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Abstract. We present an efficient computational approach for detecting ge-

netic interactions from fitness comparison data together with a geometric in-

terpretation using polyhedral cones associated to partial orderings. Genetic
interactions are defined by linear forms with integer coefficients in the fit-

ness variables assigned to genotypes. These forms generalize several popular

approaches to study interactions, including Fourier-Walsh coefficients, inter-
action coordinates, and circuits. We assume that fitness measurements come

with high uncertainty or are even unavailable, as is the case for many empir-

ical studies, and derive interactions only from comparisons of genotypes with
respect to their fitness, i.e. from partial fitness orders. We present a charac-

terization of the class of partial fitness orders that imply interactions, using
a graph-theoretic approach. Our characterization then yields an efficient al-

gorithm for testing the condition when certain genetic interactions, such as

sign epistasis, are implied. This provides an exponential improvement of the
best previously known method. We also present a geometric interpretation of

our characterization, which provides the basis for statistical analysis of partial

fitness orders and genetic interactions.

1. Introduction

Genetic interactions – or dependence of the fitness effect produced by a set of
mutations on the genetic background – play an important role in determining evo-
lutionary trajectories of populations. For instance, a set of individually beneficial
mutations may exhibit diminishing returns: while the combined effect of all muta-
tions is beneficial, it is not as beneficial as one would expect given the individual
mutations, for example the sum of all single mutation effects. Diminishing returns
have been shown to slow down the pace of adaptation (Chou et al. 2011). Similarly,
the combined effect of a set of mutations can be stronger than the effect expected
from the individual mutations. This so-called synergistic epistasis between dele-
terious mutations has been observed for instance in human populations, where it
affects the distribution of deleterious alleles in the genome (Sohail et al. 2017).
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Genetic interactions can affect not just the magnitude of the effect of a mutation,
but also the sign of the effect. That is, a particular mutation may have a beneficial
effect in one genetic background and a deleterious effect in another. This type of
interaction, often termed sign epistasis, can act to constrain evolutionary trajec-
tories by requiring that some mutations occur before others (Gong, Suchard, and
Bloom 2013; Kvitek and Sherlock 2011; Weinreich, Watson, and Chao 2005).

In this work, we are concerned with detecting the presence of genetic interactions
from limited genotype-phenotype data. We understand an interaction as a deviation
from a null linear model. For example, the two-way interaction is defined as a
deviation from the null assumption that

w00 + w11 − w01 − w10 = 0,

and the total three-way interaction as a deviation from the null assumption that

w000 + w011 + w101 + w110 − w001 − w010 − w100 − w111 = 0,

where the binary indices correspond to biallelic genotypes (e.g. 00 is the wild type
and 11 is the double mutant), and w denotes fitness (see Section 2 for detailed
definitions). Empirical data sets produced in interaction studies typically provide
replicate measurements of a trait, such as antibiotic or other forms of resistance, for
various genotypes. The trait is often chosen to measure fitness, or approximations
thereof, and used to infer genetic interactions in the fitness landscape. However, in
many cases the association between the trait and fitness is unclear. For example,
comparative fitness assays (or competition experiments) produce data uninforma-
tive with respect to the distribution of the absolute fitness values of genotypes.
Furthermore, assuming only comparative genotype-phenotype data, one detects
the sign but not the magnitude of the interactions. This makes standard statistical
methods such as ANOVA or the multiple regression framework inapplicable.

Here, we make a conservative assumption that the only available information
about fitness is the (partial) ranking of genotypes, that is, we assume that no
precise fitness measurements of all genotypes are available, a frequent situation in
practice, for example, due to measurement noise. Specifically, we assume either
that some of the information in a total order of all fitness values must be discarded,
or that the only signal available in the data is of the form “genotype g1 has higher
fitness than genotype g2”, for various pairs of genotypes. We assume that these
pairwise fitness comparisons are consistent with each other, i.e., the relation they
define is transitive. We call this type of data a partial fitness order, which is a
partial order of genotypes with respect to their fitness. Data of this type arises
for example by considering certain directed acyclic graphs where the vertices are
given by genotypes and where the edges between genotypes are directed towards
the genotype with higher fitness. Importantly, our assumptions make our methods
widely applicable as the same techniques can be applied to other types of rankings
and not just genotypes ranked with respect to their fitness. For example, a partial
fitness order of genotypes can be obtained in studies that involve measuring various
kinds of breeding values (see for example Habier, Fernando, and Dekkers 2007) or
other applications of generalised linear models.

Even though we assume that accurate fitness measurements cannot be accessed
for all genotypes in a given genotype space, our methods still enable us to detect
interactions implied by the partial fitness order. In particular, we are able to detect
sign epistasis. Moreover, even when a complete fitness ranking of genotypes is
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 3

available a method to detect interactions from a partial order alone might provide
additional insight. Indeed, there are cases where the rank order method fails to
reveal interactions even though interactions in the system can be detected from the
actual fitness measurements (Crona, Gavryushkin, et al. 2017). In this case, partial
fitness order methods can be used to conclude diminishing returns or synergistic
epistasis and refute sign epistasis. In addition, if one is only interested in certain
fitness comparisons (for instance, comparisons between mutational neighbors), our
methods yield a criterion to determine whether these comparisons are sufficient to
imply interaction. These observations will have implications for the evolutionary
trajectories of the system and provide insight as to the mechanism of the interaction
(Weinreich, Watson, and Chao 2005). A detailed analysis of the class of linear
orders that imply interactions, including relevant literature and data, can be found
in (Crona, Gavryushkin, et al. 2017).

