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Abstract:  
 
Although the complex interactions between hosts and microbial associates are increasingly well 

documented, we still know little about how and why hosts shape microbial communities in 

nature. We characterized the leaf microbiota within 200 clonal accessions in eight field 

experiments and detected effects of both local environment and host genotype on community 

structure. Within environments, hosts’ genetics preferentially associate with a core of ubiquitous 

microbial hubs that, in turn, structure the community. These microbial hubs correlate with host 

performance, and a GWAS revealed strong candidate genes for the host factors impacting 

heritable hubs. Our results reveal how selection may act to enhance fitness through microbial 

associations and bolster the possibility of enhancing crop performance through these host factors. 

 
Text:  

Hosts harbor complex microbial communities that are thought to impact health and 

development1. This is best studied in human hosts for which the microbiota has been implicated 

in a variety of diseases including obesity and cancer 2. Efforts are thus underway to determine 

the host factors shaping these resident populations 3,4 and to use next-generation probiotics to 

inhibit colonization by pathogens 5. Similarly, in agriculture, there is great hope of shaping the 

composition of the microbiota in order to mitigate disease and increase crop yield in a 

sustainable fashion. Indeed, the Food and Agriculture Organization of the United Nations has 

made the use of biological control and growth promoting microbial associations a clear priority 

for improving food production 6. 

Plant associated microbes can be beneficial in many ways including improving access to 

nutrients, activating or priming the immune system, and competing with pathogens. For example, 
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seeds inoculated with a combination of naturally occurring microbes were recently found to be 

protected from a sudden-wilt disease that emerged after continuous cropping 7. Thus, it would be 

advantageous to breed crops that promote the growth of beneficial microbes under a variety of 

field conditions, a prospect that is made more likely by the demonstration of host genotypic 

effects on their microbiota 8–10. That said, microbial communities are complex entities that are 

influenced by the combined impact of host factors, environment and microbe-microbe 

interactions 11. As a consequence, the extent to which host plants can control microbial 

communities to their advantage, especially in a natural context, is unclear.  

Here, we combine large scale field experiments of plant genotypes grown in their natural 

environments, extensive microbial community analysis, and genome-wide association mapping 

to (i) disentangle how the influence of the host is distributed among microbial community 

members, and thus how host variation shapes the microbiota, (ii) propose plant genes and 

functions that correlate with variation in the microbiota across environmental conditions, and 

(iii) examine how key microbial associates impact plant fitness. Our motivation is to further the 

goal of generating plants with an enhanced ability to host beneficial microbial communities. 

 

Snapshot of microbial community variation 

We performed a set of field experiments that included genetically fixed inbred lines of 

Arabidopsis thaliana (hereafter “accessions”) originally collected throughout Sweden, mainly in 

two climatically contrasted regions of the country (Supplementary Table 1); A. thaliana in the 

north of Sweden experiences harsh, long winters on the south facing slopes of rocky cliffs 

whereas Arabidopsis populations in the south of Sweden are typically associated with 

agricultural or disturbed fields that experience a much milder climate. We established identical 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/181198doi: bioRxiv preprint 

https://doi.org/10.1101/181198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

experiments in four representative Arabidopsis sites, two each in the North (sites N1 and N2) and 

South (sites S1 and S2). Experiments were repeated across two years, for a total of eight 

experiments. Each experiment was organized in a complete randomized block design including 

24 replicates of 200 re-sequenced accessions 12, established as seedlings in a mixture of native 

and potting soil and timed to coincide with local germination flushes in late summer. 

Immediately upon snowmelt in early spring, we sampled and freeze-dried 5 to 6 whole rosettes 

per accession. DNA was extracted from the freeze-dried rosettes and both the ITS1 portion of the 

Internal Transcribed Spacer (ITS) and the V5 to V7 regions of the 16S RNA gene were 

sequenced to characterize the fungal and bacterial communities respectively 13–15. The sequences 

obtained were clustered into Operational Taxonomic Units (OTUs) using Swarm to generate 

community matrices 16. After filtering, we considered 6656 samples and 1381 OTUs for the 

fungal community and 6793 samples and 990 OTUs for the bacterial community. The frequency 

distributions of OTUS were highly skewed, with the top ten most common OTUs contributing 

over 78% of the reads in each experiment (Extended Data Fig. 1). 

Although the same accessions were grown in each site and year, the microbial 

communities differed across the experiments. We performed constrained coordinate analyses on 

Bray-Curtis distances to capture dimensions discriminating locations and years (Extended Data 

Fig. 2) 17. The first components from these analyses primarily captured differences between 

Northern and Southern sites, explaining 11 and 6% of the overall diversity in fungal and bacterial 

communities, respectively. The second components captured differences between the two 

consecutive years, and explained 5 and 4% of the overall diversity in the fungal and bacterial 

communities, respectively. The limited variation explained by these components suggests that 

only a small fraction of the microbial OTUs contribute to this differentiation. To identify OTUs 
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that are present across locations and years, we calculated the number of experiments in which 

each OTU was prevalent, which we defined as occurring in at least 50% of the plant samples 

from each experiment. As reported above, a large fraction of OTUs are at very low frequencies. 

