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Abstract	

Background	

Independent	Component	Analysis	 (ICA)	 is	 a	method	 that	models	 gene	expression	data	as	an	
action	 of	 a	 set	 of	 statistically	 independent	 hidden	 factors.	 The	 output	 of	 ICA	 depends	 on	 a	
fundamental	parameter:	the	number	of	components	(factors)	to	compute.	The	optimal	choice	
of	 this	 parameter,	 related	 to	 determining	 the	 effective	 data	 dimension,	 remains	 an	 open	
question	in	the	application	of	blind	source	separation	techniques	to	transcriptomic	data.			

Results	

Here	 we	 address	 the	 question	 of	 optimizing	 the	 number	 of	 statistically	 independent	
components	 in	 the	 analysis	 of	 transcriptomic	 data	 for	 reproducibility	 of	 the	 components	 in	
multiple	runs	of	 ICA	(within	the	same	or	within	varying	effective	dimensions)	and	 in	multiple	
independent	datasets.	 To	 this	 end,	we	 introduce	 ranking	of	 independent	 components	based	
on	 their	 stability	 in	 multiple	 ICA	 computation	 runs	 and	 define	 a	 distinguished	 number	 of	
components	(Most	Stable	Transcriptome	Dimension,	MSTD)	corresponding	to	the	point	of	the	
qualitative	change	of	the	stability	profile.	Based	on	a	large	body	of	data,	we	demonstrate	that	
a	 sufficient	 number	 of	 dimensions	 is	 required	 for	 biological	 interpretability	 of	 the	 ICA	
decomposition	 and	 that	 the	 most	 stable	 components	 with	 ranks	 below	 MSTD	 have	 more	
chances	 to	 be	 reproduced	 in	 independent	 studies	 compared	 to	 the	 less	 stable	 ones.	 At	 the	
same	time,	we	show	that	a	transcriptomics	dataset	can	be	reduced	to	a	relatively	high	number	
of	dimensions	without	 losing	 the	 interpretability	of	 ICA,	even	 though	higher	dimensions	give	
rise	to	components	driven	by	small	gene	sets.	

Conclusions	

We	 suggest	 a	 protocol	 of	 ICA	 application	 to	 transcriptomics	 data	 with	 a	 possibility	 of	
prioritizing	 components	 with	 respect	 to	 their	 reproducibility	 that	 strengthens	 the	 biological	
interpretation.	 Computing	 too	 few	 components	 (much	 less	 than	MSTD)	 is	 not	 optimal	 for	
interpretability	of	the	results.	The	components	ranked	within	MSTD	range	have	more	chances	
to	be	reproduced	in	independent	studies.			
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Background	
	
Independent	 Component	 Analysis	 (ICA)	 is	 a	matrix	 factorization	method	 for	 data	 dimension	
reduction	 [1].	 ICA	defines	a	new	coordinate	system	 in	 the	multi-dimensional	space	such	that	
the	 distributions	 of	 the	 data	 point	 projections	 on	 the	 new	 axes	 become	 as	 mutually	
independent	 as	 possible.	 	 To	 achieve	 this,	 the	 standard	 approach	 is	 maximizing	 the	 non-
gaussianity	of	the	data	point	projection	distributions	[1].		ICA	has	been	widely	applied	for	the	
analysis	of	transcriptomic	data	for	blind	separation	of	biological,	environmental	and	technical	
factors	affecting	gene	expression	[2–6].			
	
The	 interpretation	 of	 the	 results	 of	 any	 matrix	 factorization-based	 method	 applied	 to	
transcriptomics	 data	 is	 done	 by	 the	 analysis	 of	 the	 resulting	 pairs	 of	 metagenes	 and	
metasamples,	associated	to	each	component	and	represented	by	sets	of	weights	for	all	genes	
and	all	samples,	respectively	[6,7].	Standard	statistical	tests	applied	to	these	vectors	can	then	
relate	a	component	 to	a	 reference	gene	set	 (e.g.,	 cell	 cycle	genes),	or	 to	clinical	annotations	
accompanying	the	transcriptomic	study	(e.g.,	tumor	grade).		The	application	of	ICA	to	multiple	
expression	 datasets	 has	 been	 shown	 to	 uncover	 insightful	 knowledge	 about	 cancer	 biology	
[3,8].	In	[3]	a	large	multi-cancer	ICA-based	metaanalysis	of	transcriptomic	data	defined	a	set	of	
metagenes	 associated	 with	 factors	 that	 are	 universal	 for	 many	 cancer	 types.	 Metagenes	
associated	with	cell	cycle,	inflammation,	mitochondria	function,	GC-content,	gender,	basal-like	
cancer	 types	 reflected	 the	 intrinsic	 cancer	 cell	 properties.	 ICA	 was	 also	 able	 to	 unravel	 the	
organization	 of	 tumor	 microenvironment	 such	 as	 the	 presence	 of	 lymphocytes	 B	 and	 T,	
myofibroblasts,	adipose	tissue,	smooth	muscle	cells	and	interferon	signaling.	This	analysis	shed	
light	on	the	principles	underlying	bladder	cancer	molecular	subtyping	[3].		
	
It	 has	 been	 demonstrated	 that	 ICA	 has	 advantages	 over	 the	 classical	 Principal	 Component	
Analysis	 (PCA)	 with	 respect	 to	 interpretability	 of	 the	 resulting	 components.	 The	 ICA	
components	might	reflect	both	biological	factors	(such	as	proliferation	or	presence	of	different	
cell	types	in	the	tumoral	microenvironment)	or	technical	factors	(such	as	batch	effects	or	GC-
content)	 affecting	 gene	 expression	 [3,5].	 However,	 unlike	 principal	 components,	 the	
independent	 components	 are	 only	 defined	 as	 local	minima	 of	 a	 non-quadratic	 optimization	
function.	Therefore,	computing	ICA	from	different	initial	approximations	can	result	in	different	
problem	solutions.	Moreover,	 in	contrast	to	PCA,	the	components	of	 ICA	cannot	be	naturally	
ordered.		
	
To	improve	these	aspects,	several	ideas	have	been	employed.	For	example,	an	icasso	method	
has	been	developed	to	improve	the	stability	of	the	independent	components	by:	(1)	applying	
multiple	runs	of	 ICA	with	different	 initializations;	 (2)	clustering	the	resulting	components;	 (3)	
defining	the	final	result	as	cluster	centroids;	and	(4)	estimating	the	compactness	of	the	clusters	
[9].	The	resulting	components	can	be	then	naturally	ordered	from	the	most	stable	to	the	least	
stable	 ones.	 This	 ranking	 is	 usually	 different	 from	 more	 commonly	 used	 independent	
component	 rankings	 based	 on	 the	 value	 of	 the	 used	 non-gaussianity	 measure	 (such	 as	
kurtosis)	or	the	variance	explained	by	the	components.	
	
The	fundamental	question	is	the	determination	of	the	number	of	independent	components	to	
produce.	This	problem	can	be	split	 into	 two	parts:	a)	what	dimension	should	be	selected	 for	
reducing	 the	 transcriptomic	 data	 before	 applying	 ICA	 (determining	 the	 effective	 data	
dimension);	 and	 b)	 which	 is	 the	 most	 informative	 number	 of	 components	 to	 use	 in	 the	
downstream	analysis?			
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Determining	the	optimal	effective	data	dimension	for	application	of	signal	deconvolution	was	a	
subject	of	research	in	various	fields.	For	example,	ICA	appeared	to	be	a	powerful	method	for	
analyzing	the	fMRI	(functional	magnetic	resonance)	data	[9–12].	In	this	field,	it	was	shown	that	
choosing	 a	 too	 small	 effective	 data	 dimension	 might	 generate	 “fused	 components,”	 not	
reflecting	 the	 heterogeneity	 of	 the	 data,	 leading	 to	 a	 loss	 of	 interesting	 sources	 (under-
decomposition).	 	At	 the	 same	 time,	 choosing	 the	effective	dimension	 too	high	might	 lead	 to	
signal-to-noise	 ratio	 deterioration,	 overfitting	 and	 splitting	 of	 the	 meaningful	 components	
(over-decomposition)	 [10–12].	 The	 influence	 of	 the	 effective	 dimension	 choice	 on	 the	 ICA	
performance	 has	 not	 been	 well	 studied	 in	 the	 context	 of	 transcriptomic	 data	 analysis.	 For	
example,	 in	 [3]	 each	 dataset	 was	 decomposed	 into	 a	 number	 of	 components	 in	 an	 ad	 hoc	
manner	(n=20).	
	