In this paper, we build on the results obtained by Crona, Gavryushkin, et al.
(2017) and settle the most general case of ranking data, when only a partial fitness
order is available. Specifically, we present a graph-theoretic characterization of
the class of partial fitness orders that imply genetic interactions (Section 3), thus
establishing the conjecture presented by Gavryushkin at the Interactions between
Algebra and the Sciences conference held in Max Planck Institute for Mathematics
in the Sciences, Leipzig, on 27 May 2017. Second, we use our characterization to
derive a cubic time algorithm for testing the condition when a given partial order
implies such an interaction (Section 3). This provides an exponential improvement
of the best previously known method that involves iterating through the list of all
possible linear extensions of the given partial order (Crona, Gavryushkin, et al.
2017). Third, we count all partial orders for up to 8 labeled elements which imply
an interaction (Section 4), and fourth, we provide a geometric interpretation of our
characterization, useful for statistical analysis of partial fitness orders that imply
genetic interactions (Section 5). Finally, we use public data sets to demonstrate
our methods (Section 6) and conclude by describing possible future directions for
this line of research (Section 7).

2. Technical introduction

In this section we introduce all necessary terminology and notations and describe
a basic statistical approach to probabilistic inference of (higher-order) interactions
from partial fitness orders, which further motivates our results on partial fitness
orders.

Consider a system G consisting of k genotypes, where k is a positive integer. We
denote the fitness of a genotype g ∈ G by wg, which is a real number. Typically, we
take fitness to be a positive real number, though this does not affect our arguments.
All fitness measurements (wg)g∈G together then determine what is called the fitness
landscape associated to G. We refer to the tuple of all the fitness measurements
defining a fitness landscape by W = (wg)g∈G .

We define genetic interactions using linear forms with integer coefficients in the
following way. Let f be a linear form in variables W with integer coefficients which
sum to 0, that is,

f(W ) =
∑

1≤i≤t

ciwpi −
∑

1≤j≤s

djwnj ,
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such that ∑
1≤i≤t

ci −
∑

1≤j≤s

dj = 0,

where all ci, dj , t, and s are positive integer numbers such that t + s = k and
G = {p1, . . . , pt, n1, . . . , ns}. We then say that the fitness landscape has positive f -
interaction if f(W ) > 0. When f(W ) < 0, we say that has negative f -interaction.
Hence f -interactions are a special case of what is known in applied statistics as
contrasts. From now on, we will focus on determining positive f -interactions un-
less we explicitly state otherwise. Everything in this paper extends straightfor-
wardly to the negative case. This definition of f -interaction generalizes several
well-known and widely used notions of gene interaction, including Fourier-Walsh
coefficients, interaction coordinates, and circuit interactions (Weinreich, Lan, et al.
2013; Beerenwinkel, Pachter, and Sturmfels 2007). The detailed exposition includ-
ing illustrative examples comparing all these approaches can be found in (Crona,
Gavryushkin, et al. 2017, Materials and methods).

Estimating the probability of f -interaction in an empirical setting amounts to
quantifying the uncertainty of f(W ) > 0 given some comparative fitness data.
Although in this setting the fitness values wg are unavailable, the comparative
fitness data typically allows to deduce a partial fitness order. For example, this type
of data could arise from replicate measurements of any quantitative trait monotonic
with respect to fitness. Another example of such data is fitness comparison data
produced in competition or survival experiments, which are a popular method for
fitness estimation.

Sometimes a partial fitness order is enough to deduce f -interactions and hence
estimate the probability of interaction. We use the following definition to address
such situations. We say that a partial fitness order P = (G,≺) implies positive f -
interaction if f(W ) > 0 whenever W satisfy the partial order P, that is, wg < wh

for all g ≺ h.
Then the probability of f -interaction given comparative fitness data can be es-

timated by considering the probability support of all partial orders that imply
f -interaction. However, such an estimation would require the condition of whether
or not a partial order P implies f -interaction to be checked routinely for different
partial orders P. Hence the complexity of this condition might become a compu-
tational bottleneck in practice. In this paper we resolve this problem by designing
an efficient polynomial-time algorithm for checking whether or not a partial order
implies f -interaction.

We note that the fact that a partial order does not imply positive or nega-
tive f -interaction does not necessarily mean that the system does not have f -
interaction. This situation therefore should be interpreted as the partial order
being non-informative with respect to the f -interaction; the issue is discussed in
more detail in (Crona, Gavryushkin, et al. 2017).

We now review the results from (Crona, Gavryushkin, et al. 2017) about how
to detect whether a rank order implies f -interaction. In the terminology used in
our paper, this situation corresponds to the case when the partial fitness order is
a linear order (also called a total order or a rank order). We then study arbitrary
partial orders, and present an efficient algorithm for determining when a partial
order implies f -interaction.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/180976doi: bioRxiv preprint 

https://doi.org/10.1101/180976
http://creativecommons.org/licenses/by-nc/4.0/


PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 5

For a linear form f as above, define a function φf from the set of (strict) linear
orders on the set of genotypes to words over the alphabet {P,N} as follows. The
linear order on k genotypes

g1 � g2 � . . . � gk
is mapped to a word ω consisting of ci copies of P if wgi has a positive coefficient
ci in f ; and di copies of N if wgi has a negative coefficient di in f . The subwords of
ω corresponding to different gi’s appear according to the linear order (from highest
to lowest). See (Crona, Gavryushkin, et al. 2017) for various examples of this
construction.

The following result from (Crona, Gavryushkin, et al. 2017) depends upon the
characterization of linear orders which imply interaction in terms of Dyck words.