Nevertheless, many of the 990 bacterial OTUs and 1381 fungal OTUs were locally prevalent 

multiple times. We could therefore define a core microbiota comprised of 278 fungal and 

bacterial OTUs that were prevalent in all 8 experiments (Fig. 1). 

 

Heritability of the microbiota  

Our experiments provided the opportunity to investigate associations between genetic 

variation among hosts and their resident microbiomes within the context of natural 

environmental variation across time and space. First, restricting attention to those OTUs that 

accounted for more than 0.01% of filtered reads per site and year (as for all following analyses), 

we performed simple, unconstrained principal coordinates analysis (PCoA) within each 

experiment and computed the proportion of variance explained by the host (hereafter heritability 

or H2).  Heritability of these components of the bacterial and of the fungal communities varied 

widely, from 0% to 16%, with 3 - 9 of the 10 components revealing significant heritability 

depending on the community, site and year (Extended Data Table 1). These results indicate that 

genetic variation in the host impacts at least a fraction of the microbiota, as has been observed in 

previous studies 8–10.  The heritable component, however, did not explain a large part of the 

overall variation in microbial community structure because components that are heritable were 

not necessarily those that explained the greatest variation in community structure. We found that 

host genetic variation explains on average 1.93[min=1, max=3.83] and 2.13[min=0.607, 

max=5.25]% of the variation in bacterial and fungal OTUs, respectively (Extended Data Table 
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1), revealing a detectable, but subtle, impact of the host on β-diversity of the microbial 

community. 

Hosts could, in principle, shape microbial community structure by exerting weak control 

over a large number of community members or by targeting a few microbes that influence the 

rest of the microbiota through microbe-microbe interactions. We found that between 4.59 and 

12.5% of all OTUs revealed significant genotype effects (with the 95% confidence interval of 

heritability not overlapping 0), depending on location and year. Thus, evidence of host control is 

focused on relatively few OTUs. There was no consistent difference in the heritability of 

bacterial versus fungal OTUs (Extended Data Fig. 3).   

We explored the ecological importance of these heritable OTUs by computing networks 

of ecological microbe-microbe interactions for each experiment. We applied the SPIEC-EASI 

pipeline, which gains power to detect true interactions by assuming that interactions are 

relatively rare (sparse method) and by using the inverse covariance to capture interactions 

conditional on variation of the other members of the community 18. Although our networks 

included both fungal and bacterial OTUs, most microbe-microbe interactions occurred within 

each kingdom, with an average of only 9.77 [4.89, 15.52]% of edges connecting fungal and 

bacterial OTUs.  We quantified the ecological importance of OTUs using two common 

characteristics of nodes in a network. “Degree” is defined as the number of connections between 

a node and all others. “Between-ness centrality” is defined as the number of shortest paths 

between all nodes that traverse through a given node11. We defined ecologically important hubs 

as OTUs in the 95% tail of both of these statistics in each network. We identified a total of 122 

hubs, representing 71 unique OTUs across all 8 experiments; these hubs are connected to an 

average of 19.73[min=14.56, max=25.24]% of the edges in the networks, indicating that they are 
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likely important in structuring the microbial community. In addition, hubs tend to be involved in 

interactions between fungi and bacteria more often than expected by chance; this suggests that 

they act as gatekeepers between the two communities (Extended Data Table 2).  

Twenty-one of the 122 hubs that we identified (corresponding to 13 unique OTUs, 10 of 

which are hubs in at least two experiments) were significantly heritable (Table 1). This 

represents a significant enrichment of hubs amongst heritable OTUs (χ2 = 11.54, df = 1, p-value  

<0.0007), suggesting that host effects on the microbiota may favor ecologically important 

microbes. We reasoned that if heritable hubs structure the broader microbial community, we 

would expect to see a decrease in the heritability of individual OTUs with distance from the 

heritable hubs in the microbial network. Figure 2 presents the relationships between heritability 

and the distance from the closest heritable hub. In 7 out of 8 experiments, we observed a 

significant negative relationship between heritability and the distance to the nearest heritable 

hub. Thus, host genetic variation most strongly associates with a few microbial hubs that then 

influence the microbes with which they interact.  

Not only do heritable hubs have an impact that percolates through the microbial 

community, they also tend to be widely distributed among accessions, spatial locations and year. 

We found that OTUs that are heritable hubs at least once were over-represented in the core 

microbiota (χ 2=34.814, df=1, p-value<1e-6), demonstrating that the ecologically important 

OTUs with greatest affinity to host genotype are unusually ubiquitous. Host control of the fungal 

OTU #8 (hereafter F8) is especially important; this OTU was heritable in 5 out of the 7 

experiments in which it was a hub (Table 1), suggesting that natural variation in A. thaliana 

influences its microbiota with some consistency across environments. These results suggest the 

exciting possibility that variation at particular host genes associates with these hubs across time 
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and space, and thus has broad influence on microbiota. 

