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Abstract	

Spectral	 libraries	 play	 a	 central	 role	 in	 the	 analysis	 of	 data-independent-acquisition	 (DIA)	

proteomics	 experiments.	 A	main	 assumption	 in	 current	 spectral	 library	 tools	 is	 that	 a	 single	

characteristic	 intensity	 pattern	 (CIP)	 suffices	 to	 describe	 the	 fragmentation	 of	 a	 peptide	 in	 a	

particular	charge	state	(peptide	charge	pair).	However,	we	find	that	this	is	often	not	the	case.	

We	 carry	 out	 a	 systematic	 evaluation	 of	 spectral	 variability	 over	 public	 repositories	 and	 in-

house	datasets.	We	show	that	spectral	variability	 is	widespread	and	partly	occurs	under	fixed	

experimental	conditions.	Using	clustering	of	preprocessed	spectra,	we	derive	a	limited	number	

of	Multiple	Characteristic	Intensity	Patterns	(MCIPs)	for	each	peptide	charge	pair,	which	allow	

almost	complete	coverage	of	our	heterogeneous	dataset	without	affecting	the	false	discovery	

rate.	 	We	 show	 that	 a	MCIP	 library	 derived	 from	 public	 repositories	 performs	 in	most	 cases	

similar	 to	 a	 ”custom-made”	 spectral	 library,	 which	 has	 been	 acquired	 under	 identical	

experimental	conditions	as	the	query	spectra.	We	apply	the	MCIP	approach	to	a	DIA	data	set	

and	observe	a	significant	increase	in	peptide	recognition.	We	propose	the	MCIP	approach	as	an	

easy-to-implement	 addition	 to	 current	 spectral	 library	 search	 engines	 and	 as	 a	 new	 way	 to	

utilize	the	data	stored	in	spectral	repositories.	
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Introduction	

Data	 dependent	 acquisition	 (DDA)	 approaches	 are	 still	 the	 standard	 of	 proteomics	 data	

acquisition.	 In	 DDA,	 selected	 precursor	 ions	 are	 isolated	 in	 a	 small	 mass	 window	 and	

subsequently	 submitted	 for	 fragmentation	 and	MS	measurement1,2,	 giving	MS2	 spectra.	 The	

most	widely	 applied	 DDA	 approach	 is	 also	 called	 shotgun	 proteomics,	 whereby	 in	 each	 duty	

cycle	 fragmentation	 spectra	 of	 the	N	most	 intense	 precursor	 ions	 are	 acquired	 (Top	N).	 The	

corresponding	MS2	data	are	commonly	analyzed	by	scoring	the	mass	to	charge	(m/z)	values	of	

the	most	intense	fragment	peaks	against	a	theoretical	prediction	of	m/z	values	of	fragment	ions	

derived	 from	 sequence	 databases3.	 The	 theoretical	 m/z	 values	 of	 fragment	 ions	 are	

discriminative	as,	in	most	cases,	each	peak	in	the	MS2	fragmentation	spectrum	stems	from	the	

same	precursor	ion.	Additionally,	the	m/z	value	of	the	submitted	precursor	ion	is	known,	which	

narrows	down	the	number	of	possible	matches	 in	the	sequence	database.	Peptide	precursors	

not	 selected	 for	 fragmentation	 are	 excluded	 from	 the	 result	 since	 sequence	 confirmation	 is	

missing4.	 As	 precursor	 ion	 selection	 can	 be	 described	 as	 semi-random5,	 DDA	 approaches	 are	

also	 problematic	 for	 quantification,	 as	 a	 peptide	 measured	 in	 a	 first	 sample,	 might	 not	 be	

identified	in	a	second	sample,	even	though	it	is	abundant.		

Selected	reaction	monitoring	(SRM,	alternatively	multiple	reaction	monitoring	(MRM)	or	parallel	

reaction	 monitoring	 (PRM))	 approaches6,7	 address	 the	 problem	 of	 reproducibility	 by	 a	 fixed	

preselection	 of	 peptide	 precursor	 ions.	 This	 approach	 allows	 very	 sensitive	 and	 accurate	

quantitation	of	a	small	number	of	proteins	in	each	LC-MS	run,	however	the	overall	coverage	of	

the	 proteome	 is	 low	 due	 to	 the	 preselection.	 Higher	 coverage	 can	 only	 be	 achieved	 by	
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measuring	the	sample	with	multiple	precursor	lists.	Unexpected	sample	variation,	such	as	post-

translational	modifications	cannot	be	detected.	

Data	 independent	acquisition	 (DIA)	approaches	 try	 to	overcome	 these	 limitations	by	omitting	

the	preselection	of	precursor	 ions8–10.	 To	 reduce	 spectral	 complexity,	many	applications	 scan	

MS/MS	spectra	of	medium	sized	isolation	windows	(5	–	50m/z)	over	a	wide	m/z	range11–17.	 In	

general,	 the	possibilities	 for	spectral	 searches	via	sequence	databases	are	challenging	 for	DIA	

data18,19	 due	 to	 the	 ambiguity	 of	 m/z	 values	 in	 complex	 peptide	 mixtures.	 Thus,	 many	

commonly	 used	 approaches	 rely	 on	 spectral	 libraries,	 also	 considering	 fragment	 ion	

intensities13,14.	These	libraries	are	obtained	from	DDA	proteomics	experiments,	by	generating	a	

characteristic	 intensity	 pattern	 (CIP)	 of	 m/z	 and	 ion	 intensity	 pairs	 (m,i)	 from	 confidently	

identified	MS2	spectra	for	each	peptide	in	a	distinct	charge	state	(peptide	charge	pair)20–23.		

A	 library	 pattern	must	 be	 constructed	 such	 that	 it	 is	 sufficiently	 specific	 (implying	 few	 false	

positives)	 while	 maintaining	 high	 sensitivity	 (few	 false	 negatives).	 A	 library	 of	 CIPs	 is	 then	

compared	 to	 the	measured	 fragmentation	spectrum	using	a	similarity	measure.	Most	current	

approaches	for	the	construction	of	library	patterns	employ	the	scoring	measure	dot	product24–

27	or	the	related	spectral	contrast	angle28–30	as	scoring	measure.	To	our	knowledge,	all	tools	try	

to	approximate	one	unique	CIP	from	the	available	measured	fragmentation	spectra.	

Prior	 to	 their	use	 in	DIA	approaches,	 spectral	 libraries	have	been	employed	 to	 speed	up	and	

increase	confidence	in	peptide	recognition20	and	therefore,	large	spectral	repositories31–34	have	

been	compiled.		

In	current	DIA	applications	like	OpenSWATH14,	chromatography-based	scores	such	as	retention	

time	are	used	to	find	MS2	fragmentation	spectra,	which	are	then	matched	with	a	library	CIP.		
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Table	 1.	Overview	 over	 the	 datasets	 used	 in	 this	 study	 and	 the	 corresponding	 experimental	

parameters.	

	

Hence,	having	an	accurate	spectral	 library	and	a	highly	reproducible	and	calibrated	LC	system	

are	key	factors	determining	the	quality	of	a	DIA	experiment.		

In	the	context	of	these	developments,	improved	spectral	libraries	gain	renewed	importance.	In	

this	 study,	 we	 present	 a	 systematic	 analysis	 of	 fragmentation	 spectra	 identified	 with	 high	

confidence,	by	generating	and	evaluating	a	model	spectral	library.		