Several	 theoretical	 approaches	 for	 estimating	 effective	 data	 dimension	 exist.	 The	 simplest	
ones,	 developed	 for	 PCA	 analysis,	 are	 represented	 by	 the	 Kaiser	 rule	 aimed	 at	 keeping	 a	
certain	percentage	of	explained	variance	and	the	broken	stick	model	of	resource	distribution	
[13].	More	sophisticated	approaches	employ	the	information	theory	(e.g.,	Akaike’s	information	
or	Minimal	 Description	 Length	 criteria)	 [13]	 or	 investigate	 the	 local-to-global	 data	 structure	
organization	 [14].	 Also,	 computational	 approaches	 based	 on	 cross-validation	 have	 been	
suggested	in	the	literature	[15].	Specifically	for	ICA	analysis,	few	methods	have	been	proposed	
to	optimize	the	effective	dimension.	For	example,	the	Bayesian	Information	Criterion	(BIC)	can	
be	applied	to	the	Bayesian	formulation	of	ICA	for	selecting	the	optimal	number	of	components	
[16].			
	
Although	 many	 of	 the	 above	 theoretical	 methods	 are	 “parameter-free,”	 selecting	 the	 best	
method	for	choosing	an	effective	dimension	for	transcriptomic	data	can	be	challenging	in	the	
absence	 of	 a	 clearly	 defined	 validation	 strategy.	 	 One	 possible	 approach	 to	 overcome	 this	
limitation	 is	 to	 apply	 the	 same	 computational	 method	 to	 multiple	 transcriptomic	 datasets	
derived	from	the	same	tissue	and	disease.	 	 In	 this	situation,	 it	 is	 reasonable	to	expect	 that	a	
matrix	factorization	method	should	detect	similar	signals	in	all	datasets.	By	taking	advantage	of	
the	 rich	 collection	 of	 public	 data	 such	 as	 The	 Cancer	 Genomic	 Atlas	 (TCGA)	 [17]	 and	 Gene	
Expression	Omnibus	 [18],	 it	 is	 possible	 to	 compare	and	 contrast	 the	parameters	of	different	
gene	expression	analysis	methods	such	as	ICA.		
	
In	this	study,	we	used	TCGA	pan-cancer	(32	different	cancer	types)	transcriptomic	datasets	and	
a	 set	 of	 six	 independent	 breast	 cancer	 transcriptomic	 datasets	 to	 evaluate	 the	 effect	 of	 the	
number	 of	 computed	 independent	 components	 on	 reproducibility	 and	 biological	
interpretability	 of	 the	 obtained	 results.	 	 We	 evaluated	 the	 reproducibility	 of	 ICA	 on	 three	
aspects:		First,	we	analyzed	the	stability	of	the	computed	components	with	respect	to	multiple	
runs	of	ICA;	second,	we	analyse	the	conservation	of	the	computed	components	by	varying	the	
choice	 of	 the	 reduced	 data	 dimension;	 and	 third,	 we	 consider	 the	 reproducibility	 of	 the	
resulting	 set	 of	 ICA	 metagenes	 across	 multiple	 independent	 datasets.	 Our	 reproducibility	
analysis	 thus	explores	13,027	transcriptomic	profiles	 in	37	transcriptomic	datasets,	 for	which	
more	than	100,000	ICA	decompositions	have	been	computed.		
	
We	finally	defined	a	novel	criterion	adapted	for	choosing	the	effective	data	dimension	for	ICA	
analysis	of	gene	expression,	while	taking	 into	account	the	global	properties	of	transcriptomic	
multivariate	 data.	 	 The	Maximally	 Stable	 Transcriptome	Dimension	 (MSTD)	 is	 defined	 as	 the	
maximal	 dimension	 where	 ICA	 does	 not	 yet	 produce	 a	 large	 proportion	 of	 highly	 unstable	
signals.	By	numerical	experiments,	we	showed	that	components	ranked	by	stability	within	the	
MSTD	 range	 tend	 to	 be	 more	 reproducible	 and	 easier	 to	 interpret	 than	 higher-order	
components.		
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Results	
	
Definition	of	component	reproducibility	measures	used	in	this	study	
	
Stability	 of	 an	 independent	 component,	 in	 terms	 of	 varying	 the	 initial	 starts	 of	 the	 ICA	
algorithm,	 is	 a	 measure	 of	 internal	 compactness	 of	 a	 cluster	 of	 matched	 independent	
components	produced	in	multiple	ICA	runs	for	the	same	dataset	and	with	the	same	parameter	
set	 but	 with	 random	 initialization.	 The	 exact	 index	 used	 for	 quantifying	 the	 clustering	 is	
documented	in	the	Methods	section.		Conservation	of	an	independent	component	in	terms	of	
choosing	various	orders	of	 ICA	decomposition	is	a	correlation	between	matched	components	
computed	 in	 two	 ICA	 decompositions	 of	 different	 orders	 (reduced	 data	 dimensions)	 for	 the	
same	 dataset.	 	 Reproducibility	 of	 an	 independent	 component	 is	 an	 (average)	 correlation	
between	the	components	that	can	be	matched	after	applying	the	ICA	method	using	the	same	
parameter	set	but	for	different	datasets.		For	example,	if	a	component	is	reproduced	between	
the	datasets	of	the	same	cancer	type,	then	it	can	be	considered	a	reliable	signal	less	affected	
by	 technical	 dataset	 peculiarities.	 If	 the	 component	 is	 reproduced	 in	 datasets	 from	 many	
cancer	types,	then	it	can	be	assumed	to	represent	a	universal	cancerogenesis	mechanism,	such	
as	 cell	 cycle	or	 infiltration	by	 immune	cells.	 	 The	details	on	 computing	 correlations	between	
components	from	different	datasets	are	described	in	Methods.	
	
Maximally	 Stable	 Transcriptome	 Dimension	 (MSTD),	 a	 novel	 criterion	 for	 choosing	 the	
optimal	number	of	ICs	in	transcriptomic	data	analysis	
	
We	 used	 37	 transcriptomic	 datasets	 to	 analyze	 the	 stability	 and	 reproducibility	 of	 the	 ICA	
results	conditional	on	the	chosen	number	of	components.	ICA	has	been	applied	separately	to	
37	 cancer	 transcriptomic	 datasets	 following	 the	 ICA	 application	 protocols	 as	 described	 in	
Methods.		
	
The	proposed	protocol	 depends	on	a	 fundamental	 parameter	M	 (effective	dimension	of	 the	
data	and,	at	the	same	time,	the	number	of	computed	independent	components)	whose	effect	
on	 the	 stability	 of	 the	 ICs	 is	 investigated.	 For	 each	 transcriptomic	 dataset,	 the	 range	 of	 M	
values	2-100	has	been	considered.	For	each	value	of	M,	the	data	dimension	is	reduced	to	M	by	
PCA	 and	 then	 data	 whitening	 is	 applied.	 Subsequently,	 the	 actual	 signal	 decomposition	 is	
applied	 in	 the	 whitened	 space	 by	 defining	 M	 new	 axes,	 where	 each	 maximizing	 the	 non-
gaussianity	of	data	point	projections	distribution.		
	
For	transcriptomic	data,	 ICA	decomposition	provides:	(a)	M	metagenes	ranked	accordingly	to	
their	stability	 in	multiple	runs	(n=100)	of	 ICA;	and	(b)	a	profile	of	stability	of	the	components	
(set	 of	 M	 numbers	 in	 [0,1]	 range	 in	 descending	 order).	 Considering	 the	 largest	 dataset	
METABRIC	as	an	example,	the	behavior	of	the	stability	profile	as	a	function	of	M	is	reported	in	
Figure	 1A.	 The	 results	 for	 stability	 analysis	 for	 other	 breast	 cancer	 datasets	 are	 similar	 (See	
Supplementary	 Figure	 S2).	 	 To	 recapitulate	 the	 behaviour	 of	 many	 stability	 profiles,	 the	
average	stability	of	the	first	k	top-ranked	components	SM(k)	is	used	(See	Figure	1B).	For	k=M,	
the	average	stability	of	all	computed	components	is	denoted	as	SMtotal.	Three	major	conclusions	
can	 be	made	 from	 Figure	 1.	 First,	 the	 average	 stability	 of	 the	 computed	 components	 SMtotal	
decreases	 with	 the	 increase	 of	 M,	 while	 the	 average	 stability	 of	 the	 first	 few	 top	 ranked	
components,	 i.e.,	SM(10),	weakly	depends	on	M	(Figure	1B).	Moreover,	SMtotal	 is	characterized	
by	the	presence	of	local	maxima,	defining	certain	distinguished	values	of	M	that	correspond	to	
the	 (locally)	maximally	 stable	 set	 of	 components	 (Figure	 1B).	 Third,	 the	 stability	 profiles	 for	
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various	values	of	M	can	be	classified	 into	 those	 for	which	 the	stability	values	are	distributed	
approximately	uniformly	and	those	(usually,	in	higher	dimensions)	forming	a	large	proportion	
of	the	components	with	low	stability	(𝐼!  between	0.2	and	0.4)	(Figure	1A).		
	