Definition 1. Let Σ be an alphabet consisting of two letters P and N . A Dyck
word is a word ω consisting of an equal number of P ’s and N ’s such that every
prefix of ω contains at least as many P ’s as N ’s.

For example, PPNNPN and PNPNPN are Dyck words, but PPNNNP is
not, since the prefix PPNNN contains more N ’s than P ’s. Clearly the definition
of Dyck word does not depend on the choice of alphabet one considers. Dyck
words arise in a number of contexts in discrete mathematics. For instance, they
are in bijection with full binary trees with n + 1 leaves. If the symbols P and N
are replaced with “(” and “)”, a string is a Dyck word only if all parenthesis are
correctly matched. For more on Dyck words, see (Stanley 2001).

Theorem 1 (Crona, Gavryushkin, et al. (2017)). A linear order P = (G,≺) on
the set of genotypes implies positive f -interaction if and only if φf (P) is a Dyck
word that starts with P .

The statement of this theorem can equivalently be formulated by saying that a
linear order P implies positive f -interaction if and only if there exists a partition
of the set of all genotypes G into pairs (pi, nj) such that pi � nj for all i, j, where
each pi appears in ci pairs and each nj in dj pairs (see Crona, Gavryushkin, et al.
2017). As we will see in the next section, this formulation can be generalized to
arbitrary partial orders. Note that here and also below we slightly abuse notation
because for certain choices of ci’s and dj ’s, we do not have a partition in the strict
sense, but this technical difficulty can be avoided by, for example, distinguishing
between the copies of pi and nj .

3. Efficient method to infer interactions from partial orders

In this section we generalize Theorem 1 and characterize partial orders which
imply f -interactions. We then apply our characterization to design an efficient
algorithm for testing the condition of whether or not a partial order implies f -
interaction.

Theorem 2. Let G = (p1, . . . , pt, n1, . . . , ns) be a set of genotypes,

f(W ) =
∑

1≤i≤t

ciwpi −
∑

1≤j≤s

djwnj

be a linear form, and P = (G,≺) be a partial order on G. Then P = (G,≺) implies
positive f -interaction if and only if there exists a partition of the set of all genotypes
G into pairs (pi, nj), pi � nj where each genotype pi appears in exactly ci pairs and
each genotype nj in exactly dj pairs.
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Before we proceed with the proof, let us illustrate Theorem 2 with the following
example. Let

W = (w001, w010, w100, w111, w000)

and consider the linear form:

f(W ) = w001 + w010 + w100 − w111 − 2w000,

which measures the deviation of the triple mutant’s fitness from its expectation
based on single mutants only, and corresponds to one of the circuit interactions
characterized in (Beerenwinkel, Pachter, and Sturmfels 2007). We see that there
is positive f -interaction implied by the order of the fitness values if and only if for
each fitness value with a positive coefficient in f , there is a strictly smaller fitness
value with negative coefficient. This smaller fitness value must be unique, unless
the absolute value of the coefficient is greater than one, as in this case for w000.

Proof. The “if” implication is clear, as

f(W ) =
∑

1≤i≤t

ciwpi
−
∑

1≤j≤s

djwnj
=
∑

1≤i≤t
1≤j≤s

(
ciwpi

− djwnj

)

and if there is a partition for the partial order P as claimed and the indices i, j
are arranged according to the partition, each difference in the last sum is strictly
greater than 0, thus f(W ) > 0.

In order to prove the converse statement, we prove its contrapositive. That is,
we prove that if there is no such partition of the set of all genotypes, f -interaction
is not implied.

Construct the bipartite graph G = (P t N, E), where P contains ci copies of
pi for each i and N contains dj copies of nj for each j, such that (nj , pi) ∈ E
whenever nj ≺ pi in the partial order P. The number of elements in P and N
coincide, since the coefficients of f sum to zero. Observe that a partition of the set
of all genotypes G into pairs (nj , pi) such that nj ≺ pi for all i, j as in the theorem is
exactly a perfect matching in G. By Hall’s theorem, there exists a perfect matching
in G if and only if for each S ⊆ N, we have

|S| ≤ |NG(S)|,
where NG(S) ⊆ P is the set of vertices in G adjacent to a vertex in S (Diestel
2016). Suppose that there is no partition of the genotypes into pairs as above, and
thus no perfect matching in G. Then there is some subset S ⊆ N such that

|S| > |NG(S)|.
Using this subset S, we construct a linear extension of the partial order P which
does not map to a Dyck word under the map φf , introduced above.

To do so, we first reindex N so that

S = {n11 , . . . , n1e1︸ ︷︷ ︸
e1 copies of n1

, . . . , nj1 , . . . , njej︸ ︷︷ ︸
ej copies of nj

}

and the order n1 � n2 � . . . � nj is compatible with P. Note that d1 ≥ e1 ≥
1, . . . , dj ≥ ej ≥ 1.

Let X1 = {x ∈ P tN | n1 ≺ x} be the set of elements in P tN ordered above
n1. Note that X1 ⊆ N tNG(S), since if n1 ≺ x and x ∈ P, then by construction,
x ∈ NG(S). Consider a linear extension L1 of the partial order P on X1 given by
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 7

x1 � . . . � xk. Extend L1 with all duplicates n11 , . . . , n1e1 of n1. That is, consider

the linear extension L′1 given by

x1 � . . . � xk � n11 � . . . � n1e1 .