 

Finding host genes influencing the microbiota 

Which host factors underlie the association between Arabidopsis thaliana genotypes and 

their heritable hubs? An identification of genetic factors enabling control of the microbiota 

would facilitate genomic selection and breeding of varieties with increased yield. We performed 

genome-wide association analysis on all 21 heritable hub OTUs using approximately 1.3 million 

SNPs from the 1001 genomes project 19,20 in a classical, single trait mixed model framework 21. 

We investigated candidate genes within ~10kb windows around SNPs with association scores (-

log10(p-values)) above 5. Pseudo-heritabilities (or SNP based heritabilities) varied from 0 to 

18.92%, with an average of 6.95% (N=21). These estimates are consistent with previous β-

diversity based estimates 9 and further suggest that host genetics influence hubs in microbial 

communities. Mapping of individual hubs yielded few if any genome-wide significant peaks. 

The best association score observed was 7.37 (just above genome-wide significance, which is 

7.31 after Bonferroni correction), for F60 in site S2-2013, for a SNP located at position 8637774 

on chromosome 5 that has a minor allele frequency of 0.261 (Extended Data Fig. 4). F60 was a 

heritable hub in both N1-2013 and S2-2013, and belongs to the genus Leucosporidiella. The SNP 

is located within the gene RRC1 (AT5G25060), a putative splicing factor that has been shown to 

be involved in phytochrome B-mediated alternative splicing 22.  Interestingly, RRC1 itself is 

alternatively spliced, with the more stable variant increasing upon sucrose treatment as well as in 

both red and far-red light 23. This association with RRC1 therefore suggests a possible link 

between the composition of the microbial community and alternative splicing, especially in 

response to host energy balance and/or light sensitivity. 
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We investigated whether associations were shared among the 21 heritable hubs. With a 

threshold of -log(p-value) ≥ 5, only 2 SNPs were associated with 2 different heritable hubs. 

However, the heritable hubs sharing associations were detected within the same site and location, 

suggesting that the common association could be due, at least in part, to microbe-microbe 

interactions rather than direct host effects. 

To increase our power to ascertain whether a subset of heritable hubs is influenced by 

variation at the same (or genetically linked) host genes, we estimated genetic correlations among 

heritable hubs (i.e. pairwise correlations between predicted hub abundance in each host 

genotype). We found a group of 10 correlated heritable hubs, including hubs detected in different 

sites and years (Fig. 3). The fact that these correlated hubs did not co-occur in space and time 

suggests that direct host effects, rather than microbe-microbe interactions, were responsible for 

their correlations. This observation prompted us to look for host genetic associations that are 

consistent within this group. As mentioned previously, inspecting the highest associations for the 

different hubs did not show overlap. To retrieve moderate to strong associations shared among 

multiple heritable hubs from this cluster, we instead combined p-values from the association 

scans from these 10 OTUs (using Fisher’s method for combining p-values)24.  Using a stringent 

significance threshold -log(combined p-value) ≥ 8, this strategy yielded 64 associated SNPs (out 

of over 1 million) in 10 loci of about 20kb located on three chromosomes. Supplementary Table 

2 lists the 47 genes within a 20kb window around associated SNPs. 

In addition to RRC1, we found promising candidate genes in these significantly 

associated regions.  On chromosome two, we detected significant associations just upstream of 

CINNAMATE 4-HYDROXYLASE (C4H, AT2G30490, Extended Data Fig. 5). A wounding-

inducible enzyme in the phenylpropanoid pathway 25, C4H has been shown to control the amount 
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and composition of lignin produced 26.  Lignin, and other phenylpropanoids such as anthocyanins 

and salicylic acid, are important components of plant response to pathogens 27–29. We also found 

significantly associated variants on chromosome four just upstream of AT4G14940 (AMINE 

OXIDASE 1, AtAO1, Extended Data Fig. 6).  This gene encodes a cell wall copper amine 

oxidase30 induced by jasmonic acid 31, a hormone whose role in defense responses is well 

established. Cell wall amine oxidases, and the hydrogen peroxide they produce, have been 

implicated in processes such as cell wall strengthening, wound healing, and both programmed 

and hypersensitive cell death 32, all of which could play a part in mediating plant/microbiome 

interactions. Therefore our analysis provides a short list of candidates that can be tested for their 

effects on the abundance of heritable hubs and on the microbial communities that these hubs 

structure.  

 

Heritable hubs influence plant performance 

A long-term goal in agriculture is to shape the microbial community to enhance plant 

performance 6, although examples of positive relationships between microbial community 

composition and plant fecundity remain rare 7,33,34. We therefore asked whether we could detect 

any association between microbial communities and plant performance in our experiments. 