We	integrate	data	from	the	databases	ProteomeTools36	(further	referred	to	as	Kuster-Set),	Pan	

Human	 Library37	 (further	 referred	 to	 as	 Aebersold-Set)	 as	well	 as	 from	 our	 own	 lab	 (further	

referred	 to	 as	 Imhof-Set).	 The	Kuster	 Set	 contains	 8	different	 combinations	of	 fragmentation	

type,	 fragmentation	 energy	 and	 readout,	 all	 acquired	 on	 an	 Orbitrap	 Fusion	 Lumos	 mass	

spectrometer.	The	Aebersold-Set	had	fixed	fragmentation	settings	and	was	acquired	on	an	AB	

SCIEX	TripleTOF	5600+	system	from	different	human	tissues	and	cell	 lines.	The	 Imhof-Set	had	

fixed	 fragmentation	settings	and	was	acquired	on	an	AB	SCIEX	TripleTOF	6600	 from	different	

organisms	and	cell	 lines	(see	also	table	1	for	an	overview).	We	only	use	peptides,	which	have	

been	 measured	 and	 identified	 at	 least	 20	 times	 across	 several	 experiments,	 yielding	 ≥	 20	

id Intrument Readout Fragmentation	ModeBackground	Matrix Lab Collision	Energy
L_HCD_O_20 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 20%

L_HCD_O_23 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 23%

L_HCD_O_25 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 25%

L_HCD_O_28 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 28%

L_HCD_O_30 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 30%

L_HCD_O_35 Orbitrap	Fusion	Lumos Orbitrap HCD synthetic	peptides Kuster 35%

L_HCD_I_28 Orbitrap	Fusion	Lumos Ion	Trap HCD synthetic	peptides Kuster 28%

L_CID_I_35 Orbitrap	Fusion	Lumos Ion	Trap CID synthetic	peptides Kuster 35%

Q_CID_AEBERSOLD �AB	SCIEX	TripleTOF	5600+ TOF	Analyzer CID Human	tissue	+	Cell	lines Aebersold rolling

Q_CID_IMHOF �AB	SCIEX	TripleTOF	6600 TOF	analyzer	 CID Drosophila	tissue	+	Cell	lines Imhof rolling
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replicate	 fragmentation	 spectra	 for	 each	 peptide	 charge	 pair.	 This	 gives	 us	 a	 statistical	

impression	of	the	fragmentation	for	each	peptide.	

We	 first	 demonstrate,	 that	 a	 surprisingly	 large	 fraction	 of	MS2	 spectra	 corresponding	 to	 the	

same	 peptide	 charge	 pair	 is	 strongly	 heterogeneous	 across	 experimental	 conditions.	 This	

heterogeneity	 represents	 a	 large	 drawback	 of	 using	 public	 repositories	 for	 spectral	 library	

searching,	which	are	mostly	obtained	under	different	experimental	conditions	than	the	query	

spectra	 they	 are	 used	 on.	 A	 common	 practice	 in	many	 proteomics	 laboratories	 is	 hence	 the	

generation	 of	 custom-made	 spectral	 libraries,	 especially	 in	 the	 context	 of	DIA	 experiments38.	

This	means	it	 is	necessary	to	generate	a	spectral	 library	from	DDA	runs	of	the	desired	sample	

under	as	similar	experimental	conditions	as	possible.	One	obvious	problem	is	the	experimental	

and	computational	effort	that	has	to	go	into	creating	a	custom	made	library.	Additionally,	the	

set	of	peptides	contained	in	a	custom	made	library	is	usually	orders	of	magnitude	smaller	than	

the	peptides	available	in	online	repositories.	

Based	 on	 our	 findings,	 we	 propose	 the	 Multiple	 Characteristic	 Intensity	 Pattern	 (MCIP)	

approach,	which	is	similar	to	the	SpectraST	approach	by	Lam	et	al.23,	but	differs	with	respect	to	

the	 following	 points:	 (i)	 SpectraST	 uses	 semi-raw	 (.mzXML)	 fragmentation	 spectra	 for	 the	

generation	 of	 spectral	 libraries,	 without	 further	 preprocessing23.	 We	 conduct	 our	 library	

generation	 on	 MaxQuant35	 preprocessed	 peptide	 identifications	 without	 modifications	 and	

consider	only	b-	and	y-	ions	(with	molecular	losses).	(ii)	As	we	use	preprocessed	spectra,	we	can	

apply	either	a	ranking	prior	to	the	clustering,	or	use	an	unranked	approach.	In	both	cases,	we	

apply	a	systematic	clustering	until	all	spectra	are	contained	in	a	cluster	and	retain	all		
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clusters	 involved.	 (iii)	We	determine	one	CIP	 from	each	cluster.	This	can	yield	more	than	one	

CIP	per	peptide	charge	pair.	

We	 compare	 a	 spectral	 library	 generated	 with	 the	MCIP	 approach	 from	 a	 repository	 with	 a	

custom	 made	 spectral	 library	 and	 show	 comparable	 performance	 for	 most	 datasets.	 An	

overview	over	the	major	steps	taken	in	this	study	is	given	in	Fig.	1.	

	The	MCIP	method	outperforms	 the	 current	 single	 CIP	 approach	 employed	 in	 spectral	 library	

searching.	We	suggest	this	easy	to	implement	“one-size-fits-all”	method	as	a	new	way	to	utilize	

the	data	available	in	spectral	archives.	
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Figure	 1.	 MCIP	 analysis	 pipeline.	 Preprocessed	 peptide	 spectra	 are	 collected	 from	 many	

datasets	 and	 MS	 runs.	 The	 similarities	 of	 the	 spectra	 are	 compared	 over	 different	 public	

repositories	 and	 in-house	 datasets.	 Multiple	 Characteristic	 Intensity	 Patterns	 (MCIPs)	 are	

generated	from	the	spectra.	The	search	performance	(sensitivity,	accuracy,	etc.)	is	evaluated	in	

different	cross-validation	settings,	also	considering	the	different	experimental	contexts.		
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Experimental	Section	

Proteomic	analysis	via	LC-MS/MS	on	Q-TOF	mass	spectrometer	

Samples	were	injected	into	an	Ultimate	3000	HPLC	system	(Thermo	Fisher	Scientific).	For	nano-

reversed	 phase	 separation	 of	 tryptic	 peptide	 mixtures	 before	 MS	 analysis,	 peptides	 were	

desalted	on	a	trapping	column	(5	x	0.3	mm	inner	diameter;	packed	with	C18	PepMap100,	5	μm	

particle	size,	100	Å	pore	diameter,	Thermo-Fisher	Scientific).	The	 loading	pump	flow	of	0.1	%	

formic	 acid	 (FA)	 was	 set	 to	 25	 μl/minute	 with	 a	 washing	 time	 of	 10	 min	 under	 isocratic	

conditions.	Samples	were	separated	on	an	analytical	column	(150	x	0.075	mm	inner	diameter;	

packed	with	C18RP	Reposil-Pur	AQ,	2.4	μm	particle	size,	100	Å	pore	diameter,	Dr.	Maisch)	using	

a	linear	gradient	from	4	%	to	40	%	B	in	170	min	with	a	gradient	flow	of	270	nl/minute.	Solvents	

for	 sample	 separation	were	A	0.1	%	FA	 in	water	 and	B:	 80	%	acetonitrile	 (ACN),	 0.1	%	FA	 in	

water.	 The	 HPLC	was	 directly	 coupled	 to	 the	 6600	 TOF	mass	 spectrometer	 using	 a	 nano-ESI	

source	 (both	 AB	 Sciex).	 A	 data-dependent	 method	 was	 selected	 for	 MS	 detection	 and	

fragmentation	of	eluting	peptides	comprising	one	survey	scan	for	225	ms	from	300	to	1800	m/z	

and	 up	 to	 40	 tandem	 MS	 scans	 for	 putative	 precursors	 (100-1800	 m/z).	 Precursors	 were	

selected	 according	 to	 their	 intensity.	 Previously	 fragmented	 precursors	 were	 excluded	 from	

reanalysis	 for	 a	 timespan	 between	 10	 and	 50	 seconds,	 depending	 on	 the	 experiment	 (see	

supplemental	 table	 2).	 Rolling	 collision	 energy	 setting	 was	 enabled,	 which	 performs	

fragmentation	 at	 optimized	 collision	 energy	 for	 the	 peptide	 charge	 pairs.	 Precursor	 charge	

states	from	+2	to	+5	were	specifically	detected.	