Now, we repeat this process with n2 and the rest of elements in S. Let X2 be the
set of elements in PtN which are required by P to be strictly greater than n2 but
are not contained among the elements included in L′1. Again, X2 ⊆ N t NG(S).
Extend the previous linear order L′1 to L′2 as follows, maintaining the property that
L′2 is compatible with P:

x1 � . . . � xk � n11 � . . . � n1e1 � xk+1 � . . . � xm � n21 � . . . � n2e2 .

We repeat this process for the rest of elements in S in the same way. To complete
the construction, we observe that every remaining element (not included in S∪X1∪
. . . ∪Xj) is compatible with being smaller than all elements of S ∪X1 ∪ . . . ∪Xj .
Hence, we can sort all remaining elements and add them at the end of the last
linear order Lj as smaller elements, to obtain a linear order L which extends P.

The linear order L does not map to a Dyck word (starting in P ) under φf , since
the image of the smallest prefix of L which contains all elements of S contains
more N ’s than P ’s since |S| > |NG(S)|. Therefore, by Theorem 3 from (Crona,
Gavryushkin, et al. 2017), this partial order does not imply positive f -interaction.

�

A variant of Theorem 2 was independently obtained in (Crona and Luo 2017).
We now proceed by designing an efficient algorithm for detecting whether or not

a partial fitness order P implies f -interaction. Recall that f(W ) =
∑

1≤i≤t ciwpi
−∑

1≤j≤s djwnj and
∑

1≤i≤t ci =
∑

1≤j≤s dj . In the next result, denote m =∑
1≤i≤t ci.

Theorem 3. There exists an O(m3) algorithm to determine whether a partial order
P = (G,≺) implies positive f -interaction.

Proof. We use the notation introduced in the proof of Theorem 2. That theorem
implies that a partial order implies that f(W ) > 0 if and only if there exists a
partition of the set P ′ ∪ N ′ into pairs (pi, nj) such that pi � nj . As noted in
the proof of Theorem 2, this condition is equivalent to the existence of a perfect
matching in the bipartite graph G = (P,N, E) such that (nj , pi) ∈ E whenever
pi � nj . Thus, we can detect whether the poset implies f(W ) > 0 by checking
whether there exists a perfect matching in G.

Using the Hopcroft-Karp algorithm (Hopcroft and Karp 1971), we can find a
perfect matching in a bipartite graph with m vertices in time O(m5/2). Assume we
are presented the partially ordered set P as a directed acyclic graph. Then we can
construct the bipartite graph G in time O(m3) using the following algorithm: for
each p ∈ P, use breadth first search to find all elements of N which are reachable
along a directed path from p, and add these to p’s list of neighbors. The worst-case
complexity of this step is O(m2). Repeat this process for each of the m vertices to
obtain a representation of G as an adjacency list – that is, as a list containing a
list of neighboring vertices for each vertex. Thus, since we can construct the graph
in O(m3) time and determine whether a matching exists in the graph in O(m5/2)
time, and m3 > m5/2, we can determine whether the partial order determines the
sign of a linear form in O(m3) time. �
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The complexity of our algorithm for computing whether a partial order on a set
of genotypes implies f -interaction depends not just on the number of genotypes,
but also on the coefficients of f . Specifically, the worst case complexity is a function
not just of the number of genotypes, but also of the number of positive summands
of f (with multiplicity)

∑
1≤i≤t ci. In most practical cases (circuits, interaction

coordinates, etc.), however, this last number is small relative to the number of
genotypes.

The two upper level steps of our algorithm are

• constructing the bipartite graph and
• detecting whether a perfect matching exists.

We think that the upper complexity bound O(m3) achieved in this paper can be
improved. In particular, an appropriate choice of data structures can reduce the
complexity of constructing the bipartite graph, which is the most demanding step
in our algorithm. However, this improvement goes beyond the scope of this work,
as we found the algorithm’s performance sufficient on typical data sets used in
higher-order interaction studies (see Crona, Gavryushkin, et al. 2017, for a survey
of such data sets). See https://github.com/gavruskin/fitlands/tree/posets/
posets.ipynb, where our implementation of the algorithm designed in Theorem 3
can be accessed.

Linear programming provides an alternate method to check whether a partial
order implies interaction: checking whether a system is consistent with positive
interaction amounts to checking that the feasible region of the linear program with
constraints coming from the partial order and the constraint f > 0 is nonempty.
In this case, the complexity of the computation will just depend on the number of
genotypes, not on the coefficients, thus with large coefficients, linear programming
is a more practical approach then the one presented here. However, by providing
a purely combinatorial description of when a partial order implies interaction, our
method may be more useful for studying classes of partial orders.

4. Counting partial orders that imply interaction

In this section, we determine the proportion of partial orders on k = 2, 4, 6,
and 8 genotypes that imply positive f -interaction for an arbitrary fixed linear form
f with k coefficients 1 and −1 which sum to 0. Our results are summarized in
Table 1.

We carried out our computations in the open-source mathematics software sys-
tem Sage (http://www.sagemath.org) using the source code available at https:

//github.com/gavruskin/fitlands/tree/posets/. To make the computations
possible, we employed the automorphism groups (Stein 2008) of our partial orders
in the following way.

Definition 2. An automorphism of a partial order P = (V,≺) is a bijection σ :
V → V such that if u ≺ v, then σ(u) ≺ σ(v). The set of automorphisms of
a finite partial order forms a group, denoted by Aut(P), under the operation of
composition.

In our enumeration, we observe that the number of different ways to label a poset
with k elements is k!

|Aut(P)| . To see this, take a labeling of the elements on the poset.