Independent replicates of all accessions in each of the 8 experiments were left to flower and 

mature in the field, and mature stems were harvested in early summer. We used high-throughput 

image analysis to estimate fecundity by measuring the size of mature stems. This method 

provides estimates highly correlated (Pearson’s correlation coefficient=0.85, p-value≤ 2.2X10-16) 

with manual estimates of the total length of silique produced, a common proxy for seed 

production in A. thaliana 35. 
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First, we tested genetic correlations between log ratios of the relative abundance of 

heritable hubs and estimates of fecundity, a major fitness component in this annual selfing plant. 

Among the 21 heritable hubs, 6 show significant correlations (after FDR correction for multiple 

testing) with this estimator of seed production (Fig. 4). The three strongest correlation 

coefficients are positive and involve hub F8 in each of 3 Southern experiments. Second, we 

confirmed that these relationships remain positive and significant in linear mixed models 

controlling for population structure (Extended Data Table 3). Finally, to explore the fitness 

impact of the larger microbial community (rather than just the heritable hubs) we fit random 

forest regression models capable of capturing nonlinear relationships and interactions among all 

heritable OTUs and patterns of genetic relatedness. These models explained large amounts of 

variation in 3 out of the 4 southern experiments (between 22 and 28%), and included the 

heritable hub F8 among the most important variables explaining fecundity breeding-values 

(Extended Data Fig. 7). Indeed, in the model for site S1 in 2012, which explains 24.48% of 

fecundity breeding-value variation, F8 is the most important variable, surpassing the effect of 

local adaptation captured by the first component of pairwise genetic distance (which 

discriminates northern and southern accessions and captures much of the background host 

genetic variation)36. Thus, the microbial hubs influenced by host genetic variation detected in our 

study can have extensive effects on a major fitness component, which goes well beyond the 

effect of the genetic background and locally adaptive variation.  

 

Conclusion 

Our findings that widespread, hub species are especially heritable, influences the relative 

abundance of other microbial community members, correlate with plant fitness and are 
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influenced by host factors that can be mapped using genome-wide association mapping, opens 

the door to shaping microbial communities to enhance the performance of agricultural and wild 

species. While these results encourage optimism for improving productivity, orchestrating 

targeted changes in the microbial community through control of particular hubs is still 

challenging. Furthermore, crops selected in the context of intensive chemical agriculture that 

reduces soil microbial diversity may have diminished capacity to interact efficiently with 

microorganisms colonizing their tissues 37,38. Nevertheless, it is clear that targeted manipulation 

of host factors that shape the microbiome holds promise for a novel means of enhancing 

productivity, even in realistic and diverse natural settings. 
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Figures  
 

 
Fig. 1: Microbial communities include a core of microbes prevalent in all locations in both 
years.  The x-axis indicates the number of location/year combinations in which OTUs were 
prevalent and the y-axis the number of Bacterial OTUs (A) and Fungal OTUs (B). Here we 
considered all OTUs with more than 10 reads in 5 samples (2371 OTUs). A majority of OTUs 
were never prevalent, but across both fungal and bacterial communities, a set of 278 fungal and 
bacterial OTUs were prevalent in the 8 independent experiments we performed.  
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Fig. 2: The effect of host genetic variation on the microbial community percolates through hubs. 
The heritable hubs are represented by large dots, at a distance of 0 (hub). The other OTUs are 
represented by smaller dots and the x-axis represents their distance to the nearest heritable hub(s) 
within the networks of microbe-microbe interactions. The number of heritable hubs detected in 
each experiment is indicated in the legend. The correlation coefficients presented are Spearman 
rank correlations calculated for OTUs with a distance to the heritable hub(s) above 0. In N2-2012 
and N1-2013, the few OTUs represented by triangles are outliers: their heritabilities are higher 
than the upper limit of the confidence interval of the heritability of the hub to which they are 
connected.  
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Fig. 3: Genetic correlations among heritable hubs. Each node is a heritable hub, in one year 
and one experiment, shaped and shaded according to the legend. Dark grey and lighter grey 
edges correspond to positive and negative pairwise Pearson correlation coefficients between 
breeding value, respectively. The vertices are sized proportionally to the broad sense heritability 
estimates of heritable hubs. 
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Fig. 4: Effect of heritable hubs on plant performance. Each panel displays 1 of the 6 
significant genetic correlations between plant fecundity (accession BLUPS, y-axis) and relative 
abundance of a heritable hub (accession BLUPs, x-axis). We report Pearson’s correlation 
coefficient (cor) in each panel, along with the p-value (p) adjusted for false discovery rate (fdr) 
for 21 tests (corresponding to the 21 heritable hubs identified).   
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Tables  
 