	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Data	analysis	of	data-dependent	LC-MS/MS	experiments	

The	Aebersold-Set	and	the	Imhof	Set	were	analyzed	with	MaxQuant	(version	1.5.1.2	and	higher)	

using	the	Andromeda	search	engine39	and	a	sample	specific	protein	database	in	FASTA	format	

(see	 supplemental	 table	 1).	 	 The	 settings	 for	 database	 search	 were	 as	 follows:	 fixed	

modification	carbamidomethylation	of	cysteine,	variable	modifications	oxidation	of	methionine	

and	acetylation	at	the	protein	N-terminus	;	Δmass	=	30	ppm	for	precursors	for	the	first	search	

and	6	ppm	for	the	second	search,	Δmass	=	60	ppm	for	TOF	fragment	ions,	enzyme	trypsin	with	

specific	cleavage	and	max.	two	missed	cleavages.	Peptide	hits	required	a	minimum	length	of	7	

amino	acids	and	a	minimum	score	of	10	for	unmodified	and	40	for	modified	peptides.	Peptide	

Spectrum	Match	(PSM)	false	discovery	rate	(FDR)	was	set	to	1%.	

MaxQuant	 preprocessing	 included	 mass-centroiding	 of	 peaks	 and	 corresponding	 intensity	

adaption,	de-isotoping	and	detection	of	co-fragmented	peptides35.	The	results	were	returned	as	

msms.txt	 files,	 containing	 the	 relevant	 spectral	 information	 of	 fragment	 ion	 intensities,	

retention	 times,	 fragment	masses	 as	well	 as	 charge	 and	modification	 states	 of	 the	 identified	

peptide.	

The	MS	proteomics	data	of	the	Imhof-Set,	including	MaxQuant	results	have	been	deposited	to	

the	 ProteomeXchange	 Consortium	 (http://proteomecentral.proteomexchange.org)	 via	 the	

PRIDE	 partner	 repository	 with	 the	 data	 set	 identifiers	 PXD005060,	 PXD005063,	 PXD005100,	

PXD005111,	PXD006245	and	PXD006691.		

For	 the	 Kuster-Set,	 the	MaxQuant	 files	were	 directly	 downloaded	 from	 the	 PRIDE	 repository	

PXD004732.	 The	 raw	data	 for	 the	Aebersold-Set	was	 downloaded	 from	 the	 PRIDE	 repository	

PXD000953.	More	details	on	the	datasets	used	are	displayed	in	supplemental	table	1.	
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Library	generation	settings	for	the	in-house	dataset	

For	the	Imhof-Set,	the	spectral	library	was	generated	from	DDA	data	only,	with	the	explicit	runs	

marked	 in	 supplemental	 table	 1.	 For	 the	 instrument,	 the	 standard	 configurations	 as	

recommended	by	Sciex	were	applied	 to	all	 setups	with	 the	vast	majority	of	parameters	 fixed	

between	all	runs.	Different	settings	were	only	applied	to	the	parameters	“Exclude	for:”	(range	

10s	 -	50s),	“Mass	 tolerance:”	 (15ppm	–	50ppm),	“Switch	After”	 (30	spectra	–	40	spectra)	and	

“With	 intensity	 greater	 than”	 (100	 -	 150).	 Rolling	 collision	 energy	 was	 set	 in	 all	 cases.	 The	

specific	parameters	for	each	input	sample	are	listed	in	supplemental	table	2.	

	

Selection	of	processed	fragmentation	spectra	

Peptides	were	separated	by	charge	into	peptide	charge	pairs,	because	differences	in	the	charge	

state	 significantly	 alter	 the	 fragmentation	 pattern	 (see	 supplemental	 Fig.	 S1).	 Only	 peptide	

charge	pairs,	which	had	at	least	20	replicate	spectra	(see	supplemental	Fig.	S2),	were	included,	

to	enable	the	statistical	analysis	of	repeated	fragmentation	of	chemically	identical	peptides.	In	

our	main	analysis,	we	restricted	our	MCIP	approach	to	only	b-	and	y-	ions	in	charge	states	up	to	

2+	 with	 different	 molecular	 losses	 (examples:	 b3,	 y4-NH3,	 y6(2+),	 b5(2+)-H2O).	 Modified	

peptides	were	excluded.		

	

Import	of	raw	fragmentation	spectra	

To	 quantify	 the	 impact	 of	 using	 all	 peaks	 without	 filtering,	 an	 additional	 analysis	 with	 raw	

spectra	was	 carried	 out.	 To	 assess	 the	 influence	 of	 the	 preprocessing	method,	 two	 different	

methods	of	preprocessing	 the	data	were	applied.	 In	 the	 first	approach,	 the	raw	spectra	were	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

imported	from	the	MaxQuant	.apl	files	contained	in	the	“andromeda”	folder	in	the	MaxQuant	

output	 folder.	 We	 parsed	 these	 files	 and	 extracted	 a	 list	 of	 m/z	 values	 with	 corresponding	

intensities,	without	b-	and	y-ion	annotation	 for	each	spectrum.	The	spectra	were	assigned	 to	

their	 respective	MaxQuant	 identification	via	the	spectrum	index.	 In	the	second	approach,	 the	

raw	.wiff	files	were	processed	into	the	.mzXML	format	with	the	MSConvert	tool40	without	any	

additional	 filters	 (yielding	 profile	 data),	 parsed	 and	 assigned	 to	 the	 respective	 MaxQuant	

identification	 via	 the	 spectrum	 index.	 The	 influence	 of	 raw	 spectral	 scoring	 can	 be	 seen	 in	

supplemental	Fig.	S3,	with	an	overall	lower	performance	compared	to	the	MaxQuant	approach.	

	

Assessment	of	the	similarity	of	fragmentation	spectra	

The	similarity	among	spectra	of	the	same	peptide	charge	pair	(replicate	spectra)	can	be	used	as	

a	measure	to	characterize	the	fragmentation	behavior	of	peptide	charge	pairs.	As	spectra	are	

vectors	 of	 (m/z,	 intensity)-pairs,	 they	 can	 differ	 in	 the	 m/z-values	 (different	 peaks)	 or	 their	

intensities,	or	both.		

To	 assess	 similarity	 between	 replicate	 spectra,	 all	 replicate	 spectra	 (at	 least	 20,	 see	previous	

section)	available	for	a	peptide	charge	pair	were	compared	pairwise	to	each	other.	

Each	fragmentation	spectrum	was	represented	as	a	normalized	replicate	fragmentation	vector	

(NRFV)	! = (!!, !!,… , !!),	with	i1	to	in	denoting	the	intensities	in	the	pattern	and	the	indices	of	

the	vector	 implicitly	denoting	the	different	fragmentation	 ions	(m/z	values).	To	get	vectors	of	

equal	 length,	 each	 fragmentation	 ion	 with	 intensity	 >0	 in	 any	 of	 the	 replicate	 spectra	 was	

included	in	every	vector.	Imputed	0	values	were	used,	if	a	corresponding	ion	was	not	observed.	