Considering	 these	 observations,	 we	 hypothesized	 that	 the	 optimal	 number	 of	 independent	
components	--	large	enough	to	avoid	fusing	meaningful	components	and	yet	small	enough	to	
avoid	producing	an	excessive	amount	of	highly	unstable	components	--	should	correspond	to	
the	 inflection	point	 in	 the	distribution	of	 the	stability	profiles	 (Figure	1A).	 	To	 find	this	point,	
the	 stability	measures	 have	 been	 clustered	 along	 two	 lines,	 which	 is	 analogous	 of	 2-means	
clustering	but	with	lines	as	centroids.	In	this	clustering,	the	line	with	a	steeper	slope	(Figure	1A,	
blue	 line)	 grouped	 the	 stability	 profiles	with	 uniform	distribution,	while	 another	 line	 (Figure	
1A,	 red	 line)	matched	 the	mode	of	 low	stability	 components.	 The	 intersection	of	 these	 lines	
provided	a	consistent	estimate	of	the	effective	number	of	 independent	components.	We	call	
this	 estimate	 Maximally	 Stable	 Transcriptome	 Dimension	 (MSTD)	 and	 in	 the	 following	 we	
investigated	its	properties.	We	note	that,	as	in	various	information	theory-based	criteria	(BIC,	
AIC),	this	estimate	 is	 free	of	parameters	(thresholds),	and	 it	only	exploits	the	property	of	the	
qualitative	 change	 in	 the	 character	 of	 the	 stability	 profile	 in	 higher	 data	 dimensions	 for	
transcriptomic	data.		
	
In	 most	 of	 the	 cancer	 transriptomics	 datasets	 used	 in	 our	 analysis,	 MSTD	 was	 found	 to	
correspond	roughly	to	the	average	stability	profile	SMtotal	≈	0.6	(Supplementary	Figure	S2).	 	 In	
Figure	1D,	the	dependence	of	MSTD	on	the	number	of	samples	contained	in	the	transcriptomic	
dataset	is	investigated	for	all	the	37	transcriptomic	datasets.	As	shown	in	Supplement	Figure	1,	
MSTD	 increased	 with	 the	 number	 of	 samples;	 however,	 this	 trend	 was	 weaker	 than	 other	
estimates	 of	 an	 effective	 dimension	 such	 as	 Kaiser	 rule	 and	 broken	 stick	 distribution-based	
data	 dimension	 estimates.	 Finally,	 the	 fraction	 of	 variance	 explained	 by	 the	 linear	 subspace	
spanned	by	MSTD	number	of	components	was	evaluated	(Figure	1E),	and	it	was	observed	that	
the	fraction	of	variance	explained	varied	from	0.45	to	0.75	with	a	median	of	0.56.	

	
Figure	 1.	 Defining	 Maximally	 Stable	 Transcriptomic	 Dimension	 (MSTD)	 value	 in	 37	 transcriptomics	
cancer	datasets	(13027	samples	in	total).	In	A-C)	an	example	of	the	analysis	is	presented	for	the	largest	
breast	 cancer	 dataset	 METABRIC.	 A)	 	 stability	 profiles	 for	 ICA	 decompositions	 in	 various	 dimensions	
(from	2	to	100)	shown	by	grey	 lines.	Two-line	clustering	result	 is	shown	by	blue	and	red	dashed	 lines,	
with	 MSTD	 determined	 as	 the	 point	 of	 their	 intersection	 (vertical	 dashed	 line).	 B)	 average	 stability	
profile	 SM

total	 (blue	 line)	 and	 the	 average	 stability	 of	 10	most	 stable	 components	 SM(10)	 (red	 line).	 C)	
visualizing	the	results	of	computing	ICA	100	times	with	MSTD=29	components	in	the	METABRIC	dataset	
and	component	clustering	(icasso	package,	Canonical	Correlation	Analysis	(CCA)	plot).	Each	black	point	
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represents	 a	 component,	 red	 lines	 show	 significant	 correlations	 between	 them,	 polygons	 show	 the	
convex	hull	 area	of	 the	 clusters.	D)	Dependence	of	MSTD	on	 the	number	of	 samples	 for	 all	 datasets.	
E)	Dependence	of	the	fraction	of	explained	variance	on	MSTD	for	all	datasets.	

Underestimating	 the	 effective	 dimension	 (M<MSTD)	 leads	 to	 a	 poor	 detection	 of	 known	
biological	signals	
	
Previous	 large-scale	 ICA-based	 meta-analyses	 [3]	 have	 shown	 that	 some	 of	 the	 ICs	 derived	
from	the	decomposition	of	a	cancer	transcriptomic	data	were	clearly	and	uniquely	associated	
with	 known	biological	 signals.	 	 For	 example,	 one	of	 these	 signals	was	 the	one	 connected	 to	
proliferative	 status	 of	 tumors.	 Another	 example	 was	 given	 by	 the	 signals	 related	 to	 the	
infiltration	of	immune	cells	that	were	also	strongly	heterogeneous	across	cancer	patients.		
	
We	 have	 checked	 the	 reproducibility	 of	 several	 metagenes	 results	 from	 previous	 meta-
analyses	[3]	where	all	 ICA	decompositions	were	treated	as	a	function	of	M.		For	this	analysis,	
we	employed	the	METABRIC	breast	cancer	dataset,	which	was	not	included	in	the	input	data	of	
the	previous	 publication	 [3]	 and	 thus	 it	 had	not	 been	used	 to	 derive	 the	metagenes	of	 that	
work.	 In	 addition,	 we	 checked	 how	 the	 significance	 of	 intersections	 between	 the	 genes	
defining	the	components	and	several	reference	gene	sets	(produced	independently	of	the	ICA	
analyses)	behaved	as	a	function	of	M.	
	
We	 applied	 the	 previously	 developed	 correlation-based	 approach	 to	 match	 previously	
identified	 metagenes	 with	 the	 ones	 computed	 for	 a	 new	 METABRIC	 dataset	 (see	 Methods	
section).	The	components	were	oriented	accordingly	to	the	direction	of	the	heaviest	tail	of	the	
projection	distribution.	When	matching	an	oriented	component	to	the	previously	defined	set	
of	metagenes,	we	verified	that	the	resulting	maximal	correlation	should	be	positive,	i.e.	large	
positive	 weights	 in	 one	 metagene	 should	 correspond	 to	 large	 positive	 weights	 in	 another	
metagene.		
	
One	of	 the	most	 important	 case	 studies	 is	 reproducibility	of	 the	 “proliferative”	metagene	 in	
different	data	dimensions.	 It	 is	 investigated	 in	Figure	2A-C.	For	 this	metagene,	we	computed	
correlations	with	M	newly	 identified	 independent	components.	As	an	example,	the	profile	of	
correlations	 for	 M=100	 is	 shown	 in	 Figure	 2B.	 It	 can	 be	 seen	 that	 one	 of	 the	 components	
(ranked	#7	by	stability	analysis)	 is	much	better	correlated	to	the	proliferative	metagene	than	
any	 other	 component.	 Therefore,	 component	 #7	 is	 called	 “best	 matched”	 in	 this	 case,	 for	
M=100,	 and	 “well	 separable.”	 	 Repeating	 this	 analysis	 for	 all	M	 and	 reporting	 the	 observed	
maximal	 correlation	 coefficient	 and	 the	 corresponding	 stability	 value	 gives	 a	 plot	 shown	 in	
Figure	 2A.	 	 Separability	 of	 the	 best	 matched	 component	 from	 the	 other	 components	 is	
visualized	in	Figure	2C.	
	