OTU loc year H2 CI-low CI-high order family genus 

F8 S1 2012 0.227 0.169 0.286 Pleosporales unclassified  unclassified  

F8 N1 2012 0.126 0.047 0.198 Pleosporales unclassified  unclassified  

B28 N1 2012 0.101 0.022 0.181 Burkholderiales Comamonadaceae Variovorax 

B99 N2 2013 0.100 0.044 0.157 Burkholderiales Comamonadaceae Aquabacterium 

F8 S1 2013 0.097 0.042 0.151 Pleosporales unclassified  unclassified  

B26 N2 2012 0.092 0.014 0.176 Lactobacillales Streptococcaceae Streptococcus 

B12 N2 2013 0.081 0.024 0.142 Sphingomonadales Sphingomonadaceae Sphingomonas 

F5 S2 2013 0.080 0.026 0.132 Capnodiales Davidiellaceae Davidiella 

B26 S2 2013 0.079 0.023 0.133 Lactobacillales Streptococcaceae Streptococcus 

B107 S1 2013 0.079 0.024 0.136 Burkholderiales Oxalobacteraceae uncultured 

B38 N1 2012 0.074 0.000 0.143 Caulobacterales Caulobacteraceae Brevundimonas 

F8 N1 2013 0.073 0.023 0.127 Pleosporales unclassified  unclassified  

F8 S2 2013 0.072 0.022 0.121 Pleosporales unclassified  unclassified  

B41 S2 2012 0.071 0.007 0.142 Burkholderiales Comamonadaceae Ambiguous taxa 

B25 S1 2013 0.068 0.019 0.124 Burkholderiales Comamonadaceae uncultured 

F5 S1 2013 0.063 0.015 0.115 Capnodiales Davidiellaceae Davidiella 

F150 N2 2013 0.061 0.006 0.121 Taphrinales Taphrinaceae unclassified  

F60 S2 2013 0.059 0.011 0.114 Leucosporidiales Leucosporidiaceae Leucosporidiella 

B26 N2 2013 0.050 0.002 0.108 Lactobacillales Streptococcaceae Streptococcus 

F19 N1 2013 0.047 0.003 0.096 Pleosporales family Incertae sedis Phoma 

F60 N1 2013 0.045 0.001 0.090 Leucosporidiales Leucosporidiaceae Leucosporidiella 

  
Table 1:  List of heritable hubs. Each hub is defined by an OTU, a location (loc) and a year. 
“CI-low” and “CI-high” indicate the lower and upper 95% confidence interval of the heritability 
estimate (H2) computed over 500 bootstraps. The columns order family and genus provide 
taxonomic assignments. 
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Materials and Methods:  

 

Field experiments 

This study uses a set of 200 diverse accessions (inbred lines, Supplementary Table 1) that 

were previously re-sequenced 12. The seeds were produced simultaneously in the greenhouse of 

the University of Chicago under long day conditions, except for a 12-week vernalization period 

at 4˚C, required to induce flowering. The seeds for the common garden experiments were cold 

stratified in water at 4˚C for 3 days before being planted in trays of 66 open-bottom wells, each 

measuring 4 cm in diameter. The soil used was a 90:10 mix of standard greenhouse soil and soil 

from each of the four locations in which the experiments were installed: 

- S1: Ullstorp (lat: 56.067, long: 13.945) 

- S2: Ratchkegården (lat: 55.906, long: 14.260) 

- N1: Ramsta (lat: 62.85, long: 18.193) 

- N2: Ådal (lat: 62.862, long 18.331) 

Each experiment included 3 complete randomized blocks including 8 replicates per accession. 

Experiments were sown in pairs (2 in the North and 2 in the South) over 6 days, corresponding to 

the sowing of one block a day, alternating between the 2 experiments (between August 7th and 

12th in the North, and between August 31st and September 5th in the South). The trays were 

placed in a common garden the morning after sowing under row tunnels to avoid disturbance by 

precipitation and to favor germination (on the campus of Mid University and Lund University, in 

the North and in the South, respectively). Trays were watered as needed and missing seedlings 

were transplanted between pots within blocks and then thinned to one per pot after 9 days. 

Seventeen days after sowing, trays were laid in the field in their final location over tilled soil. For 

each experiment, the blocks were laid across the most obvious environmental gradient 
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(exposition, shading, slope…). The pierced bottom of the wells allowed the roots to grow 

through and reach the soil, as was verified upon harvest. The same protocol was followed in 

2011 and 2012. 

 

Sample collection and processing 

The rosettes used to characterize the microbial community were harvested only a few 

days after the plants were exposed following snow melt. We harvested 2 random replicates per 

accession in each experimental block. Upon harvest, the roots were removed and the rosettes 

were washed twice in successive baths of TE and 70% ethanol to remove loosely attached 

microbes from the leaf surface. The rosettes were then placed in sealed paper envelopes and 

placed on dry ice. The rosettes were kept at -80˚C until lyophilized.  Freeze-dried rosettes were 

then transferred to 2 ml tubes along with 3 2mm silica beads.  For 2 successive years, the tubes 

were randomized and separated in 34 and 46 sets of 96 tubes, respectively. Our randomization 

strategy maintained approximately the same number of tubes from each of the 12 experimental 

units (3 blocks in 4 experiments) in order to avoid confounding biologically meaningful effects. 