A permutation of the labels is an automorphism if and only if it does not change the
partial order. Thus, each relabeling of the poset elements falls into an equivalence
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 9

k positive interactions no implication proportion implying interaction
2 1 1 0.67
4 31 157 0.28
6 10,876 108,271 0.17
8 22,217,743 387,287,893 0.10

Table 1. For k ∈ {2, 4, 6, 8}, the number of partial orders im-
plying positive f -interaction, the number of partial orders not im-
plying f -interaction, and the proportion of partial orders implying
either positive or negative f -interaction, truncated to the second
digit. Note that the number of partial orders implying negativef -
interaction is, by symmetry, equal to the number of partial orders
implying positive f -interaction. Hence, the proportion is obtained
by dividing twice the number of partial orders implying positive
interaction by the total number of partial orders.

class of |Aut(P)| relabelings that do not change the partial order. Thus, since there
are k! ways to relabel the elements, there are k!

|Aut(P)| non-equivalent ways to label

the poset.
As an example, consider the partial order

P = ({00, 01, 10, 11}, {11 � 01, 11 � 10, 10 � 00, 01 � 00})
with Hasse diagram depicted on the left of the following figure:

11

10 01

00

11

01 10

00

The relabeling to the Hasse diagram on the right yields the same partial order.
Thus, this permutation switching 10 and 01 is an automorphism of the graph.
However, any other permutation of the labels changes the partial order. Thus,
this poset has an automorphism group of cardinality 2. Then since there are 4! =
24 ways to relabel the elements of {00, 01, 10, 11}, there are 4!/2 = 12 different
labelings of this poset.

The implementation of our algorithm proceeds as follows: Using a built in func-
tion in Sage, we produced a list of partial orders on k elements up to isomorphism.
Since whether a partial order implies f -interaction depends on the element labels,
not just the structure of the partial order, we have to distinguish between different
labeled partial orders within each partial order automorphism class. To achieve
this, for each partial order (up to automorphism), we check for f -interaction with
each partition of the labels used by Sage into two classes of equal size. We let one
class correspond to elements with coefficient 1 and one class correspond to elements
with coefficient −1. Then each choice of partition corresponds to ((k/2)!)2 possible
reassignments of the labels, since we can permute the elements within the class
with coefficient 1 and the class with coefficient −1 without changing the partition.
We compute the cardinality of the automorphism group for each partial order, and
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add 1
|Aut(P)| to our count of partial orders that imply positive, negative, or no

f -interaction respectively.
We note that as we increase k, the proportion of partial orders implying f -

interaction decreases. The sums of the values we obtained for the number of partial
orders implying positive f -interaction, the number of partial orders implying nega-
tive f -interaction, and the number of partial orders not implying any f -interaction
appears in OEIS (The On-Line Encyclopedia of Integer Sequences 2017) as the
number of partial orders on k labeled elements, as expected. However, none of the
columns of our table appear in OEIS. Further, each number is either prime or has
a prime factorization including fairly large primes. Thus, the number of partial
orders, the number of partial orders implying f -interaction, and the number of
partial orders not implying f -interaction do not appear to be given by any simple
formula.

The final computation, for k = 8, took approximately two hours to complete on
the SageMath Cloud server. The main factor affecting the performance of these
computations is that the number of partial orders on k elements is super-exponential
in the number of elements (The On-Line Encyclopedia of Integer Sequences 2017).
Therefore, we did not count the number of partial orders on k elements which imply
f -interaction for k ≥ 10. Since we can still quickly check whether individual partial
orders on k ≥ 10 elements imply f -interaction, sampling methods can be used to
estimate how the proportion of partial orders which imply interaction changes as
we increase k.

Our computational observation that the fraction of partial orders which imply
f -interaction approaches 0 as k increases is true in general:

Theorem 4. As k approaches infinity, the fraction of partial orders which imply
f -interaction approaches zero.

Proof. Partition the set of partial orders on k elements into its isomorphism classes.
We show that, within each isomorphism class, the proportion of partial orders
implying positive f -interaction is bounded by 4

k whenever f is a linear form with
coefficients ±1. Consider an arbitrary isomorphism class, and take an arbitrary
labeled poset P in this class. There are k!

|Aut(P)| distinct labeled posets in this

isomorphism class. There are k!·2
k/2+1 ≤ 4(k − 1)! linear orders on k elements which

imply positive f -interaction (Crona, Gavryushkin, et al. 2017, Proposition 1). Now,
take an arbitrary linear extension of P. Each permutation of labels which takes P to
a labeled poset which implies positive f -interaction must take this linear extension
to one that implies interaction, thus there are at most 4(k − 1)! permutations of
labels which take our labeled poset to one that implies f interaction. Further, all
|Aut(P)| permutations of labels which give the same labeled poset must take our

linear order to one that implies interaction. Thus, there are at most 4(k−1)!
|Aut(P)| labeled

posets in this isomorphism class that imply interaction. Thus, the proportion of
posets in this isomorphism class that imply interaction is at most 4

k . �

5. Geometric interpretation

In this section, we present a geometric interpretation of Theorem 2, and derive
some geometric, combinatorial, and statistical results. We denote the space R|G|
where |G| is the number of elements in G simply by RG and index the coordinate
axes by the unknown fitness values wg’s, where g ∈ G. When we assume fitness
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 11

values to be nonnegative, we work in the positive orthants of RG , which we denote
by RG≥0. In this case, every point of RG≥0 corresponds to a possible measurement
of a fitness value for each genotype. When we do not assume fitness values to be
nonnegative, every point in RG corresponds to a fitness value for each genotype.
The geometric interpretation of our results about partial orders uses the language
of polyhedral cones.