As	it	can	be	seen	from	Figure	1A,	the	biologically	expected	signals	(i.e.,	cell	cycle)	can	be	poorly	
detected	 for	 M<MSTD;	 however,	 once	 the	 best	 matching	 component	 with	 significant	
correlation	 was	 found,	 it	 remained	 unique	 and	 was	 detected	 robustly	 even	 for	 very	 large	
values	 of	 M>>MSTD.	 	 For	 example,	 even	 when	 100	 components	 (M)	 were	 computed,	 the	
correlation	 between	 the	 previously	 defined	 proliferative	 metagene	 and	 the	 best	 matched	
independent	component	did	not	diminish	 (Figure	2A).	Moreover,	 the	separability	of	 the	best	
matched	 component	 from	 the	 rest	 of	 the	 components	 was	 not	 ruined	 (Figure	 2C).	 In	 this	
example,	 the	 identification	of	cell	cycle	component	remained	clear	 (large	and	well-separated	
correlation	 coefficient)	 for	M>>MSTD.	 This	 result	 was	 consistent	 and	 complementary	 when	
compared	 with	 the	 previously	 observed	 weak	 dependence	 of	 SM(10)	 on	 M.	 	 Indeed,	 the	
“proliferative”	 best	matched	 component	 had	 stability	 rank	 k	 in	 the	 range	 [6,11].	 	 That	 is,	 it	
remained	 stable	 in	 ICA	 decompositions	 in	 all	 dimensions.	 Moreover,	 the	 intersection	 of	 a	
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recently	established	proliferation	gene	signature	[19]	with	the	set	of	top	contributing	genes	of	
the	best	matched	component	improved	with	M	and	saturates	(Figure	2D).	This	proves	that	the	
detection	 of	 the	 proliferation-associated	 signal	 with	 ICA	 does	 not	 depend	 on	 the	 ICA-based	
definition	of	the	proliferative	metagene.		
	
Together	with	 the	 proliferative	 signal,	 other	metagenes	 from	 the	 previously	 cited	 ICA-based	
meta-analysis	 [3]	 were	 robustly	 identified	 in	 our	 analysis.	 In	 Figure	 2	 E-H,	 we	 showed	 the	
correlation	 with	 the	 best	 matching	 component	 for	 the	 metagenes	 associated	 with	 the	
presence	 of	 myofibroblasts,	 inflammation,	 interferon	 signaling	 and	 immune	 system,	 as	 a	
function	 of	M.	 These	 plots	 illustrated	 different	 scenarios	 that	 can	 result	 from	 such	 analysis.		
The	myofibroblast-associated	metagene	was	 robustly	 detected	 for	 all	 values	 of	M>7	 (Figure	
2F).	However,	the	stability	of	the	best	matching	component	was	deteriorated	in	higher-order	
ICA	decompositions	(M>45).	For	the	inflammation-associated	metagene,	an	ICA	decomposition	
with	M>38	was	 needed	 to	 robustly	 detect	 a	 component	 that	 correlates	with	 the	metagene	
(Figure	2E).		
	
Interestingly,	 the	 immune-associated	 metagene	 was	 found	 robustly	 matched	 starting	 from	
M=4.	However,	 in	higher-order	decompositions	 (starting	 from	M=30)	 it	 could	be	matched	 to	
several	 components	 that	 can	 be	 associated	 with	 specific	 immune	 system-related	 signals	
(Figure	 2	 H-I).	 	 Hypergeometric	 tests	 applied	 to	 the	 sets	 of	 top-contributing	 genes	 (weights	
larger	than	5.0)	allowed	us	to	reliably	interpret	these	components	as	being	associated	with	the	
presence	of	 three	 types	of	 immune-related	cells:	 T	 cells	 (corrected	enrichment	p-value=10-39	

with	“alpha	beta	T	cells”	signature	[20],	other	immune	signatures	are	much	less	significant),	B	
cells	(p-value=10-7	with	“B	cells,	preB.FrD.BM”	signature)	and	myeloid	cells	(p-value=10-78	with	
“Myeloid	Cells,	DC.11cloSer.Salm3.SI”	signature).		
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Figure	2.	Analysis	of	 reproducibility	of	previously	 identified	metagenes	 in	 independent	components	of	
the	 METABRIC	 dataset.	 	 A,E,F,G,H)	 show	 correlations	 (see	 Methods	 section)	 with	 the	 cell	 cycle,	
inflammation,	myofibroblast,	interferon	signaling,	immune-related	metagenes	from	[3]	as	a	function	of	
the	 chosen	 data	 dimension	M,	 and	 the	 stability	 of	 the	 best	matched	 component.	 C)	 shows	 the	 ratio	
between	the	correlation	value	of	the	proliferation	metagene	with	the	best	matched	component	and	the	
second	 best	 correlation	 (gap).	 D)	 shows	 an	 intersection	 (Jaccard	 index)	 of	 the	 Freeman’s	 cell	 cycle	
signature	[19]	and	the	set	of	 top-contributing	genes	 (projection>5.0)	 from	the	proliferation-associated	
independent	component.	B,I)	correlation	of	the	cell	cycle	and	immune-related	metagene	with	the	best	
matched	component	 in	 the	M=100	 ICA	decomposition	as	a	 function	of	 the	stability-based	component	
rank.	In	all	plots,	the	vertical	dashed	line	shows	the	MSTD	value	for	the	METABRIC	dataset.	
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Overestimating	 the	 number	 of	 components	 (M>>MSTD)	 produces	 multiple	 ICs	 driven	 by	
small	gene	sets	

We	observed	that	the	higher-order	ICA	decompositions	(M>>MSTD)	produced	a	larger	number	
of	components	driven	by	small	gene	sets	(frequently,	one	gene),	such	that	the	projections	of	
the	 genes	 in	 this	 “outlier”	 set	 is	 separated	 by	 a	 relatively	 large	 gap	 with	 the	 rest	 of	 the	
projections.	We	thus	designed	a	simple	algorithm	to	distinguish	such	components	driven	by	a	
small	gene	set	from	all	the	others.	The	names	of	the	genes	composing	these	small	sets	were	
used	for	annotating	the	corresponding	components	(Figure	3A,	right	part).		

It	 was	 observed	 that	 the	 presence	 of	 such	 “small	 gene	 set-driven”	 components	 is	 a	
characteristic	 of	 higher-order	 ICA	 decompositions	 (M>>MSTD),	 much	 less	 present	 in	 ICA	
decompositions	with	M≤MSTD	(compare	Figure	3A	and	Supplementary	Figure	SF2).		

To	 check	 the	 biological	 significance	 of	 the	 outlier	 genes,	we	 considered	 as	 a	 case	 study	 the	
higher-order	 (M=100)	 ICA	 decomposition	 of	 the	 METABRIC	 breast	 cancer	 dataset.	 We	
collected	 all	 those	 genes	 found	 to	 be	 drivers	 of	 at	 least	 one	 “small	 gene	 set-driven”	
component.	We	obtained	in	this	way	a	set	of	98	genes	listed	in	Supplementary	Table	ST2.	This	
list	appeared	 to	be	 strongly	enriched	 (p-value	=	10-12	after	 correction	 for	multiple	 testing)	 in	
the	genes	of	the	signature	DOANE_BREAST_CANCER_ESR1_UP	“Genes	up-regulated	 in	breast	
cancer	 samples	 positive	 for	 ESR1	 compared	 to	 the	 ESR1	 negative	 tumors”	 from	 Molecular	
Signature	 Database	 [21]	 and	 several	 other	 specific	 to	 breast	 cancer	 gene	 signatures.	 This	
analysis	 thus	 suggested	 that	 at	 least	 some	 of	 the	 identified	 “small	 gene	 set-driven”	
components	 are	 not	 the	 artifacts	 of	 the	 ICA	 decomposition,	 but	 they	 can	 be	 biologically	
meaningful	and	reproducible	in	independent	datasets	(Figure	3A,	right	part).		

	

Most	 stable	 components	 with	 stability	 rank≤MSTD	 have	 more	 chances	 to	 be	 reproduced	
across	independent	datasets	for	the	same	cancer	type	
	
It	 would	 be	 reasonable	 to	 expect	 that	 the	 main	 biological	 signals	 characteristic	 for	 a	 given	
cancer	type	should	be	the	same	when	one	studies	molecular	profiles	of	different	independent	
cohorts	of	patients.	Therefore,	we	expect	that	for	multiple	datasets	related	to	the	same	cancer	
type,	 ICA	 decompositions	 should	 be	 somewhat	 similar;	 hence,	 reciprocally	 matching	 each	
other.	We	called	this	expected	behavior	“reproducibility,”	and	here	we	studied	this	by	applying	
ICA	to	six	relatively	large	breast	cancer	transcriptomic	datasets.	Of	note,	these	datasets	were	
produced	using	various	technologies	of	transcriptomic	profiling	(Supplementary	Table	ST1).	
		
To	 identify	 the	 reproducible	 components,	 we	 applied	 the	 same	 methodology	 as	 in	 the	
previously	 published	 ICA-based	 gene	 expression	 meta-analysis	 [3].	 We	 decomposed	 the	 six	
datasets	 separately	 and	 then	 constructed	 a	 graph	 of	 reciprocal	 correlations	 between	 the	
obtained	metagenes.	Correlation	between	two	sets	of	components	is	called	reciprocal	when	a	
component	 from	 one	 set	 is	 the	 best	 match	 (maximally	 correlated)	 to	 a	 component	 from	
another	set,	and	vice	versa	(see	Methods	for	a	strict	definition).		
	