For	raw	spectra	(supplemental	Fig.	S3)	a	best	bipartite	matching	method	was	used.	Only	vectors	
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with	 at	 least	 four	 non-zero	 values	 (n	 >4)	 were	 used.	 Each	 vector	 was	 normalized	 to	 length	

|!| = 1	(unit	vector).	

After	 determining	 which	 intensities	 were	 included	 in	 the	 NRFVs,	 the	 spectral	 similarities	

between	all	NRFVs	of	a	peptide	charge	pair	were	assessed	in	a	pairwise	fashion.	For	each	pair	of	

vectors	X	and	Y	of	NRFVs,	the	dot	score	was	calculated	using	the	dot	product	similarity	measure	

DP,	defined	as		

	

with	xk	and	yk	denoting	the	k-th	element	of	X	and	Y,	respectively.	

A	pair	of	fragmentation	spectra	was	called	similar,	 if	the	dot	score	of	their	two	corresponding	

NRFVs	was	larger	than	a	predefined	similarity	threshold	(see	below).	

	

Centroid	clustering	and	CIPs	

A	central	 goal	of	 this	 study	 is	 to	 find	a	minimal	 set	of	characteristic	 intensity	patterns	 (CIPs),	

able	 to	 characterize	 all	 observed	 fragmentation	 spectra	of	 a	 peptide	 charge	pair.	 In	 order	 to	

derive	 these,	 a	 centroid	 clustering	 approach	 was	 employed	 to	 determine	 clusters	 of	 similar	

NRFVs.	 For	 each	 NRFV,	 the	 neighborhood	 (all	 fragmentation	 spectra	 with	 a	 similarity	 score	

greater	 than	 the	 chosen	 similarity	 threshold)	 was	 determined.	 The	 medoid	 NRFV,	

corresponding	 to	 the	 spectrum	 with	 the	 best	 signal	 to	 noise	 ratio	 (defined	 via	 the	 average	

intensity	of	the	2nd	to	6th	highest	peak	divided	through	the	median	of	the	remaining	peaks)	was	

defined	 as	 a	 CIP,	 analogous	 to	 the	 SpectraST	 approach23.	 Additionally,	 also	 NRFVs	 with	 the	

largest	number	of	neighbors	were	defined	as	CIPs.	If	not	all	NRFVs	were	neighbors	to	this	CIP,	it	
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becomes	 a	 cluster	 with	 all	 its	 neighbors	 and	 the	 procedure	 was	 repeated	 on	 the	 remaining	

NRFVs.	

Depending	on	the	number	of	CIPs	resulting	from	this	procedure,	each	peptide	charge	pair	was	

assigned	either	a	single	CIP	(all	spectra	of	a	peptide	charge	pair	assembled	in	a	single	cluster)	or	

multiple	 CIPs	 (MCIPs).	 The	 CIPs	 were	 referred	 to	 by	 size	 of	 their	 respective	 cluster:	 CIP1	

corresponds	to	the	largest	cluster,	CIPi	to	the	i-th	largest	cluster.	

	

Spectral	coverage	

The	 spectral	 coverage	 was	 introduced	 as	 a	 measure	 for	 the	 sensitivity	 of	 the	 approach.	 A	

spectral	library	was	constructed	with	the	entries	for	each	peptide	charge	pair	consisting	either	

of	a	single	CIP	of	the	largest	cluster,	or	of	MCIPs	 	of	the	n	largest	clusters.	

The	 single	 CIP	 or	 each	 element	 of	 the	 MCIPs	 	 was	 then	 compared	 to	 all	

NRFVs	of	the	peptide	charge	pair	using	the	dot	score.	If	the	dot	score	was	above	the	similarity	

threshold	 for	 any	 of	 the	 CIPs,	 the	 respective	 spectrum	was	marked	 as	 covered.	 The	 spectral	

coverage	denotes	the	fraction	of	replicate	spectra	covered.		

	

Comparison	to	custom	made	spectral	libraries	

To	compare	the	performance	of	a	custom	made	library	with	a	MCIP	library,	we	implemented	a	

test	set	and	three	training	sets.	For	each	experimental	setup	S,	we	selected	all	peptide	charge	

pairs	with	at	least	10	spectra	in	setup	S	(and	at	least	10	spectra	in	other	setups).	

Five	spectra	belonging	to	S	where	randomly	assigned	to	the	test	set.	The	remaining	spectra	of	S	

were	assigned	to	the	first	training	set,	termed	the	custom	training	set.	All	spectra	that	did	not	
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belong	to	S	were	assigned	to	the	MCIP	training	set.	Additionally,	the	MCIP	custom	training	set	

was	 defined	which	 consisted	 of	 the	MCIP	 training	 set	 together	with	 the	 custom	 training	 set.		

Hence,	the	custom	training	set	corresponded	to	the	scenario	of	a	custom	made	spectral	library,	

the	MCIP	set	corresponded	to	the	scenario	of	having	a	spectral	repository	and	data	measured	

under	differing	experimental	conditions	and	the	custom	MCIP	set	corresponded	to	the	scenario	

of	integrating	a	repository	library	with	a	MCIP	library.	Only	the	main	CIP	was	determined	from	

the	custom	training	set	and	MCIPs	 (and	also	one	CIP	as	a	control)	were	determined	from	the	

MCIP	 training	 sets.	 The	 dot	 scores	 of	 the	 respective	 CIPs/MCIPs	 with	 the	 test	 set	 were	

computed.	

	

Comparison	with	SpectraST	

A	comparison	of	the	spectral	coverage	with	the	popular	SpectraST	search	engine23	was	carried	

out.	 For	 this,	 input	 files	 in	 .pep.XML	 format	 suitable	 for	 SpecraST	 were	 created	 from	 the	

MaxQuant	spectrum	identifications.	Hence	for	each	training	set	belonging	to	a	specific	training-	

and	test	set	combination,	a	set	of	.pep.XML	files	was	generated	that	contained	only	the	spectra	

of	the	specific	training	set.	SpectraST	library	spectra	were	then	generated	from	these	.pep.XML	

files.	This	ensures	that	the	comparison	between	the	MCIP	approach	and	SpectraST	approach	is	

carried	out	with	exactly	the	same	underlying	data.		

To	generate	the	SpectraST	library	spectra,	.pep.XML	output	files	were	submitted	to	SpectraST	in	

library	create	mode	using	the	default	configurations.	The	resulting	raw	library	was	processed	to	

a	consensus	library	using	the	corresponding	SpectraST	option.	The	consensus	library	mode	was	

chosen,	because	it	has	been	shown	to	give	the	highest	number	of	positive	identifications20.	The	
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consensus	 library	 was	 then	 quality	 filtered	 using	 the	 highest	 quality	 level	 (option	 -cL5)	 in	

SpectraST.		The	raw	spectra	from	the	Kuster	Set	were	converted	into	.mzXML	format	with	the	

tool	MSConvert40	and	the	.mzXML	files	were	subsequently	searched	with	SpectraST.	

