field (42).  

As is described in the methods section, a setup similar to the spectral coverage estimation was 

introduced for SpectraST. A SpectraST library was constructed on three human data sets (see 

supplemental table 1). In order to make the identification as simple as possible for SpectraST 

and thereby the coverage as high a possible, we tried to re-identify the spectra used for the 

construction of the SpectraST library on the very same human data sets. This allowed us to 

assess the spectral coverage. We only considered spectra, which had been used for library 
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construction in our approach as well as in SpectraST. We further constrained this set of 

common spectra by only including peptide charge pairs with at least 10 replicate spectra. This 

resulted in a total of 402 peptide charge pairs. We then assessed the spectral coverage of both 

methods on this data set.  

Fig. 4 shows a significantly improved performance of the MCIP approach (red to green line) in 

comparison to SpectraST (dark blue). The baseline identification is lower for the SpectraST 

approach. When comparing the performance of CIP1 (red line) with SpectraST, we first see a 

higher performance of CIP1 and an intersection of the spectral coverage of both methods at 

around 83% coverage of replicate spectra. This means, that the same number of peptides has 

83% of its replicates covered with the SpectraST consensus spectrum and with CIP1. Above 

83%, SpectraST performs slightly better than CIP1. When integrating CIP2 (light blue line), 

SpectraST is significantly outperformed, as almost all peptides are fully covered with the two 

CIPs. The third CIP still gives a slight increase in coverage. The partially lower performance of 

CIP1 in comparison with SpectraST might be explained by considering, that due to the 

systematic clustering, the spectra corresponding to the other clusters are filtered out and this 

information is hence missing when only using one CIP. When integrating the information about 

the other clusters, the strength of the MCIP approach becomes visible.  

 [Fig. 4] 

 

MCIPs increase sensitivity without affecting specificity 

As has been shown in the previous sections, MCIPs are needed to describe all replicate spectra 

for many peptide charge pairs. Obviously, MCIPs improve sensitivity. Nevertheless, they may 

lead to reduced specificity. Hence, we employed an accuracy test by first generating CIPs on 

80% of the replicate spectra and then scoring these CIPs against a mixture of the remaining 

replicate spectra and shuffled decoy spectra. This allowed to distinguish true positives (match of 

CIP with replicate spectrum) from false positives (match of CIP with decoy spectrum). The 
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procedure is described in more detail in the methods section 

Fig. 5a) shows that the overall accuracy for MCIPs (blue and green line) increases significantly 

in comparison to a single CIP (red line). For >99% of peptide charge pairs, the minimum 

accuracy increases by 12% when integrating all CIPs available for each peptide charge pair in 

the spectral library (green line). In Fig. 5b), we see (as expected from the spectral coverage 

results) a strong decrease in false negatives upon integration of MCIPs. At the same time, we 

see that the false positive rate displayed in Fig. 5c) is almost not affected at all.   

 [Fig 5] 

Implications for SWATH data 

One of the current applications of spectral libraries is the analysis of SWATH data (17). In this 

setup, CIPs are matched with more complex MS2 spectra. We assessed, whether MCIPs can 

improve the identification rate as compared to using only one CIP. 

As described in the methods section, we used a dataset, where the same sample had been 

identified using DDA and SWATH. We then utilized this setup to derive a spectral library of 

peptides, which was expected to be in the SWATH data set. 

We then searched the library patterns against the DDA run as well as the SWATH run, with the 

fraction of non-identified spectra (“errors”) plotted against the similarity threshold in Fig. 6. For 

the DDA run, the results are analogous to the results already presented, with a significant 

improvement of identification upon integration of MCIPs (red and blue line, respectively).  

For the SWATH run, we observe lower baseline identification, with approximately 20% of the 

patterns not being identified at all. This might be due to the higher noise in the SWATH patterns, 

likely caused by smaller individual fragmentation times as well as cross-fragmentation of 

different peptides. Nevertheless, also for the SWATH data set, we observe very similar effects 

when comparing the single pattern approach (green) with the MCIP approach (magenta), with 

an ~30% increase in identification accuracy at reasonable similarity scores (e.g. at 0.6: 29%). 

[Fig. 6] 
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Discussion 

 

By the analysis of peptide charge pairs with many (≥20) replicate spectra, we could show that 

multiple CIPs (MCIPs) are observed for almost 25% of identified peptides in our data and occur 

even within the same LC-MS/MS run.  

Even though the focus of this study lies on the quantification and computational solution of this 

frequent data acquisition problem, we also examined a variety of factors possibly being 

responsible for the phenomenon. Especially, different CIPs within the same run are unexpected 

and a wide range of possible explanations exists. One intuitive explanation is that the differently 

fragmenting peptides are assigned the wrong charge state in the MS survey scan in DDA mode. 