Pseudo-cliques	 in	 this	 graph,	 consisting	of	 several	 nodes,	 correspond	 to	 reproducible	 signals	
detected	 by	 ICA.	 As	 shown	 in	 Figure	 3,	 multiple	 reproducible	 signals	 were	 identified	 in	 the	
analysis.	 Some	 of	 them	 correspond	 to	 signals	 already	 identified	 in	 [3]	 (e.g.,	 cell	 cycle,	
interferon	 signaling,	 microenvironment-related	 signals),	 and	 some	 correspond	 to	 newly	
discovered	biological	signals	(e.g.,	ERBB2	amplicon-associated).	Some	other	pseudo-cliques	are	
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associated	 with	 “small	 gene	 set-driven”	 components	 (frequently,	 one	 gene-driven),	 such	 as	
TFF1-3-associated	or	SCGB2A1-2-associated	components.		
	
The	genes	driver	of	reproducible	and	“small	gene	set-driven”	components	(S100P,	TFF1,	TFF3,	
SCGB2A1,	 SCGB1D2,	 SCGB2A2,	 LTF,	 CEACAM6,	 CEACAM5	 being	most	 remarkable	 examples)	
have	been	investigated	in	detail,	to	further	check	their	biological	interest.	They	were	found	to	
be	the	genes	known	to	be	associated	with	breast	cancer	progression	[22]. For example, seven 
of the nine previously mentioned genes form a part of a gene set known to be up-regulated in 
the bone relapses of breast cancer (M3238 gene set from MSigDB). 	
	
To	quantify	the	reproducibility	of	the	components,	we	computed	a	reproducibility	score.	It	is	a	
sum	 of	 correlation	 coefficients	 between	 the	 component	 and	 all	 reciprocally	 correlated	
components	from	other	datasets.	By	construction,	the	maximum	value	of	the	score	is	5,	which	
meant	that	a	component	with	such	a	score	would	be	perfectly	correlated	with	the	reciprocally	
related	components	 from	five	other	datasets.	We	studied	 the	dependence	of	 this	 score	as	a	
function	of	the	relative	to	MSTD	component	stability-based	rank	(Figure	3B).	From	this	study,	it	
follows	 that	 even	 for	 the	 high-order	 ICA	 decompositions,	 the	 components	 ranked	 by	 their	
stability	within	MSTD	range,	have	an	increased	likelihood	of	being	reproduced	in	independent	
datasets	collected	for	the	same	cancer	type.		
	
To	 show	 that	 the	 stability-based	 ranking	 of	 genes	 is	 more	 informative	 compared	 with	 the	
standard	 rankings	 of	 independent	 components,	 we	 performed	 a	 computational	 analysis	 in	
which	we	 compared	 the	 stability-based	 ranking	with	 the	 rankings	 based	 on	 non-gaussianity	
(kurtosis)	 and	 explained	 variance.	 These	 two	 measures	 are	 frequently	 used	 to	 rank	 the	
independent	 components	 [6].	 From	 Figure	 3B	 it	 is	 clear	 that	 the	 stability-based	 ranking	 of	
independent	 components	 corresponds	 well	 to	 the	 reproducibility	 score,	 while	 two	 other	
simpler	measures	do	not.	
	
It	 can	 also	 be	 shown	 that	 the	 total	 number	 of	 reciprocal	 correlations	 with	 relatively	 large	
correlation	 coefficients	 (|r|>0.3)	 between	 ICA-based	 metagenes	 computed	 for	 several	
independent	 datasets	 is	 significantly	 bigger	 when	 the	 component	 stabilization	 approach	 is	
applied	 (Supplementary	 Figure	 S4).	 This	 proves	 the	 utility	 of	 the	 applied	 stabilization-based	
protocol	of	ICA	application	to	transcriptomic	data.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 25, 2017. ; https://doi.org/10.1101/180687doi: bioRxiv preprint 

https://doi.org/10.1101/180687
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
Figure	 3.	 Analysis	 of	 component	 reproducibility	 in	 independent	 datasets.	 A)	 Graph	 of	 reciprocal	
correlations	 showing	 the	 reproducibility	 of	 the	 metagenes	 of	 independent	 components	 in	 6	
independent	breast	cancer	datasets.	Each	node	here	 is	an	 independent	component,	 represented	by	a	
metagene,	 from	 an	 ICA	 decomposition	 with	 M=100	 components.	 Edges	 show	 only	 reciprocal	
correlations	 between	 metagenes	 with	 Pearson	 correlation	>	 0.3.	 	 Triangles	 (on	 the	 right)	 show	 the	
components	 driven	 by	 the	 expression	 of	 a	 small	 group	 of	 genes	 (frequently,	 one	 gene).	 Node	 size	
reflects	the	rank	of	the	component	based	on	the	stability	 in	multiple	runs	of	 fastICA	(larger	nodes	are	
more	stable	ones).		The	edge	width	and	the	color	reflect	the	value	of	the	correlation	coefficient	between	
two	metagenes,	with	thicker	edges	showing	 larger	correlation	values.	Several	pseudo-cliques	of	highly	
reproducible	components	are	annotated	either	by	the	dominating	small	group	of	genes	(pseudo-cliques	
of	 triangle	 nodes),	 or	 by	 comparing	 to	 the	 results	 of	 the	 previously	 published	 large-scale	 ICA-based	
analysis	 of	 gene	 expression	 [3]	 or	 by	 performing	 the	 hypergeometric	 test	 using	 the	 set	 of	 top-
contributing	 genes	 (with	 projection	 larger	 than	 5.0	 onto	 the	 component).	 The	 analogous	 correlation	
graph	computed	for	MSTD	number	of	components	is	provided	in	Supplementary	Figure	SF3.	B)	average	
reproducibility	score	(sum	of	reciprocal	correlation	coefficients	of	an	 independent	component)	 for	the	
correlation	graph	shown	 in	A),	as	a	 function	of	 the	 relative	 (component	 rank	minus	MSTD	value	 for	a	
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given	 dataset,	 for	 stability-based	 ranking)	 or	 absolute	 (for	 other	 ranking	 types)	 component	 rank.	 It	 is	
clear	that	only	stability-based	ranking	matches	the	reproducibility	score.	

	

Computing	 large	 number	 of	 components	 (M>>MSTD)	 does	 not	 strongly	 affect	 the	 most	
stable	ones	

We	 lastly	 used	 ICA	 decompositions	 of	 37	 transcriptomic	 datasets	 to	 compare	 the	 ICA	
decompositions	 corresponding	 to	M=MSTD	with	 the	 higher-order	 decompositions,	M=50	 or	
M=100.		

It	was	found	that	the	components	calculated	 in	 lower	data	dimensions	can	be	relatively	well	
matched	to	the	components	from	higher-order	ICA	decompositions	(Figure	4).	More	precisely,	
90%	of	the	components	defined	for	M=MSTD	had	a	reciprocal	best	matched	component	in	the	
M=100	ICA	decomposition.	 	Most	stable	components	had	a	clear	tendency	to	be	reproduced	
with	high	correlation	coefficient	(r>0.8).	Only	10%	of	the	components	had	only	non-reciprocal	
or	 too	 small	 correlations	 between	 two	 decompositions	 (in	 other	 words,	 not	 conserved	 in	
higher-order	ICA	decompositions).		

Approximately	 15%	 of	 the	 components	 in	 M=MSTD	 ICA	 decomposition	 together	 with	
reciprocal	maximal	correlation	also	had	a	non-reciprocal	correlation	to	one	of	the	components	
in	M=100	 ICA	decomposition	 (Figure	4).	This	case	can	be	described	as	splitting	a	component	
into	two	or	more	components	in	the	higher-order	ICA	decompositions.	At	least	one	such	split	
had	a	clear	biological	meaning,	namely	the	splitting	of	the	component	representing	the	generic	
“immune	infiltrate.”	The	resulting	“split”	components	more	specifically	represented	the	role	of	
T	cells,	B	cells	and	myeloid	cells	 in	the	tumoral	microenvironment	(see	the	“Underestimating	
the	effective	dimension…”	Results	section).	
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Figure	 4.	 Conservation	 or	 non-conservation	 of	 independent	 components	 in	 higher	 than	 MSTD	
dimensions.	ICA	decomposition	in	MSTD	data	dimension	is	compared	with	the	one	of	dimension	50	and	
100.	Table	on	the	left:	list	of	different	scenario	with	the	relative	frequency	of	each	of	them	estimated	for	
a	pan-cancer	TCGA	dataset.	Plots	on	the	right	show	the	frequency	of	finding	the	reciprocally	correlated	
component	in	the	higher	dimension	and	the	average	correlation	coefficient	of	the	reciprocal	correlation,	
as	 a	 function	 of	 the	 relative	 rank	 of	 the	 component	 (component	 rank	minus	MSTD	 value	 for	 a	 given	
dataset).	

