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Summary 
Patient-derived tumor xenograft (PDX) samples typically represent a mixture of mouse and human 
tissue. Variant call sets derived from sequencing such samples are commonly contaminated with 
false positive variants that arise when mouse-derived reads are mapped to the human genome. 
pdxBlacklist is a novel approach designed to rapidly identify these false-positive variants, and thus 
significantly improve variant call set quality.  
Availability: pdxBlacklist is freely available on GitHub: https://github.com/MaxSalm/pdxBlacklist  
Contact: maxsalm3@gmail.com 
Supplementary information: Supplementary data are available. 

 
 

1 Introduction  
Patient-derived tumor xenografts (PDXs) are emerging as key preclinical 
models in oncology research and drug development (Day et al., 2015). 
PDX models faithfully reflect the molecular characteristics of the source 
tumour (Tentler et al., 2012) and thus can be used to address diverse 

subjects such as tumour heterogeneity, evolutionary dynamics and treat-
ment-resistance (Byrne et al., 2017). To this end, major PDX consortia 
are generating comprehensive molecular profiling data for thousands of 
models using next generation sequencing (Gao et al., 2015; Bult et al., 
2015; Byrne et al., 2017). However, assay sensitivity and specificity is 
routinely compromised by contaminating mouse DNA and RNA (Lin et 

al., 2010; Rossello et al., 2013). To limit the technical artifacts caused by 
sequencing a mixture of two species, each sequence read can be assigned 
to a source species by comparative alignment to both human and mouse 

genomes (Conway et al., 2012; Ahdesmäki et al., 2016). However, such 
read disambiguation imposes a significant computational burden and 
may be confounded by homologous human-mouse loci (Tso et al., 
2014). To complement this strategy and provide an efficient alternative, 
we developed the pdxBlacklist approach for DNA variant calls. 
 

2 Approach 
pdxBlacklist ingests aligned mouse-derived sequencing reads, realigns 
these to the human genome and outputs a list of artefactual variants 
resulting from cross-species mapping errors. Once this ‘blacklist’ of de 

facto false positives has been created, it can be used to filter out mouse-
related artifacts and refine any PDX variant dataset. Alignment and 
variant calling are managed by the bcbio best-practice variant calling 
pipelines; this facilitates blacklist generation for diverse variant types 

(e.g. SNV, indel and SV) and enables genome/aligner/caller combina-

tions to match in-house PDX processing pipelines. The pdxBlacklist 

pipeline is implemented using the Ruffus framework (Goodstadt, 2010). 
For the analysis presented herein, a blacklist was created by processing 
whole genome sequencing data generated for the Mouse Genomes Pro-
ject for 18 mouse strains (Keane et al., 2011). Alignment to the hg19 
genome build was performed by BWA-MEM (Li, 2014), and variants 
were called using VarDict (Lai et al., 2016): this generated a false posi-
tive dataset comprising 11,119,424 SNVs, 13,77,355 indels and 
2,305,881 complex variants. 
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3 Application 
 
To demonstrate the importance of accounting for mouse-derived artifacts 
in PDX studies, a pdxBlacklist-derived blacklist was employed in three 
scenarios. First, the blacklist was compared to a public variant database 
(the COSMIC catalogue (v67) (Forbes et al., 2017)) which identified 41, 
675 SNVs that may be PDX artifacts (e.g. COSM1599955 from a 
glioblastoma PDX study (Yost et al., 2013)). Secondly, the blacklist was 
used to annotate variants called from 8 synthetic PDX samples that simu-
late increasing proportions of mouse contamination (Supplementary 

Figure 1). As expected, the number of blacklist variants detected was 
strongly correlated with mouse genome contamination (r(6)=0.99, p = 
2.6e-06). Interestingly, a specific variant class was enriched amongst the 
detected artifacts (CA>TG/TG>CA dinucleotide substitutions). Finally, 
this blacklist was used to annotate whole exome sequencing derived 
variant data generated for 300 PDXs, produced using the same analytical 
pipeline but optionally including read disambiguation by Disambiguate 
(Ahdesmäki et al., 2016). Of the 3,670,468 PDX variants, 83% 
(3,057,911) are annotated as false positive variants by both Disambigu-

ate and pdxBlacklist. Despite the considerable redundancy between tools, 
122,594 and 12,749 variants are filtered specifically by Disambiguate or 
pdxBlacklist respectively (Supplementary Figure 2). Importantly, 111 of 
the pdxBlacklist specific variants are non-synonymous SNVs in Cancer 
Gene Census members. 

4 Discussion  
pdxBlacklist generates false positive variant “blacklists” that can be used 
to significantly improve confidence in variant calls derived from PDXs. 
As illustrated, this method is comparable to read disambiguation in sen-
sitivity but offers a significant improvement in performance once a 
blacklist has been generated. Moreover by using an annotation-based 
approach, pdxBlacklist offers a soft filter rather than a hard filter (as is 
implicit in Disambiguate), and this can be applied to existing PDX vari-
ant datasets retrospectively without recourse to the original sequencing 

reads. Finally, as demonstrated in the final benchmarking exercise, the 
pdxBlacklist output identifies false positive variants masquerading as 
biologically meaningful variants. To facilitate future use, the blacklist 
generated for this publication will be included in the pdxBlacklist reposi-
tory. We anticipate pdxBlacklist to be an essential tool to serve the ever-
expanding community of PDX researchers. 
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