We powdered the samples (Geno-Grinder for 1min at 1750rpm) before transferring 10 - 20 mg to 

2ml 96-well plates, along with two zirconia/silica beads (diameter = 2.3mm), for DNA 

extraction. 

 

DNA extraction 

DNA extraction started with 2 enzymatic digestions to maximize yield from Gram-

negative bacteria 39. First, we added 250µl of TES with 50 units.µl-1 of Lysozyme (Ready-Lys 
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Lysozyme, Epicenter) to each well. The plates were then shaken using the Geno-Grinder for 2 

min at 1750 rpm, briefly spun and incubated 30 min at room temperature. Second, we added 

250µl of TES with 2% SDS and 1 mg.mL-1 of proteinase K. The plates were then briefly 

vortexed and incubated at 55˚C for 4 hours. The protocol then followed 40, adapted to the 96-well 

plate format and automated pipetting on a Tecan Freedom Evo Liquid Handler. We added 500 µl 

of Chloroform:Isoamyl Alcohol (24:1), pipette mixed, and centrifuged the plates at 6600 g for 15 

min. We transferred 450 µl of the aqueous supernatant to a new plate containing 500µl of 100% 

isopropanol. The plates were then sealed, inverted 50 times, incubated at -20˚C for 1 hour, and 

centrifuged at 6600 g for 15 min. The Isopropanol was then removed and the pellets were 

washed twice with 500 µl of 70% Ethanol, dried and re-suspended in 100 µl of TE. After 5 min 

incubation on ice, the plates were centrifuged 12 min at 6600 g and the supernatant was pipetted 

into a new plate.  

 

PCR and Sequencing 

To describe the microbial communities, we amplified and sequenced fragments of the 

taxonomically informative genes 16S and ITS for bacteria and fungi, respectively. For bacteria 

we amplified the hypervariable regions V5, V6 and V7 of the 16S gene using the primers 799F 

(5'-AACMGGATTAGATACCCKG-3') and 1193R (5'-ACGTCATCCCCACCTTCC-3') 13,15. 

For fungi, we amplified the ITS-1 region using the primers ITS1F (5'-

CTTGGTCATTTAGAGGAAGTAA-3') 14 and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3') 41.  

To the 5' end of these primers we added a 2bp linker, a 10bp pad region, a 6bp barcode and the 

adapter to the Illumina flowcell, following 42. The appropriate linkers were chosen using the 

PrimerProspector program from the Qiime package. The PCR reactions were realized in 25 µl 
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including: 10 µl of Hot Start Master Mix 2.5x (5prime), 1µl of a 1/10 dilution of the DNA 

template, 4µl of SBT-PAR buffer, and 5 µl of the forward and reverse primers (1 µM). The SBT-

PAR buffer is a modified version of the TBT-PAR PCR buffer described in 43 with the trehalose 

replaced by sucrose (Sucrose, BSA, Tween20). The PCR program consisted of an initial 

denaturing step at 94˚C for 2’30”, followed by 35 cycles of a denaturing step (94˚C for 30”), an 

annealing step (54.3˚C for 40”), and an extension step (68˚C for 40”). A final extension step at 

68˚C was performed for 7’ before storing the samples at 4˚C.  For each plate the PCRs were 

performed in triplicates, pooled, and purified using 90 µl of a magnetic bead solution prepared 

and used following 44.  The purified PCR products were quantified with Picogreen following the 

manufacturer's instruction 45 and pooled into an equimolar mix. Between 5 and 7 plates (480 to 

672 samples) were pooled in each MiSeq run. If the bioanalyzer traces for pooled libraries 

showed only one dominant peak, they were sequenced directly following the standard MiSeq 

library preparation protocols for amplicons. In cases where the bioanalyzer trace presented peaks 

for smaller fragments (left over primers, primer dimers, small PCR products), the libraries were 

first concentrated 20X on a speedvac (55˚C for 2 to 3 hours), purified with 0.9 volume of 

magnetic bead solution, and/or size selected using a Blue Pippin (range mode between 300 and 

800 bp). 

The sequencing was performed using MiSeq 500 cycle V2 kits (251 cycles per read and 

twice 6 cycles of index reads), using a loading concentration of 12.5pM for ITS fragments and 

8pM for 16S fragments following the standard Illumina protocol. Sequencing primers were 

designed and spiked in following 42. The sequencing primer for the first read of 16S fragments 

was prolonged into the conserved beginning of the fragment amplified to reach a sufficient 

melting temperature. This primer modification produced no change in the Blast results of the 
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primers against the GreenGene database. A total of 11 sequencing runs were performed for each 

of the fungal and bacterial communities. 