Discussion	

Our	results	shed	light	on	the	organization	of	the	multivariate	distribution	of	gene	expression	in	
the	 high-dimensional	 space.	 It	 appears	 that	 the	 organization	 contained	 two	 relatively	 well	
separated	parts:	 the	dense	one	 of	 a	 relatively	 small	 effective	dimension	and	 the	 sparse	one.	
The	 former	 contained	 the	genes	 from	within	 co-regulated	modules	 that	 contained	 from	 few	
tens	 to	 few	hundreds	of	genes.	The	 latter	was	spanned	by	 the	genes	with	unique	regulatory	
programs	 (perhaps	 tissue-specific)	weakly	 shared	 by	 the	 other	 genes.	 Here	 the	 sparsity	was	
understood	in	the	sense	of	low	local	multivariate	distribution	density.			
	
Independent	 Component	 Analysis	 can	 capture	 both	 these	 parts	 of	 the	 multivariate	
distribution.	 However,	 while	 the	 dense	 part	 defined	 independent	 components	 with	
approximately	 uniformly	 distributed	 stabilities,	 starting	 from	highly	 stable	 to	 less	 stable,	 the	
sparse	part	was	spanned	by	the	components	characterized	mostly	by	small	stability	values.	
	
This	organization	of	 the	gene	expression	space	 is	captured	 in	 the	distribution	of	 ICA	stability	
profiles	 for	 varying	 M,	 which	 allowed	 us	 to	 define	 the	 Maximally	 Stable	 Transcriptome	
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Dimension	 (MSTD)	 value,	 roughly	 reflecting	 the	 dimension	 of	 the	 dense	 part	 of	 the	 gene	
expression	 distribution.	 In	 one	 hand,	 when	 underdecomposing	 (compressing	 too	 much	 by	
dimension	 reduction,	 M<MSTD)	 a	 transcriptomic	 dataset,	 the	 resulting	 independent	
components	 are	 hard	 to	 interpret.	 In	 the	 other	 hand,	 overdecomposing	 transcriptomes	
(choosing	 the	 effective	 dimension	much	 bigger	 than	MSTD)	 is	 not	 dramatically	 detrimental:	
one	can	choose	to	explore	a	relatively	multi-dimensional	subspace	of	a	transcriptomic	dataset,	
taking	into	account	that	applying	matrix	factorization	methods	in	higher	dimensions	becomes	
computationally	 challenging	 and	 prone	 to	 bad	 algorithm	 convergence.	Nevertheless,	 higher-
order	 decompositions	 might	 allow	 capturing	 the	 behavior	 of	 some	 tissue-specific	 or	 cancer	
type-specific	 biomarker	 genes	 from	 the	 sparse	 part	 of	 the	 distribution,	which	 can	 be	 found	
reproducible	in	other	independent	studies.	
	
In	 our	 computational	 experiments,	 we	 selected	 100	 as	 the	 maximum	 order	 of	 ICA	
decomposition	 (M)	 to	 test.	 However	 it	 is	 possible	 to	 examine	 even	 higher	 orders	 of	 ICA	
decompositions,	reducing	the	data	to	more	than	100	dimensions,	but	not	more	than	the	total	
number	 of	 samples,	 of	 course.	 	 In	 practice,	 computing	 ICA	 in	 such	 high	 dimension	 leads	 to	
significant	deterioration	of	 the	 fastICA	algorithm	convergence,	 so	exploring	M>100	might	be	
too	 expensive	 in	 terms	 of	 computational	 time.	Moreover,	 our	 study	 suggests	 that	 the	most	
interesting	 for	 interpretation	components	are	usually	positioned	within	 the	 first	 few	 ten	 top	
ranks:	 therefore,	100	seems	to	be	a	 reasonable	 limit	 for	dimension	reduction	when	applying	
ICA	to	transcriptomic	data.	

Our	proposed	approach	can	be	used	for	comparing	intrinsic	reproducibility,	at	different	levels,	
of	various	matrix	factorization	methods.	For	example,	 it	would	be	of	 interest	to	compare	the	
widely	 used	 Non-negative	 matrix	 factorization	 (NMF)	 method	 [6,7]	 with	 ICA	 to	 assess	
reproducibility	of	extracted	metagenes	in	independent	datasets	of	the	same	nature.	

More	generally,	 systematic	 reproducibility	 analysis	 can	be	a	useful	 approach	 for	establishing	
the	best	practices	of	application	of	the	bioinformatics	methods.	

	
Conclusion	
	
By	 using	 a	 large	 body	 of	 data	 and	 comparing	 0.1	 million	 decompositions	 of	 transcriptomic	
datasets	 into	 the	 sets	 of	 independent	 components,	 we	 have	 checked	 systematically	 the	
resulting	metagenes	 for	 their	 reproducibility	 in	 several	 runs	 of	 ICA	 computation	 (measuring	
stability),	for	their	reproducibility	between	a	lower	order	and	higher-order	ICA	decompositions	
(conservation),	 and	 between	 metagene	 sets	 computed	 for	 several	 independent	 datasets,	
profiling	tumoral	samples	of	the	same	cancer	type	(reproducibility).		
From	the	first	of	such	analyses,	we	formulated	a	minimally	advised	number	of	dimensions	to	
which	 a	 transcriptomic	 dataset	 should	 be	 reduced	 called	 Maximally	 Stable	 Transcriptome	
Dimension	 (MSTD).	 Reducing	 a	 transcriptomic	 dataset	 to	 a	 dimension	 below	 MSTD	 is	 not	
optimal	in	terms	of	the	interpretability	of	the	resulting	ICA	components.		We	showed	that	for	
relatively	large	transcriptomic	datasets,	MSTD	could	vary	from	15	to	30	and	that	the	number	of	
samples	matters	relatively	weakly.	
	
From	 the	 second	 analysis,	 we	 concluded	 that	 the	 suggested	 protocol	 of	 ICA	 application	 to	
transcriptomic	data	is	conservative,	i.e.,	the	components	identified	in	a	higher	dimension	(for	
example,	in	one	hundred	dimensional	space)	can	be	robustly	matched	with	those	components	
obtained	 in	 the	 dimensions	 comparable	 with	 MSTD.	 Moreover,	 we	 described	 an	 effect	 of	
interpretable	component	splitting	 in	higher	dimensions,	 leading	 to	detection	of	 finer-grained	
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signals	 (e.g.,	 related	 to	 the	 decomposition	 of	 the	 immune	 infiltrate	 in	 the	 tumor	
microenvironment).	At	the	same	time,	the	application	of	ICA	in	high	dimensions	resulted	in	a	
greater	proportion	of	unstable	components,	many	of	them	were	driven	by	expression	of	small	
(one	to	three	members)	gene	sets.		Yet,	some	of	these	small	gene	set-driven	components	were	
highly	reproducible	and	biologically	meaningful.		
	
From	the	third	analysis,	we	established	that	the	used	protocol	of	ICA	application,	with	ranking	
the	 independent	 components	 based	 on	 their	 stability,	 prioritized	 those	 components	 having	
more	chances	to	be	reproduced	in	independent	transcriptomic	datasets.	Moreover,	when	ICA	
was	 applied	 in	 higher	 dimensions,	 the	 components	 within	 the	MSTD	 range	 still	 have	 more	
chances	to	be	reproduced.	
	
In	 sum,	our	 results	 confirmed	advantageous	 features	of	 ICA	applied	 to	gene	expression	data	
from	 different	 platforms,	 leading	 to	 interpretable	 and	 quantifiably	 reproducible	 results.	
Comparing	 ICA	analyses	performed	 in	various	dimensions	and	multiple	 independent	datasets	
for	the	same	cancer	types	allow	prioritizing	of	the	most	reliable	and	reproducible	components	
which	 can	 be	 quantitatively	 recapitulated	 in	 the	 form	 of	 metagenes	 or	 the	 sets	 of	 top	
contributing	genes.	We	expect	that	ICA	will	demonstrate	similar	properties	in	other	large-scale	
transcriptomic	data	collections	such	as	scRNA-seq	data.	
	