	

Benchmarking	via	cross	validation	

To	conduct	performance	testing,	a	cross	validation	approach	was	used.	The	replicate	spectra	of	

each	peptide	charge	pair	were	split	into	two	fractions.	The	first	fraction	consisted	of	20%	of	the	

spectra	and	each	spectrum	was	assigned	a	decoy	spectrum	 	which	contained	m/z-shuffled	

intensities	 of	 the	 original	 spectrum.	 By	 shuffling	 the	 spectra,	 the	 total	 intensity	 and	 the	m/z	

values	were	preserved,	while	the	spectrum	represented	changed	completely.	A	1:1	mixed	test	

set	containing	original	and	decoy	spectra	was	then	generated.	The	second	fraction	consisted	of	

the	remaining	80%	of	spectra.	On	this	fraction,	CIP(s)	were	created	as	described	in	the	previous	

sections.	 The	 CIP(s)	 were	 then	 similarity	 scored	 against	 the	 test	 set	 using	 the	 dot	 score.	 A	

similarity	score	below	the	similarity	threshold	for	an	original	spectrum	 	was	marked	as	false	

negative,	 a	 score	 above	 the	 threshold	 with	 a	 decoy	 spectrum	 	 was	 marked	 as	 a	 false	

positive.	The	m/z-shuffling	approach	is	similar	to	the	method	employed	by	Lam	et	al.43,	where	

counting	 of	 decoy	 matches	 is	 used	 library	 wide	 to	 estimate	 the	 FDR.	 Each	 set	 of	 replicate	

spectra	 was	 individually	 checked	 via	 five-fold	 cross	 validation	 in	 this	 study.	 This	 allowed	

estimating	the	relative	fractions	of	false	positives	and	false	negatives	per	peptide	charge	pair,	

rather	than	library	wide.	
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Choosing	a	global	similarity	threshold	

A	global	similarity	threshold	of	dot	score	0.6	was	adapted	from	the	SpectraST	search	engine23	

and	was	subsequently	tested	using	the	sampling	approach	discussed	above.	This	was	done	to	

check,	whether	this	threshold	would	give	overall	discriminative	results.		

Each	spectrum	in	the	dataset	was	represented	as	a	NRFV	and	assigned	1000	differently	shuffled	

decoy	vectors.	Each	NRFV	was	then	dot	scored	against	each	decoy	vector,	which	resulted	in	a	

distribution	of	1000	shuffled	dot	scores	 for	each	NRFV.	From	each	distribution	of	shuffled	dot	

scores,	a	local	discriminative	dot	score	was	extracted,	such	that	less	than	5%	of	the	shuffled	dot	

scores	were	above	this	threshold	(in	other	words,	the	95%	quantile	was	extracted).	Thus,	that	

the	use	of	this	dot	score	would	result	in	5%	acceptance	of	decoy	spectra	for	a	particular	NRFV.	

All	 locally	 discriminative	 dot	 scores	 were	 collected.	 From	 the	 distribution	 of	 locally	

discriminative	dot	scores,	again	the	95%	quantile	was	extracted	(see	supplemental	Fig	S4).	This	

95%	quantile	was	0.62	 in	 this	study,	which	agreed	well	with	the	global	similarity	 threshold	of	

0.6.	The	approach	of	extracting	two	quantiles	was	taken,	because	the	distribution	of	shuffled	

dot	 scores	 varied	 distinctly	 for	 different	 spectra.	 Hence,	 taking	 only	 one	 quantile	 on	 the	

distribution	of	all	shuffled	dot	scores	of	all	spectra	combined	would	result	in	some	spectra	(the	

spectra	with	generally	large	shuffled	dot	scores)	being	ambiguous.	Still,	a	dot	score	cutoff	of	0.6	

might	be	comparably	low	considering	current	high-resolution	data.	

	

Processing	of	targeted	LC-MS/MS	runs	for	CE	and	isolation	window	study		

Due	to	the	targeted	data	acquisition	setup,	the	output	of	the	LC-MS/MS	experiments	was	not	

accessible	to	standard	DDA	processing	via	MaxQuant.	The	.wiff	files	were	converted	to	.mzXML	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

using	MSConvert	 (38)	 and	 the	 .mzXML	 files	 were	 then	 processed	 using	 an	 in-house	 scoring	

method,	 termed	ReScore.	ReScore	 is	based	on	the	scoring	described	 in	 the	publication	of	 the	

MaxQuant	search	engine	Andromeda39.	Using	DDA	runs	 that	were	carried	out	along	with	 the	

targeted	LC-MS/MS	runs	on	the	same	standardized	HeLa	Pierce	lysate	(PXD006691),	the	scores	

were	 compared	 with	 Andromeda.	 The	 scores	 show	 strong	 correlation	 with	 the	 Andromeda	

scoring	and	 the	vast	majority	of	Andromeda	scores	 is	higher	 than	 the	corresponding	ReScore	

(supplemental	Fig.	S5).	Hence,	a	certain	ReScore	cutoff	can	be	used	as	a	reliable	cutoff	for	the	

Andromeda	score.	
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Results	

Spectral	variability	is	widespread	over	experimental	conditions	

We	 considered	 the	 datasets	 listed	 in	 table	 1,	 containing	 a	 total	 of	 10	 different	 experimental	

settings.	We	chose	a	subset	of	experiments	for	the	Kuster	Set	with	large	peptide	overlap	with	

either	 the	 Aebersold	 or	 the	 Imhof	 Set,	 resulting	 in	 a	 heterogeneous	 set	 of	 experimental	

conditions	 (see	 supplemental	 Fig.	 S6).	 To	 obtain	 a	 more	 detailed	 understanding	 of	 spectral	

variability,	 we	 sorted	 all	 replicate	 spectra	 corresponding	 to	 their	 respective	 experimental	

condition.	We	then	combined	all	possible	pairs	of	experimental	conditions,	resulting	in	45	pairs	

(one	example	pair:	Orbitrap	Fusion	Lumos	 in	HCD	mode	at	CE	25	vs.	Sciex	Q-ToF	5600+	using	

CID	 and	 optimized	 rolling	 collision	 energy).	 We	 assessed	 the	 dot	 scores	 between	 the	

experimental	 conditions	 in	 a	 pairwise	manner.	 The	median	 values	 of	 the	 resulting	 dot	 score	

distributions	 are	 displayed	 in	 supplemental	 Fig.	 S7	 and	 show	 a	 clear	 clustering	 after	

experimental	settings.	To	visualize	dissimilar	clustering,	we	plotted	the	lower	10%	quantiles	of	

the	pairwise	dot	score	distribution	in	Fig.	2a.		

We	observe	a	 large	spread	 in	 the	distributions	of	dot	 scores,	with	visible	dependence	on	 the	

experimental	settings.	The	calculated	dot	scores	are	most	stable	for	Orbitrap	data	generated	by	

HCD	 fragmentation	with	 collision	 energies	 (CEs)	 from	 20	 to	 30.	 The	 Kuster	 CID@CE35	 setup	

with	 low-resolution	 ion	 trap	 readout	 differs	 most	 from	 the	 remaining	 setups.	 The	 Q-ToF	

datasets	cluster	together	with	the	highest	CE	Orbitrap	dataset.	We	see	relatively	low	dot	scores	

within	identical	experimental	settings	(diagonal	of	the	heatmap)	for	the	Q-ToF	datasets	and	for	

high	collision	energies	as	well	as	for	low-resolution	readout	in	the	Kuster	sets.	This	underlines,	
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that	 even	 under	 fixed	 experimental	 conditions,	 fragmentation	 can	 vary.	 Some	 examples	 are	

shown	 in	 supplemental	 Fig.	 S8	 and	more	 interpretation	 of	 this	 phenomenon	 is	 given	 in	 the	

discussion	section.	

To	 investigate	 the	 influence	 of	 CE	 on	 spectral	 similarity,	 we	 considered	 the	 distributions	 of	

pairwise	dot	scores	between	the	Orbitrap	set	at	CE	20	and	the		Orbitrap	sets	at	higher	CE	(Fig.	