Definition 3. A convex polyhedral cone in Rk is a subset of Rk cut out by a finite
number of linear inequalities.

Like all cones, convex polyhedral cones are closed under the operations of taking
nonnegative linear combinations of their elements. For the remainder of this paper,
we will refer to convex polyhedral cones simply as cones. Let P = (G,≺) be a
partial order (which may be a total order). Then the set of points x ∈ RG whose
coordinate order satisfies P defines a cone. To see this, note that this set of points is
cut out by a finite number of linear inequalities defined by the partial order. Hence
this set is a convex polyhedral cone by definition. We call a cone associated to a
partial order in this way an order cone and denote it by CP . Further, a linear form
f in the variables wg’s defines a hyperplane through the origin, where f takes the
value 0. The linear form is positive in the half space on one side of this hyperplane
and negative on the other. Let Hf,+ be the half space on which f is positive, Hf

be the hyperplane on which f is zero, and Hf,− be the half space on which f is
negative. Then Theorem 2 has the following geometric interpretation. Recall that
f(W ) =

∑
1≤i≤t ciwpi

−
∑

1≤j≤s djwnj
is a linear form with integer coefficients that

sum to zero, that is
∑

1≤i≤t ci =
∑

1≤j≤s dj .

Theorem 5. The cone CP ⊂ Hf,+ if and only if there exists a partition of the set
of all genotypes G into pairs (pi, nj) such that pi � nj for all i, j, where each pi
appears in ci pairs and each nj in dj pairs.

Proof. Note that P implies positive f -interaction if and only if CP ⊂ Hf,+. Then
the claim follows from Theorem 2. �

As a corollary of Theorem 5, we obtain the following result, which will be applied
in our analysis of a Malaria data set in Subsection 6.

Definition 4. Let P1 and P2 be partial orders. Their intersection is the partial
order P1 ∩ P2 such that x ≺P1∩P2

y if and only if x ≺P1
y and x ≺P2

y.

To illustrate the above definition consider the partial orders P1 = 00 � 10 � 01
and P2 = 10 � 01 � 00. Then P1 ∩ P2 is the partial order given by 10 � 01.

Corollary 1. Let A and B be linear orders such that CA, CB ⊂ Hf,+, then the
order cone CA∩B of the intersection of A and B is contained in Hf,+ if and only if
A ∩ B = (G,≺) satisfies the condition in Theorem 5.

Proof. Immediately follows from Theorem 5. �

Now, we prove the following theorem which is important for statistical analysis
of interactions from fitness comparison data, for example, in the analysis of a sam-
ple from the probability distribution over the space of partial fitness orders with
the aim to quantify the uncertainty of interactions. Specifically, we show the fol-
lowing. If two uncertain fitness measurements give distinct linear orders A and B
both of which imply positive f -interaction, then there exist fitness measurements
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corresponding to a sequence of linear orders which are intermediate between A and
B in the sense that every linear order in this sequence is different from its prede-
cessor by just one transposition of a pair of adjacent elements, and no linear order
in the sequence implies negative f -interaction.

Theorem 6. Let U ⊂ Rk be a path connected, open set which has a nonempty
intersection with the cones CA and CB, where A and B are linear orders on k
elements. Then there exist linear orders L1 = A, . . . ,Ln = B such that Li and
Li+1 differ by one adjacent transposition and U ∩ CLi

6= ∅ for each 1 ≤ i < n.

Proof. We denote cones CLi by simply Ci, for all i, throughout the proof. Note
that the cones Ci and Cj have a (k−1)-dimensional face as their intersection if and
only if Li and Lj differ by a single adjacent transposition. Further, note that any
path which passes from Ci to Cj without passing through the interior of any other
cone must pass through the intersection of the boundaries of Ci and Cj . Either
this boundary is an (k − 1)-dimensional face, and Li and Lj differ by an adjacent
transposition, or we pass through a lower dimensional face. In the latter case, this
means a neighborhood of the point where we pass through the boundary contains
all cones that intersect at this point. Thus, a neighborhood of this point contains a
sequence of order cones of linear orders which differ by one adjacent transposition
each.

Now, consider a path from a point in U∩CA to a point in U∩CB. Since U is open
and path connected, it contains some path of this form, as well as a neighborhood
around the path. Consider the sequence of cones this path passes through – by the
observation above, we know that if the path passes from Ci to Cj , either Li and
Lj differ by an adjacent transposition, or a neighborhood of the point where we
pass from Ci to Cj intersects the cones of a sequence of linear orders which differ
by one adjacent transposition each. Thus, in either case, a path from CA to CB
has a neighborhood that intersects the order cones of a sequence of linear orders
L1, . . . ,Ln such that L1 = A, Ln = B, and Li and Li+1 differ by one adjacent
transposition for each 1 ≤ i < n. These linear orders satisfy the claim of the
theorem. �

We illustrate Theorem 6 in Figure 1, where we depicted six regions corresponding
to six slices of order cones in R3

≥0. Each cone is associated to a linear order of three
elements, x = wgi , y = wgj , z = wgk . Points inside the cones correspond to different
fitness values satisfying the linear order defining the given cone. Thus, for example
a point inside Cx>y>z specifies three fitness values associated to three genotypes
gi, gj , gk ∈ G and such that wgi > wgj > wgk .

As a corollary to Theorem 6, we obtain the following result.

Corollary 2. Suppose A and B are linear orders which imply positive f -interaction.
Then there exists a sequence of linear orders L1 = A, . . . ,Lk = B such that Li and
Li+1 for 1 ≤ i < n all differ by one adjacent transposition and no Li implies
negative f -interaction.