Materials	and	Methods	
Transcriptomics	cancer	data	used	in	the	analysis	
Expression	data	derived	for	32	solid	cancer	types	(ACC,	BLCA,	BRCA,	CESC,	CHOL,	COAD,	DLBC,	
ESCA,	GBM,	HNSC,	KICH,	KIRC,	KIRP,	 LGG,	 LIHC,	 LUAD,	 LUSC,	MESO,	OV,	PAAD,	PCPG,	PRAD,	
READ,	SARC,	SKCM,	STAD,	TGCT,	THCA,	THYM,	UCEC,	UCS,	UVM)	were	downloaded	from	the	
TCGA	web-site	 and	 internally	 normalized.	 Normalized	 breast	 cancer	 datasets	 from	CIT,	 BCR,	
WANG,	BEKHOUCHE	were	re-used	from	the	previous	study	[3].	Normalized	METABRIC	breast	
cancer	 expression	 dataset	 was	 downloaded	 from	 cBioPortal	 at	 this	 link	
http://www.cbioportal.org/study?id=brca_metabric.	 When	 it	 was	 not	 already	 the	 case,	 the	
data	values	were	converted	into	logarithmic	scale.			
	
The	 list	of	breast	cancer	 transcriptomic	datasets	used	 for	 reproducibility	 study	 is	available	 in	
Supplementary	Table	ST1.	
	
ICA	decompositions	computation	
We	 applied	 the	 same	 protocol	 of	 application	 of	 ICA	 decomposition	 as	 in	 [3].	 	 In	 the	 ICA	
decomposition	X	≈	AS,	X	 is	 the	gene	expression	(sample	vs	gene)	matrix,	A	 is	 the	(sample	vs.	
component)	 matrix	 describing	 the	 loadings	 of	 the	 independent	 components,	 and	 S	 is	 the	
(component	 vs.	 gene	 matrix)	 describing	 the	 weights	 (projections)	 of	 the	 genes	 in	 the	
components.	 To	 compute	 ICA,	 we	 used	 the	 fastICA	 algorithm	 [1]	 accompanied	 by	the	
icasso	package	[23]	to	improve	the	components	estimation	and	to	rank	the	components	based	
on	their	stability.	ICA	was	applied	to	each	transcriptomic	dataset	separately.		

For	 each	 analysed	 transcriptomic	 dataset,	 we	 computed	M	 independent	 components	 (ICs),	
using	pow3	nonlinearity	 and	symmetrical	approach	 to	 the	 decomposition,	where	M	 =	 [2…50,	
55,	60,	65,	70,	75,	80,	85,	90,	95,	100].	In	those	cases,	when	M	exceeded	the	total	number	of	
samples,	 the	 maximum	 M	 was	 chosen	 equal	 to	 0.9	 multiplied	 by	 the	 number	 of	 samples	
(moderate	 dimension	 reduction	 improves	 convergence).	 We	 found	 that	 the	 MATLAB	
implementations	 of	 fastICA	 performs	 superior	 to	 other	 implementations	 (such	 as	 those	
provided	 in	R	 [25]).	 The	 computational	 time	 required	 for	 performing	 all	 the	 0.1	million	 ICA	
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decompositions	used	in	this	study	is	estimated	in	~1500	single	processor	hours	using	MATLAB	
while	other	 implementations	would	not	make	this	analysis	 feasible	at	all.	 In	our	analysis,	we	
used	 Docker	 with	 packaged	 compiled	 MATLAB	 code	 for	 fastICA	 together	 with	 MATLAB	
Runtime	environment,	which	 can	be	 readily	used	 in	other	applications	and	does	not	 require	
MATLAB	 installed	 [26].	 An	 example	 of	 computational	 time	 needed	 for	 the	 analysis	 of	 two	
transcriptomic	 datasets	 of	 typical	 size	 (full	 transcriptome,	 from	 200	 to	 1000	 samples)	 is	
provided	 in	 Supplementary	 Figure	 SF5.	 As	 a	 rough	 estimate,	 it	 takes	 3	 hours	 to	 analyze	 a	
transcriptomic	dataset	with	200	samples	and	7	hours	to	analyze	a	dataset	with	1000	samples,	
using	 an	 ordinary	 laptop.	 In	 each	 such	 analysis,	 more	 than	 2000	 ICA	 decompositions	 of	
different	orders	have	been	made.	

	

The	algorithm	for	determining	the	Most	Stable	Transcriptome	Dimension	(MSTD)	

1) Define	two	numbers	[Mmin,	 	Mmax]	as	the	minimal	and	maximal	possible	numbers	of	
the	computed	components.	
2) Define	 the	 number	 K	 of	 ICA	 runs	 for	 estimating	 the	 components	 stability.	 In	 all	 our	
examples,	we	used	K=100.	
3) For	each	M	between	Mmin	and	Mmax	(or,	with	some	step)	do	

3.1)	 Compute	 K	 times	 the	 decomposition	 of	 the	 studied	 dataset	 into	M	 independent	
components	using	the	fastICA	algorithm.	This	results	in	computation	of	MxK	components.		

3.2)	Cluster	MxK	components	into	M	clusters	using	agglomerative	hierarchical	clustering	
algorithm	with	the	measure	of	dissimilarity	equal	to	1-|rij|,	where	rij	is	the	Pearson	correlation	
coefficient	computed	between	components.		

3.3)	For	each	cluster	Ck	out	of	M	clusters	(C1	,	C2	,…,	CN)	compute	the	stability	index	using	
the	following	formula	
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−
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where	|Ck|	denotes	the	size	of	the	kth	cluster.		
3.4)	Compute	the	average	stability	index	for	M	clusters:	

	

𝑆 𝑀 =
1
𝑀

𝐼! 𝐶!
!

	

	
4) Select	 the	 MSTD	 as	 the	 point	 of	 intersection	 of	 the	 two	 lines	 approximating	 the	
distribution	 of	 stability	 profiles	 (Figure	 1A).	 	 The	 lines	 are	 computed	 using	 a	 simple	 k-lines	
clustering	 algorithm	 [27]	 for	 k=2,	 implemented	 by	 the	 authors	 in	 MATLAB,	 with	 the	 initial	
approximations	of	the	lines	matching	the	abscissa	and	the	ordinate	axes	of	the	plot.		
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The	 index	 used	 in	 3.3	 is	 a	 widely	 used	 index	 of	 clustering	 quality	 defined	 as	 a	 difference	
between	the	average	intra-cluster	similarity	and	the	average	inter-cluster	similarity.	In	[9]	this	
index	was	 introduced	 to	estimate	 the	quality	of	 clustering	of	 independent	components	after	
multiple	runs	with	random	initial	conditions,	and	tested	in	application	to	fMRI	data.	In	the	case	
of	clustering	independent	components,	Iq	=	1	corresponds	to	the	case	of	perfect	clustering	of	
components	such	that	all	the	components	 in	one	cluster	are	correlated	with	each	other	with	
|r|	=	1,	and	that	all	components	in	the	same	cluster	are	orthogonal	to	any	other	component	
(in	the	reduced	and	whitened	space).	

	

Comparing	metagenes	computed	for	different	datasets	and	in	different	analyses	

Following	 the	 methodology	 developed	 previously	 in	 [3],	 the	 metagenes	 computed	 in	 two	
independent	datasets	were	compared	by	computing	a	Pearson	correlation	coefficient	between	
their	corresponding	gene	weights.	Since	each	dataset	can	contain	a	different	set	of	genes,	the	
correlation	is	computed	on	the	genes	which	are	common	for	a	pair	of	datasets.	Note	that	this	
common	set	of	genes	can	be	different	 for	different	pairs	of	datasets.	 	The	same	correlation-
based	comparison	was	done	with	previously	defined	and	annotated	metagenes.	We	computed	
the	 correlation	 only	 between	 those	 genes	 having	 projection	 value	 more	 than	 3	 standard	
deviations	in	the	identified	component.	

When	 comparing	 two	 sets	 of	 metagenes	 A	 =	 {A1,…,AM}	 and	 B	 =	 {B1,….,BN},	 in	 order	 to	 do	
component	matching,	we	focused	on	the	maximal	correlation	of	a	metagene	from	one	set	with	
all	components	from	another	set.	If	Bi	=	arg	max(corr(Aj,B))	then	Bi	is	called	best	matched,	for	
Aj,	metagene	from	the	set	B.	 If	Bi	=	arg	max(corr(Aj,B))	and	Aj	=	arg	max(corr(Bi,A)),	 then	the	
correlation	between	Bi	and	Aj	is	called	reciprocal.	

In	 all	 correlation-based	 comparisons,	 the	 absolute	 value	 of	 the	 correlation	 coefficient	 was	
used.		