Due to the wrong charge state assignment, the collision energy applied to fragment the peptide 

is too high or low and it is therefore over- or underfragmented, respectivley. Precursor charge 

state and collision energy were not stored in the obtained raw files, hence we were not able to 

directly check this. However, we carried out targeted LC-MS/MS runs, where we specifically 

adjusted the applied collision energy. Our results show that dot scores are surprisingly robust 

over a range of -3V to +3V, which covers differences in collision energy settings caused by 

wrong precursor charge state assignment and only slight effects are seen on the occurrence of 

MCIPs (supplemental figures S10 and S11). Further, we examined dependence of 

fragmentation stability on a variety of parameters likely to be relevant for peptide fragmentation 

by analyzing new DDA runs which were carried out on the same standardized lysate as the 

targeted runs. We identified significant shifts depending on parameters correlating with 

precursor isolation purity and intensity (supplemental figures S8 and S9). In general, high 

fragmentation stability (dot score with CIP1 >0.9) correlates with high peak purity and intensity, 

while a clear distinction between medium stability (dot score with 0.6<= CIP1 <=0.9) and 

differently clustering spectra (dot score with CIP1 <0.6) is not possible. 
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The observed behavior suggests that there is a connection between the fragmented peptide and 

the background matrix (coeluting peptides in the same isolation window), which influences the 

fragmentation behavior. For high abundant peptides, this interference has only little effect. For 

low abundant peptides however, it has already been shown that ion interferences with the 

background matrix can alter the fragmentation spectrum (45) and simulations on the ion 

interferences suggest an abundance of around 10% of interfering ions for small isolation 

windows (16), which is in a similar range as the number of MCIPs we observe. This would also 

explain the stochastic nature as well as the reproducibility of the phenomenon, as different 

fragmentation would only occur, if a particular interfering ion for a MCIP peptide charge pair 

would co-elute in the LC-column. This co-elution is to some extent reproducible, but critically 

depends on the background matrix, as well as on the peak overlaps between MCIP and 

interfering peptide. Also, as not many interfering ions are expected to exist for a given MCIP 

peptide, the limited number of clusters observed would be explained.  

We carried out additional targeted LC-MS/MS runs to investigate the influence of the 

background matrix, therefore the precursor isolation width was varied between 1Da and 5 Da. 

For broader isolation windows, we observed a systematic enrichment in differently fragmenting 

spectra, while, as expected, the phenomenon is still seemingly stochastic (supplemental Figures 

10 and 11). 

 

To ensure reproducibility of the patterns, we only classified a peptide charge pair as an MCIP 

peptide charge pair, if the second cluster had been matched at least four times (Fig. 2a). Four 

spectra should be a sufficient number for the creation of a library entry, as common library 

generation tools usually have lower thresholds. For example, the highest default quality filter of 

SpectraST employs a threshold of two replicate spectra (20). Additionally, one would expect that 

the number of MCIPs is dependent on the number of replicates, if the phenomenon would be 

caused by random fluctuations. Indeed, the number of replicate spectra is virtually uncorrelated 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2017. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

with the number of CIPs (Fig. 2c). Thus, we can strengthen our point that MCIPs are a stable 

phenomenon that is not caused by random divergences or impurities.  

Variation among fragmentation spectra depending on machine and fragmentation type has 

recently been examined (43) and it is well known that peptide fragmentation is subject to 

intrinsic variation. As the total number of detected ions underlying one fragmentation spectrum 

is large, it is reasonable to assume, that this variation is not stochastic in nature, but rather 

determined by experimental conditions. The method proposed in our study tries to capture these 

underlying deterministic variations. We speculate that the MCIPs we observe are boundary 

cases that characterize the range of possible fragmentation spectra. Hence, our approach of 

MCIPs determined by a systematic clustering method might be a solution to the common 

problem that spectral libraries are highly dependent on experimental conditions (44). This is 

underlined by the fact, that we are able to obtain almost complete coverage (Fig 3a) of an 

extremely heterogeneous mixture of peptides stemming from three different species, measured 

in over a hundred of different LC-MS/MS runs over many months. The observation that the 

number of false positives is only marginally affected upon integration of MCIPs (Fig. 4c) 

validates that this coverage can be achieved at virtually the same error rate. 

For practical purposes, the fact that the average number of different clusters is about two and 

no new clusters appear after assembling about 20 replicate patterns (Fig. 2d) indicates, that the 

phenomenon is easily manageable for the creation of a library.  

 

Our reductionist approach of using MaxQuant preprocessed spectra comes at the cost of 

possibly neglecting important spectral information. The dot score values determined from this 

approach will be different to the dot score values derived from raw spectra, as the 

representative vectors are shorter and vector length influences the outcome. Nevertheless, 

heuristic measures to shorten the vector are applied in common library generation tools (20, 22) 

and have shown to only mildly affect the overall sensitivity. Additionally, we validated the 
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similarity threshold used in this study to be discriminative on our spectra (supplemental Fig. S3).  

Additionally, we carried out analyses on raw, or semi raw spectra at different ppm precisions 

using MaxQuant processed .apl data and MS-Convert processed .mzXML profile data and see 

systematically lower dot scores as well as abundant MCIPs under all conditions (supplemental 

Fig. S6). 

The large increase in spectral recognition we see in our approach compared to SpectraST is 

likely due to the employed test set, which contains at least 10 replicate spectra for each peptide 

and is not the usual application scenario for a spectral search engine. Nevertheless, it is a valid 

performance test and the results imply, that choosing the best CIP is crucial. 