Proof. The half-space Hf,+ is a connected open set which has a nonempty inter-
section with CA and CB. Thus, this result follows from Theorem 5. �

Spaces with complicated geometries and combinatorics are known to cause sig-
nificant difficulties for statistical analysis (Billera, Holmes, and Vogtmann 2001).
For example, the space of trees, which is a particular instance of the space of partial
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 13

Figure 1. We show a slice of R3
≥0, demonstrating that R3

≥0 is
divided into six cones corresponding to the six possible orders of
the elements x, y, z. The convex hull of a ball in the order cone
Cz>y>x and a ball in the order cone Cy>x>z passes through the
order cone Cy>z>x. Note that the order y > z > x differs by one
adjacent transposition from both z > y > x and y > x > z.

orders, required deep mathematical advances to understand basic statistics, such
as confidence regions and convex hulls, over the space (Billera, Holmes, and Vogt-
mann 2001; Gavryushkin and Drummond 2016). Advances in the geometry and
combinatorics of such spaces are the stepping stone for efficient statistical methods
such as Markov Chain Monte Carlo (Gavryushkin, Whidden, and Matsen 2017;
Dinh et al. 2017). In a similar vein, we expect that the approach of this section
allows to efficiently study probability distributions over the space of partial fitness
orders. Hence our results provide a theoretical foundation for statistical analysis of
partial fitness orders.

6. Applications

In this section we illustrate how our results can be used in fitness-based genetic
interactions studies.

Malaria. As a first application, we consider the following three linear fitness or-
ders inferred and analyzed by Ogbunugafor and Hartl (2016) (see also Crona,
Gavryushkin, et al. 2017). These fitness orders have been obtained by measuring
the growth rate of the parasite Plasmodium vivax exposed to various concentrations
of the antimalarial drug pyrimethamine.

L1 : 111 � 011 � 001 � 101 � 010 � 100 � 110 � 000

L2 : 111 � 011 � 001 � 010 � 100 � 101 � 110 � 000

L3 : 111 � 011 � 010 � 001 � 100 � 110 � 101 � 000
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14 C. LIENKAEMPER, L. LAMBERTI, J.DRAIN, N.BEERENWINKEL, AND A.GAVRYUSHKIN

As noted in (Crona, Gavryushkin, et al. 2017), each of these linear orders implies
negative total 3-way interaction, which in our terms is f -interaction where

f(W ) = w000 + w011 + w101 + w110 − w001 − w010 − w100 − w111.

We now strengthen this conclusion using the approach developed in this paper.
To do so, we consider only the shared rankings of the genotypes across different
drug concentrations, that is, the partial fitness order P obtained by taking the
intersection L1 ∩ L2 ∩ L3. This intersection has the following Hasse diagram:

111

110

101 100

011

010001

000

We then apply Theorem 2 and conclude that the obtained partial order P implies
negative f -interaction. Indeed, the three bottom genotypes with even number of
ones (depicted in bold) can be matched to the three genotypes with even number of
ones above them, and matching 011 to 111 completes the construction of a perfect
matching in this graph.

This means that even if the only comparisons we are confident about are those
that agree across the three drug concentrations, we can still conclude that this
system exhibits negative total 3-way interaction. In particular, this approach shows
that we can ignore the inconsistency of the three rank orders associated to the
three different drug concentrations under inspection. Hence any tuple of fitness
values W which satisfies every fitness comparison found in each linear order will
imply interaction. Further, in this case our results from Section 5 imply that any
point in the convex hull of the points we have measured will imply negative 3-way
interaction. This region allows to incorporate the uncertainties of the measurements
and provides a region within which those measurements can vary without breaking
the conclusion of interaction.

Moreover, in this situation we observe that L2 can be obtained from L1 by two
permutations (see Corollary 2), with the intermediate liner order also implying
negative total 3-way interaction:

L1 : 111 � 011 � 001 � 101 � 010 � 100 � 110 � 000

Li : 111 � 011 � 001 � 010 � 101 � 100 � 110 � 000

L2 : 111 � 011 � 001 � 010 � 100 � 101 � 110 � 000

The exact same argument applies to L2 and L3. In general, intermediate linear
orders of this type are examples of sequences of linear orders between two given
linear orders as described in Corollary 2. These intermediate linear orders, Li, can
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PARTIAL FITNESS ORDERS AND GENETIC INTERACTIONS 15

then be used to suggest further fitness comparisons to be tested to validated the
conclusion of negative f -interaction in this data set.

To conclude this section we also observe that unlike the intersection L1∩L2∩L3

of the three linear orders given above, the intersection of multiple linear orders,
each implying f -interaction, does not necessarily imply f -interaction. To illustrate
this situation, consider for example the following linear orders:

L4 : 111 � 011 � 001 � 101 � 010 � 100 � 110 � 000

L5 : 111 � 011 � 010 � 101 � 001 � 100 � 110 � 000

Both linear orders L4 and L5 imply negative total 3-way interaction, as each linear
order maps to the Dyck word NPNPNNPP . However, the partial order L4 ∩
L5 = 111 � 011 � 001, 010, 101 � 100 � 110 � 000 does not imply total 3-way
interaction, since there is no perfect matching and L4 ∩L5 extends to the following
linear order:

L6 : 111 � 011 � 101 � 010 � 001 � 100 � 110 � 000,

which maps to a non-Dyck word NPPNNNPP . This examples thus shows that
the property “implies f -interaction” is not closed under the operation of order
intersection and illustrates Corollary 1.