The	orientation	of	independent	components	was	chosen	such	that	the	longest	tail	of	the	data	
projection	 distribution	 would	 be	 on	 the	 positive	 side.	 Then,	 for	 quantifying	 an	 intersection	
between	a	metagene	and	a	reference	set	of	genes	(e.g.,	cell	cycle	genes),	simple	Jaccard	index	
was	computed	between	the	 reference	gene	set	and	 the	set	of	 top-contributing	genes	 to	 the	
component,	with	positive	weights	>5.0.		

	

Determining	if	a	small	gene	set	is	driving	an	independent	component	

To	 distinguish	 whether	 an	 independent	 component	 is	 driven	 by	 a	 small	 gene	 set,	 the	
distribution	 of	 gene	 weights	 Wi	 from	 the	 component	 was	 analyzed.	 For	 each	 tail	 of	 the	
distribution	(positive	and	negative),	the	tail	weight	was	determined	as	the	total	absolute	sum	
of	weights	of	the	genes	exceeding	certain	threshold	Wtop.		The	heaviest	tail	of	the	distribution	
was	 identified	 as	 the	 tail	with	 the	maximum	weight.	 For	 the	heaviest	 tail	 and	 for	 the	 set	 of	
genes	P	with	absolute	weights	exceeding	Wtop,	sorted	in	descending	order	by	absolute	value,	
we	 studied	 the	gap	distribution	of	 values	Gi	 =	Wi/Wi+1,	 i�	 P.	 If	 there	was	a	 single	 value	of	Gi	
exceeding	a	threshold	Gmax,	then	the	component	was	classified	as	being	driven	by	a	small	set	of	
genes	corresponding	to	the	indices	{i;	 i	≤	max(k;	Gk	≤	Gmax)}.	The	values	Wtop	=	3.0,	Gmax	=	1.5	
collected	 the	maximal	gene	set	 size	=	3	 in	all	 ICA	decompositions.	These	are	 few	genes	with	
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atypically	high	weights	 separated	by	a	 significant	 gap	 from	 the	 rest	of	 the	distribution	 (note	
that	 these	 genes	 cannot	 always	 be	 considered	 outliers	 since	 they	 and	 the	 resulting	
independent	components	can	be	reproducible	in	independent	datasets).	
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Supplementary	Figures		

	

Supplementary	Figure	SF1.	Standard	estimations	of	 intrinsic	dimensionality	(by	Keiser	rule	or	
by	broken	stick	distribution)	of	cancer	datasets.	

	

Supplementary	 Figure	 SF2.	 Estimating	MSTD	 dimension	 for	 six	 breast	 cancer	 datasets.	 The	
notations	are	the	same	as	in	Figure	1.	

METABRIC dataset BRAC TCGA dataset

BRCA CIT dataset

MSTD = 29 MSTD = 26

MSTD = 29 MSTD = 26
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Supplementary	Figure	SF3.	Graph	of	 reciprocal	 correlations	between	components	computed	
with	MSTD	choice	for	the	reduced	dimension	and	the	number	of	components.	The	size	of	the	
points	reflects	their	stability	(larger	points	corresponds	to	more	stable	components).	The	color	
and	 the	 width	 of	 the	 edges	 reflect	 the	 Pearson	 correlation	 coefficient.	 Propositions	 of		
annotations	 of	 the	 pseudo-cliques	 in	 the	 graph	 are	 made	 based	 on	 the	 comparison	 with	
previously	 annotated	 metagenes	 (ref	 Biton)	 and	 the	 analysis	 of	 the	 top	 contributing	 genes	
using	hypergeometric	test	and	the	toppgene	web	tool	[28].	

	

Supplementary	 Figure	 SF4.	The	histograms	of	 the	 total	 number	 of	 reciprocal	 correlations	 in	
the	 correlation	 graph	 such	 as	 the	 one	 shown	 in	 Figure	 3,	 with	 and	 without	 applying	 the	
component	stabilization	approach.		
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Supplementary	 Figure	 SF5.	 Computational	 time	 for	 ICA	 decomposition	 of	 different	 orders	
from	 2	 to	 100	 with	 step	 5,	 using	 compiled	 MATLAB	 fastICA	 implementation	 and	 stability	
analysis	by	re-computing	fastICA	from	100	various	initial	conditions.	The	computation	is	made	
using	an	ordinary	laptop	with	Intel	Core	i7	processor	and	16Gb	of	memory,	in	a	single	thread.	
The	BRCA	BEK	dataset	(from	[29])	contains	10000	genes	 in	197	samples,	and	the	BRCA	TCGA	
dataset	(from	[30])	contains	20503	genes	 in	1095	samples.	 	The	overall	timing	for	computing	
all	 ICA	decomposition	with	 their	 stability	analysis	 is	3.0	hours	 for	BRCA	BEK	dataset,	and	6.5	
hours	 for	 BRCA	 TCGA	dataset.	 These	 computations	 can	 be	 repeated	 from	BIODICA	 software	
(https://github.com/LabBandSB/BIODICA),	by	launching	ICA	computation	in	scanning	mode.	
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Supplementary	Tables		

	

Supplementary	 Table	 ST1.	 Breast	 cancer	 transcriptomic	 datasets	 used	 for	 the	 analysis	 of	
component	reproducibility	in	independent	datasets.			

Cancer type ID series #tumors + 
#normals Technology Normalizati

on Annotation Data access Publication PMID

Breast 
carcinoma CIT 537

Affymetrix 
HG-
U133Plus2.0

GCRMA
Brainarray 
CDF 
EntrezG v15

ArrayExpres
s E-MTAB-
365

Guedj et al., 
2012 21785460

Breast 
carcinoma BCR 1127 Affymetrix 

HG-U133a

see methods 
of  Reyal et 
al., 2011

Affymetrix

Fusion of 6 
datasets 
from  GEO: 
GSE6532, 
GSE3494, 
GSE1456, 
GSE7390, 
GSE5327, 
and 
ArrayExpres
s E-TABM-
158

Reyal et al., 
2011 21655258

Breast carcinomaWANG 286 Affymetrix 
HG-U133a GCRMA

BrainArray 
CDF 
EntrezG v14

GEO GSE2034Wang et al., 
2005 15721472

Breast 
carcinoma BEKHOUCHE 193

Affymetrix 
HG-
U133Plus2.0

GCRMA
Brainarray 
CDF 
EntrezG v15

GEO 
GSE23720

Bekhouche 
et al., 2011 21339811

Breast 
carcinoma METABRIC 1981 Illumina HT-

12 v3 custom Beadarray R EGAS00000000083
Curtis et al, 
2012 22522925

Breast 
carcinoma BRAC TCGA 1085 several

Available 
from GDC 
Data Portal

TCGA cons, 
2012 23000897

Breast cancer datasets
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Supplementary	Table	ST2.	Genes	associated	with	 ICA	components	of	the	METABRIC	dataset,	
in	the	case	when	a	component	is	driven	by	a	small	group	of	genes	(frequently,	one	gene).	Gene	
names	 marked	 in	 bold	 also	 drive	 independent	 components	 in	 several	 other	 breast	 cancer	
datasets	 and	 the	 corresponding	 components	 are	 reciprocally	 reproducible	 in	 terms	 of	 the	
correlation	of	the	whole	ICA-based	metagenes.	

ABCC11 CPB1 LTF SCUBE2

ACOX2 CST5 MDK SERHL2

ADM CXCL14 MT1G SERPINA3
AGR3 CYP4X1 MYBPC1 SERPINA5
ALB CYP4Z1 NAT1 SHISA2

ANKRD30A DLK1 NDP SLC30A8

APOD DQ893812 OLFM4 SNAR-A3

ASCL2 EEF1A2 PDZK1 STC1

ATP6V1B1 GAGE12B PEG3 STC2

AZGP1 GAGE12I PHGR1 SYT13

BC141517 GAGE2B PI15 TCN1
C15orf48 GAGE6 PITX1 TF

C19orf33 GAGE8 PLA2G16 TFF1
C20orf114 GRB14 PRODH TFF3
C4orf7 HLA-A PSD3 THRSP

C8orf84 HLA-C PVALB UGT2B11

CCND1 HLA-DQB1 RBP1 UGT2B28

CCNO HLA-DRB1 S100A7 UGT2B7

CD24 HLA-DRB6 S100A8 VTCN1

CENPV HLA-H S100A9 WWOX

CFB HMGCS2 S100P X63359

CKB HOXB5 SCGB1D2 XAGE1D

CLEC3A LOC338579 SCGB2A1
CLIC6 LOC389493 SCGB2A2
CNTNAP2 LRRC26 SCGB3A1

"Outlier	genes"	driving	certain	ICA	components	in	

METABRIC	dataset

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 25, 2017. ; https://doi.org/10.1101/180687doi: bioRxiv preprint 

https://doi.org/10.1101/180687
http://creativecommons.org/licenses/by-nc-nd/4.0/