 

With the advent of quantitative DIA methods like SWATH, the phenomenon of MCIPs becomes 

important in the context of quantification. If MCIPs are not taken into account, in a significant 

fraction of cases, fold changes might be drastically miscalculated because peptides that are 

actually there, will be missed because the fragmentation spectrum is different. The increase in 

spectral recognition of our SWATH data set upon integration of MCIPs (Fig. 6) is a first 

indication that SWATH benefits from our approach. Additionally, it has recently been shown that 

SWATH data acquisition is improved when local libraries are used in addition to public libraries 

(44). As this might very well be, because the intrinsic variation of the machine is better covered 

this way, employing the MCIP approach in public spectral libraries could eliminate the need for 

context-dependent libraries. 

 

The MCIP approach contributes a simple and pragmatic solution to the problem of variable 

peptide fragmentation spectra. We emphasize that even in the current time of ever more precise 

machines and measurement possibilities, peptide fragmentation can still be subject to strong, 

but reproducible, fluctuations. Ideally, this problem may be solved by new generations of 

machines producing unique fragmentation patterns. In the meantime, the use of MCIPs in 
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spectral libraries is a simple and sufficient solution. 
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Figure Legends 

 

Table 1: Overview of different library generation workflows and comparison of main features. 

Listed are Andromeda (36), a sequence based search engine, the multiple characteristic 

intensity patterns (MCIP) approach of this paper and the SpectraST (23) approach. 

 

Fig. 1: Schematic display of the decoy spectra approach. A cross validation test set is 

generated, containing 1:1 decoy and original spectra (left). The original spectra not present in 

the test set are then used to extract characteristic intensity patterns (CIPs), which are used to 

search the test set (right). 

 

Fig. 2: Analysis of multiple characteristic intensity patterns (MCIPs). a) The percentage of 

peptide charge pairs (10.580 total) containing confidently identified MCIPs for different rematch 

constraints. The legend indicates the minimum number of spectra matching with the second 

CIP. b) Normalized ion intensities (NRFVs) of the two largest spectral clusters (neighborhoods) 

plotted on top of each other for two selected peptide charge pairs. Blue coloring indicates 

spectra belonging to the largest cluster 1, red coloring indicates spectra belonging to cluster 2. 

This demonstrates, that fragmentation spectra can differ for the same peptide charge pair 

(clearly different fragmentation characteristics between blue and red) but are individually 

reproducible (similarity of fragmentation characteristics within blue and red). The line plots are 

used to better show individual differences between the spectra and an annotated format of the 

spectra displayed is visible in supplemental figure S11. c) Dependence of the number of 

clusters on the number of replicate spectra (left: all peptides, right: only MCIP peptide charge 

pairs). Even for hundreds of replicate spectra, the number of CIPs rarely exceeds six, indicating 

saturation for the number of CIPs. 
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Fig. 3: a) Spectral coverage depending on the number of characteristic intensity patterns (CIPs) 

integrated in the spectral library. The number of peptide charge pairs (y-axis) is displayed, for 

which the spectral coverage is larger or equal to the value denoted on the x-axis in percent. The 

single CIP approach (red line) leaves a large fraction of spectra uncovered. Integrating one 

more CIP (blue line) into the library gives a drastic increase in coverage with successively 

smaller increases upon integration of more CIPs until almost complete coverage is reached. b) 

Cumulative distribution of the relative fractions of the clusters among all replicate spectra. 

 

Fig. 4: Spectral coverage of the SpectraST search engine (dark blue line) in comparison with 

the MCIP approach (red to green). A single characteristic intensity pattern (CIP) still yields 

partially lower coverage (red line), while upon integration of the second CIP almost complete 

coverage is achieved. 

 

Fig. 5: Assessment of accuracy using randomized decoy spectra, as described in the methods 

section, cumulative depiction. a) Comparison of the overall identification accuracy between the 

single characteristic intensity pattern (CIP) approach (red line) and multiple CIPs (MCIPs) (blue 

line, green line). A significant improvement upon integration of MCIPs is visible. b) Effect of 

MCIP integration on false negatives: The false negatives rate is strongly decreased (green and 

blue line) as now also the differently fragmenting ions are integrated. c) Effect of MCIP 

integration on the false positives rate: The plot demonstrates that the increase in recognition 

does not incur significant loss of specificity, as the false positive rate is only marginally 

increased upon integration of MCIPs (green and blue line). 

 

Fig. 6: Application of the MCIP approach on SWATH data and comparison with DDA data. For 

reasonable similarity thresholds, a significant decrease in unidentified peptides can be seen on 
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SWATH data when integrating MCIPs (violet line) in comparison to a single CIP (green line). An 

analogous behavior is seen for the DDA approach, with a significantly smaller number of missed 

peptides (blue line MCIPs, red line single CIP). 
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Figure 2 
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Figure 3 
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Figure 4     
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Figure 5 
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Figure 6 
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Equations 

Equation 1: 

 

Equation 2: 
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