2b,	 left).	 We	 see	 a	 clear	 influence	 of	 the	 CE	 difference	 on	 the	 pairwise	 distributions.	 We	

extracted	the	10%	quantile	and	the	median	from	these	distributions	and	plotted	them	against	

the	 CE	 difference	 (Fig.	 2b,	 right).	 We	 see	 no	 visible	 influence	 of	 small	 CE	 changes.	 For	 CE	

changes	 between	5	 and	 8	we	 see	 a	 clear	 drop	 in	 similarity	 and	between	10	 and	 15	 an	 even	

stronger	drop,	which	indicates	complex	processes	underlying	peptide	fragmentation.	

Ion	 trap	 readout	 generally	 shifts	 the	 dot	 scores	 towards	 lower	 values	 (see	 supplemental	 Fig.	

S9).	

To	elucidate	the	drastic	effects	of	the	observed	variability	on	peptide	identification,	we	carried	

out	a	clustering	on	the	45	combinations	of	experimental	conditions	(Fig	2c).	Each	combination	

in	the	heatmap	shows	the	fraction	of	peptides	that	have	only	one	cluster.	This	corresponds	to	

no	spectra	clustering	outside	the	main	cluster	and	hence	no	spectra	being	missed	in	a	spectral	

library	search.	We	see	that	-	depending	on	the	experimental	combination	–	as	little	as	35%	of	

peptides	 fulfill	 this	 condition,	with	most	 combinations	 ranging	 from	60%	 to	90%.	 From	 these	

observations,	we	conclude	 two	main	points:	 (i)	 The	machine	 setup	can	play	a	 crucial	 role	 for	

spectral	recognitions.	(ii)	Even	fixed	experimental	settings	can	lead	to	spectra	being	missed.	
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2b)	
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2c)	

	

	

Figure	2.	Spectral	similarity	between	experimental	conditions.	a)	Ten	percent	quantiles	of	the	

distributions	 of	 dot	 scores	 between	 the	 different	 experimental	 conditions.	 b)	 Distribution	 of	

pairwise	dot	 scores	 for	 the	Orbitrap	HCD	conditions,	with	 the	collision	energy	 (CE)	20	setting	

(left).	 Median	 and	 10%	 quantile	 are	 drawn	 in	 as	 dashed	 lines	 and	 plotted	 against	 the	 CE	

difference	 (right).	 Two	 clear	 drops	 in	 similarity	 are	 visible.	 c)	 Fraction	 of	 peptides	 with	 no	

missing	spectra	after	a	spectral	library	search,	determined	between	the	different	experimental	

conditions.	Depending	on	the	condition	pair,	the	fraction	can	go	down	to	around	35%.	
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Usage	of	MCIPs	yields	almost	complete	spectral	coverage		

To	 achieve	 a	 global	 impression	 of	 the	 performance,	 we	 assessed	 the	 spectral	 coverage	 (see	

method	section)	for	all	peptide	charge	pairs.	The	spectra	were	either	compared	with	one	CIP	(in	

accordance	 with	 the	 current	 library	 approaches)	 or	 with	 MCIPs.	 Fig.	 3a	 shows	 a	 striking	

improvement	upon	successive	integration	of	more	and	more	CIPs	(red	up	to	orange	line)	until	

near-complete	coverage	 is	 reached.	The	 largest	gain	 is	visible	upon	 integration	of	 the	second	

CIP	 (blue	 line),	 which	 corresponds	 to	 the	 second	 largest	 cluster.	 This	 improvement	 clearly	

shows	 that	 significantly	 higher	 peptide	 recognition	 is	 possible	 by	 simply	 including	 two	

representative	spectra	for	a	peptide	charge	pair	instead	of	just	one.	

	

MCIP	 library	 performs	 comparable	 to	 custom-made	 library	 and	 enhances	 custom-library	

performance	

Custom-made	spectral	libraries	can	be	seen	as	the	gold	standard	for	creating	a	high	performing	

spectral	 library44.	 These	 libraries,	 however,	 come	 with	 drawbacks	 compared	 to	 spectral	

repositories,	mainly	due	to	the	effort	in	creating	the	library	or	the	limited	number	of	peptides	in	

the	library.		

To	 evaluate	 the	 performance	 of	 our	 libraries,	 we	 generated	 a	 set	 of	 test	 spectra	 for	 each	

experimental	condition.	For	each	set	of	test	spectra,	we	generated	spectral	libraries	from	three	

different	sets	of	training	spectra:	1)	The	custom	set	only	contained	spectra	measured	under	the	

same	 experimental	 condition	 as	 the	 test	 set.	 2)	 The	MCIP	 set	 contained	 spectra	 measured	

under	 all	 available	 conditions	 except	 the	 condition	 of	 the	 test	 set.	 3)	 The	MCIP	 custom	 set	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

contained	spectra	measured	under	all	available	conditions.	The	MCIP	set	was	chosen	in	this	way	

to	re-create	the	scenario	of	having	a	repository	library	(the	MCIP	set)	and	own	data	measured	

under	a	different	experimental	setting	(the	test	set).	

We	then	determined	either	a	single	CIP	or	MCIPs	from	the	different	sets	of	training	spectra	and	

compared	 them	with	 the	 test	 spectra	 (see	 also	methods	 section).	 This	 allowed	us	 to	directly	

assess	the	effect	of	extending	the	current	singe	CIP	approach	to	an	MCIP	approach.	

We	 first	 examined	 the	 fraction	 of	missed	 spectra,	 which	 denotes	 spectra	 that	would	 not	 be	

detected	in	a	spectral	 library	search,	when	using	a	(rather	 low)	similarity	threshold	of	0.6	(Fig	

3b).	 Using	MCIPs	 always	 performs	 better	 than	 the	 current	 single	 CIP	 approach.	 As	 a	 general	

trend,	 we	 see	 that	 differently	 clustering	 spectra	 are	 more	 common	 in	 experimental	 setups	

where	either	the	spectral	resolution	is	low	(ion	trap),	or	fragmentation	energy	settings	are	high.	

The	most	challenging	setup	Kuster	CID@CE35	with	ion	trap	readout,	leads	to	around	one	third	

of	spectra	being	missed	when	using	a	single	CIP	approach.	Integrating	multiple	CIPs	reduces	the	

missed	 fraction	 by	 a	 factor	 of	 2.	 Using	 a	 custom	 library	 further	 reduces	 the	 missed	 rate	 to	

around	 5%.	Using	 the	MCIP	 custom	 training	 set	 yields	 an	 overall	missed	 rate	 of	 3%.	 For	 the	

other	experimental	conditions,	the	MCIP	approach	gives	a	similar	performance	as	the	custom	

library	approach.	 In	around	half	of	 the	cases	the	custom	library	approach	 is	slightly	better,	 in	

the	other	half	the	MCIP	approach	performs	slightly	better.	The	MCIP	approach	in	combination	

with	 the	 custom	 approach	 always	 increases	 accuracy.	 The	 results	 described	 also	 hold	 for	

maximum	neighbor	clustering	(see	supplemental	Fig.	S10)	and	are	stable	for	different	training	

sets.		
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An	example	of	a	spectrum	being	detected	by	a	CIP	outside	the	main	cluster	is	given	in	Fig.	3c.	To	

give	 an	 intuitive	 visualization	 of	 the	 similarities	 between	 the	 spectra,	 the	 fragment	 ion	

intensities	are	connected	via	lines.	We	see	that	CIP1,	which	was	acquired	at	HCD@CE23	has	a	

significantly	 less	 prominent	 b6	 ion,	which	 significantly	 alters	 the	 shape	 of	 the	 fragmentation	

profiles	 for	 the	higher	energy	CID@CE35	and	HCD@CE28	spectra.	The	annotated	raw	spectra	

corresponding	to	Fig.	3c	are	displayed	in	supplemental	Fig.	S11.	