TEM β-lactamase. As a second application, we consider the data produced in
the antibiotic resistance study of the TEM-family of β-lactamase (Mira et al. 2015).
In the table below we display the average growth rates of 16 genotypes grown in
the antibiotic AMP in 12 replicates. The 16 genotypes include the wild type and
all combinations of amino acid substitutions in TEM-50.

Genotype 0000 1000 0100 0010 0001 1100 1010 1001

Average growth rate 1.851 1.570 2.024 1.948 2.082 2.186 0.051 2.165

Genotype 0110 0101 0011 1110 1101 1011 0111 1111

Average growth rate 2.033 2.198 2.434 0.088 2.322 0.083 0.034 2.821

Table 2. Average growth rates of the 16 genotypes grown in the
antibiotic AMP.

By using these growth rate as a measure of fitness, we deduce that this system
has positive total 4-way interaction by directly computing:

f(W ) = w0000 + w0011 + w0101 + w0110 + w1001 + w1010 + w1100 + w1111−
(w0001 + w0010 + w0100 + w1000 + w0111 + w1011 + w1101 + w1110)

and noting that f(W ) > 0 for the values in Table 2.
In the following, we demonstrate how our approach can be used to analyze the

uncertainty of the conclusion that the system has positive total 4-way interaction.
We start by ranking the genotypes according to their growth rates. This yields the
linear order described in the following table (see Table 5 in (Mira et al. 2015)):
In the following we assume that the average growth rates of these 16 genotypes
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Genotype 0000 1000 0100 0010 0001 1100 1010 1001

Rank 11 12 9 10 7 5 15 6

Genotype 0110 0101 0011 1110 1101 1011 0111 1111

Rank 8 4 2 13 3 14 16 1

Table 3. Ranking of the 16 genotypes grown in the antibiotic
AMP according to their average growth rates listed in Table 2.

vary but that they always preserve the ranking listed in Table 3. This assumption
implies that the average growth rates map to the word

ω = PPNPPPNPNNPNNNPN

according to the mapping described in Section 2. Reading ω from left to right, we
notice that ω is a Dyck word. Hence, Theorem 1 can be used to confirm that the
system has positive interaction. However, comparing the ranking and the average
growth rates yields the following observation. The difference between the average
growth rates assigned to the genotypes 0101, 1100, and 1001 as well as to the pairs
of genotypes 0110, 0100 and 1110, 1011 is smaller comparing to the differences
between all other average growth rates assigned to the remaining genotypes. See
Figure 2 for a visual summary of this observation. These small differences in the

Figure 2. Average growth rates of 16 genotypes grown in the
antibiotic AMP.

growth rates highlight the difficulty of finding accurate and robust linear orders
among the genotypes.
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i = j pi nj wpi
− wnj

1 1111 1101 0.499

2 0011 0001 0.352

3 0101 0100 0.174

4 1100 0010 0.238

5 1001 1000 0.595

6 0110 1110 1.945

7 0000 1011 1.768

8 1010 0111 0.017

Table 4. Perfect matching of genotypes obtained from the partial
fitness order according to the average growth rate.

In contrast, the partial order approach, developed in this work, confirms again
that the system has positive total 4-way interaction using fewer and more pro-
nounced comparisons. To illustrate this point, we follow the notations from Theo-
rem 2 and consider the following 8 genotypes pi’s and 8 genotypes nj ’s as in Table 4.
The linear form f(W ) is as above. The rows in Table 4 indicate a perfect matching
among the two sets of genotypes. Thus, for example the first row indicates that
the average growth rates associated to 1101 and 1111 are such that w1101 > w1111.
Similarly, for the other rows. From these 8 comparisons of the type wpi

> wnj

alone, one deduces that the system has positive total 4-way interaction. Moreover,
comparing with the actual average growth rates from Table 2 one can observe that
the 8 differences wpi

−wnj
(see third column in Table 4) are bigger than the differ-

ences between the averages growth rates of the critical genotypes mentioned above.
Since these differences are more significant, they provide a more reliable conclusion
in the empirical setting. Finally, notice that any other perfect matching between
the 16 genotypes satisfying wpi > wnj would equally well yield to the same conclu-
sion. In summary, an advantage of the partial order approach is that it relies on
fewer pairwise inequalities, which makes the approach more practical.

7. Discussion and future directions

Understand genetic interactions from fitness measurements associated to geno-
types represents a major challenge in evolutionary biology. In this work, we have
focused on the case where only fitness comparisons between certain genotypes are
available. This is a common assumption in practice, as there might be more uncer-
tainty or cost involved in deducing some fitness measurements than others. Further-
more, this approach allows to exclude the measurements that have high uncertainty.

In this setting, we present a new algorithm to detect genetic interactions from
partial fitness orders in an efficient way. Moreover, we derive a geometric charac-
terization of the class of partial orders that imply interactions. This description,
involving the geometry of convex polyhedral cones, provides a solid framework to
develop statistical analysis of genetic interactions from partial fitness data.
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Our work inspires a number of questions which remain open. First, while we are
able to characterize the set of partial orders which imply interaction, our character-
ization is in terms of a matching in a separate graph which we can construct from
our partial order. Thus, it is not immediately clear how to relate properties of a
partial order to the probability that this partial order implies interaction. For in-
stance, how does the number and type of incomparable pairs in linear orders affect
whether an interaction is implied or not?

Second, it is important to point out that fitness measurements may produce
relations which do not necessarily satisfy the transitivity assumption, see the work of
(Kerr et al. 2002) were non-transitive pairwise comparisons were studied in certain
microbial communities. This limitation and its implications in the theory of fitness
landscapes is an important issue that will be explored in further research.
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