 

Sequence processing and clustering 

The demultiplexed fastq files generated by MiSeq reporter for the first read of each run 

were quality filtered and truncated to remove potential primer sequences and low quality 

basecalls using the program cutadapt 46. The reads were then further filtered and converted to 

fasta files using the FASTX-Toolkit (-q 30 -p 90 -Q33). The fasta files for each run were then 

dereplicated using AWK code provided in the swarm git repository 

(https://github.com/torognes/swarm). The resulting dereplicated fasta files were filtered for PCR 

chimeras using the vsearch uchime_denovo command (https://github.com/torognes/vsearch). The 

dereplicated fasta files for each run were then combined and further dereplicated at the study 

level. The fasta files were then used as input for OTU clustering using swarm (-t 4 -c 20000). 

The clustering identified 150 412 and 251 065 OTUs for the fungal and bacterial communities, 

respectively. The output files were combined into two separate community matrices using a 

custom python script. The taxonomy of each OTU was determined by blasting the representative 

sequences for the fungal and bacterial OTUs to the UNITE and SILVA database, respectively 

47,48.  

 

Count table filtering 

The count tables obtained for both the bacterial and fungal communities were filtered in 

successive steps by removing: 
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1) samples corresponding to empty wells and additional genotypes present in the 

experiments sampled by mistake (leaving 7476 and 7240 samples for the fungal and 

bacterial count tables, respectively). 

2) samples with less than 1000 reads (leaving 6678 and 6819 samples for the fungal and 

bacterial count tables, respectively) 

3) OTUs represented by less than 10 read in 5 samples (leaving 1381 and 993 OTUs for the 

fungal and bacterial count tables, respectively) 

4) for the bacterial community, OTUs assigned to plant mitochondria (leaving 990 OTUs in 

the bacterial count table) 

5) for a second time, samples with less than 1000 reads (leaving 6656 and 6783 samples for 

the fungal and bacterial count tables, respectively). 

The final count tables used in the study included 990 OTUs and 6783 samples for the bacterial 

communities and 1381 OTUs and 6656 samples for the fungal community.  

 

Differentiation of the microbial communities among sites and years 

This analysis is performed for the fungal and bacterial communities independently, 

including all samples and only OTUs with read counts above 0.01% of total read counts (after 

the filtering described above) across sites and years. To investigate how the microbial 

communities differed among sites and years, we performed a constrained ordination on log 

transformed read counts using the capscale function in the R-package Vegan 49 and following 17. 

The log transformation offers the advantage of removing large differences in scale among 

variables. The capscale function performs canonical analysis of principal coordinates, an analysis 

similar to redundancy analysis (rda), but based on the decomposition of a Bray-Curtis distance 
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matrix among samples (instead of Euclidean distance in the case of rda). This allows 

identification of the dimension that maximize the variance explained by components, while 

discriminating groups of samples, here sites, years and their interaction 17.  

 

Core microbiota 

In order to define a core microbiota, we counted, for each OTU, the number of 

location/year combinations in which it was prevalent. We defined “prevalent” as being present in 

at least 50% of the samples in a given location/year. We performed this analysis using count 

tables for each experiment with the filtering described in the previous paragraph. Therefore, for 

an OTU to be designated as a member of the core microbiota, it needed to be represented by at 

least 10 reads in 5 samples across all site/year combinations (see “Count table filtering”) and 

finally to have non-zero counts in more than 50% of the samples within all site/year 

combinations. 

 

Heritability of the microbiota 

In this analysis, count tables were split per site and year before filtering for OTUs 

represented by more than 0.01% of the reads (after the filtering described in the section “Count 

table filtering”) for each of the bacterial and fungal communities. The resulting 16 count tables 

were normalized to 1000 reads per sample and used to calculate 16 Bray-Curtis pairwise 

dissimilarity matrices among samples. These matrices were then decomposed into 10 principal 

coordinates. For each component we estimated broad sense heritability (hereafter H2), i.e. the 

proportion of variance explained by a random effect capturing the identity of the accessions 

present in the experiment (block effects had limited impact on H2 estimates). We computed 95% 
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confidence intervals using 1000 bootstraps, and components were considered to have significant 

H2 when their confidence intervals did not overlap 0 (lower bound of the confidence interval ≥ 

1e-10).  

 

Heritability of individual OTUs 

This analysis was also performed per site, year and community, as in the microbiota H2 

estimation analysis. In this analysis, counts were transformed to centered log-ratios using a 

dedicated function in the R package mixOmics 50,51. H2 estimates and confidence intervals were 

computed for individual OTUs using the method described in the previous paragraph. For 

mapping and investigating genetic correlations, we used the Best Linear Unbiased Predictions 

(BLUPs) computed from the random accession effect of the linear model.  