	

Direct	Comparison	with	SpectraST	shows	significantly	increased	sensitivity		

To	further	assess	the	performance	of	our	MCIP	approach,	we	carried	out	a	comparison	with	the	

SpectraST23	 spectral	 search	engine,	which	 is	among	the	most	popular	 in	 the	 field45.	We	again	

determined	 the	 fraction	of	missed	 spectra	at	 a	 similarity	 threshold	of	0.6.	We	generated	 the	

SpectraST	 library	on	the	 identical	spectra	as	our	own	library	 	 (see	also	methods	section).	 	We	

see	 that	 the	 MCIP	 approach	 outperforms	 the	 single	 CIP	 approach	 of	 SpectraST	 in	 terms	 of	

sensitivity	in	the	custom	setup	as	well	as	in	the	non-custom	setup	(Fig	3d).		
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3a)		

	

3b)	
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3c)	

	

3d)	

	

Figure	3.	Comparison	of	the	MCIP	approach	with	current	approaches.		

a)	 Spectral	 coverage	 of	 the	 whole	 dataset	 for	 different	 numbers	 of	 characteristic	 intensity	

patterns	(CIPs)	integrated	in	the	spectral	library.	The	number	of	peptide	charge	pairs	(y-axis)	is	

displayed,	for	which	the	spectral	coverage	is	larger	or	equal	to	the	value	denoted	on	the	x-axis	.	
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The	single	CIP	approach	(red	line)	leaves	a	large	fraction	of	spectra	uncovered.	Integrating	one	

more	CIP	(blue	line)	into	the	library	gives	a	strong	increase	in	coverage	with	successively	smaller	

increases	upon	integration	of	more	CIPs	until	almost	complete	coverage	is	reached	for	up	to	5	

CIPs	per	peptide	charge	pair.	

b)	 Fraction	 of	 spectra	with	 dot	 score	 <0.6	 to	 the	 CIP/MCIPs	 (missed	 spectra).	 Each	 group	 of	

histograms	 displays	 one	 experimental	 condition	 the	 method	 is	 tested	 on.	 The	 different	

clustering	approaches	are	indicated	in	the	legend:	M1	equals	the	MCIP	approach	with	a	single	

CIP	 (state-of-the-art	 approach).	 M5	 equals	 the	 MCIP	 approach	 with	 a	 maximum	 of	 5	 CIPs	

included.	 C	 equals	 the	 custom	 library	 approach	 and	M+C	 5	 equals	 the	MCIP	 approach	 with	

custom	spectra	included.	

c)	Example	of	a	query	spectrum	dissimilar	to	CIP1	(dot	score	0.28)	but	similar	to	CIP2	(dot	score	

0.96).	The	raw	spectra	are	displayed	in	supplemental	Fig.	S11.		

d)	Comparing	the	MCIP	approach	with	SpectraST	using	 identical	 training	and	test	sets	 for	 the	

MCIP	approach	and	for	SpectraST.	The	number	of	spectra	missed	is	significantly	 lower	for	the	

MCIP	approach	both	for	the	non-custom	(left)	and	the	custom	(right)	approach.	
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MCIPs	increase	sensitivity	without	affecting	specificity	

As	has	been	shown	 in	 the	previous	sections,	MCIPs	are	able	 to	cover	all	 replicate	spectra	 for	

many	peptide	charge	pairs,	and,	thereby	improve	sensitivity	in	spectral	searches.	However,	this	

might	 come	 at	 the	 cost	 of	 reduced	 specificity	 (i.e.	 increase	 in	 false	 positives).	 Here	 we	

investigate,	whether	using	MCIPs	affects	the	number	of	false	positives	and	the	overall	accuracy.	

We	tested	this	by	first	generating	CIPs	on	80%	of	the	replicate	spectra	and	then	scoring	these	

CIPs	 against	 a	 mixture	 of	 the	 remaining	 replicate	 spectra	 and	 shuffled	 decoy	 spectra.	 This	

allowed	distinguishing	true	positives	(match	of	CIP	with	replicate	spectrum)	from	false	positives	

(match	of	CIP	with	decoy	spectrum).	The	procedure	is	described	in	more	detail	in	the	methods	

section.	Fig.	4a)	shows	that	the	overall	accuracy	for	MCIPs	(blue	line)	increases	significantly	in	

comparison	to	a	single	CIP	(red	line).	For	>99%	of	peptide	charge	pairs,	the	minimum	accuracy	

increases	by	around	10%	when	integrating	all	CIPs	available	for	each	peptide	charge	pair	in	the	

spectral	library	(blue	line).	In	Fig.	5b),	we	see	(as	expected	from	the	spectral	coverage	results)	a	

strong	decrease	in	false	negatives	upon	integration	of	MCIPs.	At	the	same	time,	we	see	that	the	

false	 positive	 rate	 displayed	 in	 Fig.	 5c)	 is	 very	mildly	 affected.	 	 The	 results	 of	 integrating	 all	

MCIPs	instead	of	5	MCIPs	are	virtually	identical.	
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4a)	 	 	 	 	 	 					4b)	

	

4c)	

	

Figure	4.	Assessment	of	accuracy	using	permuted	decoy	spectra,	as	described	in	the	methods	

section,	 cumulative	 plot.	 a)	 Comparison	 of	 the	 overall	 identification	 accuracy	 between	 the	

single	characteristic	intensity	pattern	(CIP)	approach	(red	line)	and	multiple	CIPs	(MCIPs)	(blue	

line).	 A	 significant	 improvement	 upon	 integration	 of	 MCIPs	 is	 visible.	 b)	 Effect	 of	 MCIP	

integration	on	 false	negatives:	The	 false	negatives	 rate	 is	 strongly	decreased	as	now	also	 the	
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differently	fragmenting	ions	are	integrated.	c)	Effect	of	MCIP	integration	on	the	false	positives	

rate,	which	is	only	marginally	increased	upon	integration	of	MCIPs.	
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Implications	for	SWATH	data	

One	 of	 the	 current	 applications	 of	 spectral	 libraries	 is	 the	 analysis	 of	 SWATH	 data14.	 In	 this	

setup,	 CIPs	 are	matched	with	more	 complex	MS2	 spectra.	We	 assessed,	whether	MCIPs	 can	

improve	the	identification	rate	as	compared	to	using	only	one	CIP.	

As	described	 in	the	methods	section,	we	used	a	dataset,	where	the	same	sample	had	been	

identified	 using	 DDA	 and	 SWATH.	We	 then	 utilized	 this	 setup	 to	 derive	 a	 spectral	 library	 of	

peptides,	which	was	expected	to	be	in	the	SWATH	data	set.	

We	then	searched	the	 library	patterns	against	the	DDA	run	as	well	as	the	SWATH	run,	with	

the	fraction	of	non-identified	spectra	(“errors”)	plotted	against	the	similarity	threshold	(Fig.	5).	

For	the	DDA	run,	the	results	are	analogous	to	the	results	already	presented,	with	a	significant	

improvement	of	identification	upon	integration	of	MCIPs	(red	and	blue	line,	respectively).		

For	the	SWATH	run,	we	observe	lower	baseline	identification,	with	approximately	20%	of	the	

patterns	 not	 being	 identified	 at	 all,	 likely	 due	 to	 the	 higher	 noise	 in	 the	 SWATH	 patterns.	

Nevertheless,	also	for	the	SWATH	data	set,	we	observe	very	similar	effects	when	comparing	the	

single	 CIP	 approach	 (green)	 with	 the	 MCIP	 approach	 (magenta),	 with	 an	 ~30%	 increase	 in	

identification	 accuracy	 at	 reasonable	 similarity	 scores	 (e.g.	 29%	 for	 a	 dot	 score	 of	 0.6).	 The	

higher	senstivity	correspond	well	with	the	recent	findings	that	SWATH	data	analysis	is	improved	

when	local	libraries	are	used	in	addition	to	public	libraries46.		
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Figure	5.	Application	of	the	MCIP	approach	on	SWATH	data	and	comparison	with	DDA	data.	For	

reasonable	similarity	thresholds,	a	significant	decrease	in	unidentified	peptides	can	be	seen	on	

SWATH	data	when	integrating	MCIPs	(violet	line)	in	comparison	to	a	single	CIP	(green	line).	An	

analogous	behavior	is	seen	for	the	DDA	approach,	with	a	significantly	smaller	number	of	missed	

peptides	in	both	cases	(blue	line	MCIPs,	red	line	single	CIP).	
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Discussion	

In	our	study	we	have	introduced	a	simple	and	efficient	strategy	to	deal	with	heterogeneity	of	

peptide	fragmentation.	We	see	that	instrument	settings	can	have	a	huge	influence	on	peptide	

fragmentation	behavior,	especially	for	high-energy	and	low-resolution	spectra.	We	have	shown	

that	 exclusion	 of	 dissimilar	 peptide	 spectra	 is	 over-cautious	 and	 results	 in	 the	 negligence	 of	

many	potential	hits.	

We	observe	that	even	under	fixed	experimental	conditions,	spectra	can	vary	from	each	other.	

This	 effect	 is	 strongly	 enhanced	 by	 low-resolution	 readout.	 Additionally,	 very	 high	 collision	

energy	 changes	 also	 have	 an	 effect	 on	 differing	 peptide	 fragmentation.	 Unfortunately,	 it	 is	

beyond	the	scope	of	our	study	to	fully	explain	the	differences	in	peptide	fragmentation	under	

fixed	conditions.	However,	we	carried	out	some	initial	screens,	using	targeted	LC-MS/MS	runs,	

where	 we	 varied	 the	 applied	 collision	 energy	 within	 the	 same	 run.	 This	 was	 done	 to	 test,	

whether	a	wrong	charge	state	assignment	from	the	machine	could	account	for	the	effects.	Our	

results	show	that	dot	scores	are	robust	over	a	range	of	-3V	to	+3V	in	most	of	the	cases,	which	

covers	 differences	 in	 collision	 energy	 settings	 caused	 by	 wrong	 precursor	 charge	 state	

assignment	 (supplemental	 Fig.	 S12).	We	 complemented	 these	 runs	with	 experiments	 on	 the	

same	 lysate,	where	we	 tried	 to	 investigate	 the	 influence	of	 the	background	matrix	 (coeluting	

peptides/ions	 in	 the	 same	 isolation	window).	 For	 this	 purpose,	 the	 precursor	 isolation	width	

was	varied	between	1Da	and	5	Da.	For	broader	 isolation	windows,	we	observed	a	systematic	

enrichment	 in	 differently	 fragmenting	 spectra	 (supplemental	 Fig.	 S12)	 and	 an	 increase	 in	

spectral	dissimilarity	within	the	same	experimental	run	(supplemental	Fig.	S13).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/180448doi: bioRxiv preprint 

https://doi.org/10.1101/180448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

For	 low	 abundant	 peptides,	 it	 has	 already	 been	 shown	 that	 ion	 interferences	 with	 the	

background	matrix	can	alter	the	fragmentation	spectrum47,	which	we	also	see	in	corresponding	

analyses	in	supplemental	Figs.	S13	and	S14.	Recent	studies	also	show	this	effect	with	SWATH-

MS	data48.	As	a	low	resolution	readout	should	also	strongly	increase	the	effect	of	interferences,	

we	speculate	that	the	background	matrix	might	be	responsible	for	the	observed	differences	in	

the	fragment	spectra.	

Our	reductionist	approach	of	relying	on	MaxQuant	preprocessed	spectra	comes	at	the	cost	of	

possibly	neglecting	important	spectral	information.	The	dot	score	values	determined	from	this	

approach	 will	 be	 different	 to	 the	 dot	 score	 values	 derived	 from	 raw	 spectra,	 as	 the	

representative	 vectors	 are	 shorter	 and	 vector	 length	 influences	 the	 outcome.	 Nevertheless,	

heuristic	measures	 to	 shorten	 the	 vector	 are	 applied	 in	 common	 library	 generation	 tools20,22	

and	have	shown	to	only	mildly	affect	the	overall	sensitivity.	Additionally,	we	explicitly	tested	for	

accuracy,	which	is	displayed	in	Fig.	4	of	this	study.	

It	should	be	noted	that	MaxQuant	spectra	do	not	carry	fragment	ion	annotations	for	fragment	

ions	in	charge	states	larger	than	2.	To	check,	whether	this	affected	the	outcome	of	the	scoring,	

we	 repeated	our	measurements	only	 on	peptides	 in	 charge	 state	 2	 (which	 should	hence	not	

produce	 fragment	 ions	 with	 charge	 larger	 than	 2),	 with	 no	 qualitative	 differences	 in	 the	

outcome.		

Based	on	our	findings,	we	conclude	that	even	though	considerable	efforts	are	being	undertaken	

to	extend	the	amount	of	available	experimental	setups	in	spectral	repositories	(as	for	example	

in	the	scope	of	the	ProteomeTools36	project),	this	might	only	be	part	of	the	solution.	Due	to	the	

large	variety	of	machine-setups	available,	a	public	 library	 is	unlikely	to	be	a	perfect	fit	 for	the	
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desired	 setup	 (including	 instrument	 model,	 fragmentation	 mode,	 collision	 energy	 settings,	

fragment	ion	readout).		Additionally,	when	a	well	fitting	spectral	library	is	found,	the	user	has	to	

constrain	to	the	parameters	of	the	 library,	which	comes	at	the	cost	of	 flexibility	 in	tuning	the	

machine	 setup.	 However,	 even	 when	 this	 is	 fulfilled,	 the	 user	 is	 not	 able	 to	 utilize	 the	 full	

amount	of	spectral	data	available	online,	as	only	the	peptides	available	 in	the	specified	setup	

can	 be	 used.	 As	we	 have	 shown,	 using	MCIPs	 frees	 the	 user	 of	 these	 constraints	 and	 hence	

improves	the	usability	of	spectral	resources.	

With	the	advent	of	quantitative	DIA	methods	like	SWATH,	the	phenomenon	of	MCIPs	becomes	

important	in	the	context	of	quantification.	If	MCIPs	are	not	taken	into	account,	in	a	significant	

fraction	of	cases,	fold	changes	might	be	miscalculated	because	peptides	that	are	actually	there	

will	 be	 missed	 because	 the	 fragmentation	 spectrum	 is	 different.	 The	 increase	 in	 spectral	

recognition	of	our	SWATH	data	set	upon	 integration	of	MCIPs	(Fig.	5)	 is	a	 first	 indication	that	

SWATH	benefits	from	our	approach.		
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DIA:	data	independent	acquisition	

DDA:	data	dependent	acquisition	

SRM:	selected	reaction	monitoring	

MRM:	multiple	reaction	monitoring	

PRM:	parallel	reaction	monitoring	

SWATH:	sequential	window	acquisition	of	all	theoretical	mass	spectra	

CIP:	characteristic	intensity	pattern	

MCIP:	multiple	characteristic	intensity	patterns	

FA:	formic	acid	

TFA:	trifluoroacetic	acid	

ACN:	aceonitrile	

PSM:	peptide	spectrum	match	

cps:	counts	per	second	

NRFV:	normalized	replicate	fragmentation	vector	
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