 

Microbe–microbe interaction networks  

Microbe-microbe interaction networks were computed for the fungal and bacterial 

communities together, using the count tables per site/ year and filtering OTUs represented by 

less than 0.01% of the reads within each community. The count tables were then combined into 

the same table and analyzed using the SPIEC-EASI pipeline 18. This method computes sparse 

microbial ecological networks in a fashion robust to compositional bias and uses conditional 

independence to identify true ecological interactions, meaning that a connection between 2 

OTUs will be significant when one provides information about the other, given the state of all 

other OTUs in the network. This means that covariance among OTUs induced by micro-

environmental and host genetic variation is controlled. SPIEC-EASI was run using the 

neighborhood selection framework and model selection was regularized with parameters set to a 
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minimum lambda ratio of 1e-2 and a sequence of 50 lambda values (see documentation for 

SPIEC-EASI and the huge R package, which provides regularization functions)52. 

 

Network statistics 

The inferences of microbe-microbe ecological interactions inferred using SPIEC-EASY 

were passed to the igraph package 53, which was used for enforcing simplicity of graphs (no 

loops or duplicated edges), computing degree and between-ness centrality of vertices, computing 

distances between vertices, and plotting. Within each of the 8 networks thus computed, hubs 

were defined as OTUs with degree and between-ness centrality both in the 5% tail of their 

respective distributions. We then checked the overlap between heritable OTUs and hubs, and the 

over-representation of heritable OTUs among hubs was tested using a simple χ2 test across all 

site/year combinations. The relationship between distances to heritable hubs (OTUs that are both 

hubs and have significant H2) and heritability was investigated using Spearman’s rank 

correlation coefficient. Distances were calculated as the number of edges between OTUs and the 

closest heritable hub in the network. OTUs not connected to heritable hubs were assigned a 

distance equal to one more than the maximum distance observed for OTUs connected to 

heritable hubs.  

 

Genome-wide association mapping 

Single polymorphism calling and filtering 

Single nucleotide polymorphisms (SNP) used in this study were generated from the 

sequences generated in the context of the 1001genome project 19 and published in 12. As 

pipelines constantly evolve, we re-ran SNP calling to ensure optimal quality. 
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For each sequenced individual, we performed 3’ adapter removal (either TruSeq or Nextera), 

quality trimming (quality 15 and 10 for 5’ and 3’-ends, respectively) and N-end trimming with 

cutadapt (v1.9) 46. After processing, we only kept reads of approximately half the length of the 

original read-length. We mapped all paired-end (PE) reads to the A. thaliana TAIR10 reference 

genome with BWA-MEM (v0.7.8) 54,55. We used Samtools (v0.1.18) to convert file formats 54 

and Sambamba (v0.6.3) to sort and index bam files 56. We removed duplicated reads with 

Markduplicates from Picard (v1.101) (http://broadinstitute.github.io/picard/) and performed local 

realignment around indels with GATK/RealignerTargetCreator and GATK/IndelRealigner 

functions from GATK (v3.5) 57,58 by providing known indels from The 1001 Genomes 

Consortium (1001 Genomes Consortium 2016). Similarly, we conducted base quality 

recalibration with the functions GATK/BaseRecalibrator and GATK/PrintReads by providing 

known indels and SNPs from The 1001 Genomes Consortium. 

For variant calling, we employed GATK/HaplotypeCaller on each sample in ‘GVCF 

mode’, followed by joint genotyping of a single cohort of 220 individuals with 

GATK/GenotypeGVCFs. To filter SNP variants, we followed the protocol of variant quality 

score recalibration (VQSR) from GATK. First, we created a set of 191,968 training variants from 

the intersection between the 250k SNP array 59 used to genotype the RegMap panel 36 and the 

SNPs from The 1001 Genomes Consortium. Second, this training set was further filtered by the 

behavior in the population of several annotation profiles (DP < 10686, InbreedingCoeff > -0.1, 

SOR < 2, FS < 10, MQ > 45, QD > 20) to leave 175,224 training high-quality variants. Third, we 

executed GATK/VariantRecalibrator with the latter as the training set, a prior probability of 15, 

4 as maximum number of Gaussian distributions, and annotations MQ, MQRankSum, 

ReadPosRankSum, FS, SOR, DP, QD and InbreedingCoeff enabled. Finally, we applied a 
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sensitivity threshold of 99.5 with GATK/ApplyRecalibration and restricted our set to bi-allelic 

SNPs with GATK/SelectVariants for a total of 2,303,415 SNPs in the population.  

Preparation for use in genome-wide association analysis involved further filtering of individuals 

and SNPs using Plink1.9 60,61. Individuals not included in this study were removed and SNPs 

with over 5% missing data and with minor allele frequencies below 5% in our collection of 

accessions were removed.  

  

Phenotype preparation and association analysis 

Association mapping analyses were performed for the 21 heritable hubs transformed to 

centered log-ratios. Association analysis were performed using a classical one trait mixed model 

accounting for genetic relatedness among accessions (kinship)21. In order to only model one error 

term throughout our analysis, we didn’t first compute BLUPs or means per accession before 

running association analysis. Instead we considered phenotypes for individual plants, thus only 

modeling phenotypes with SNP genotypes and the genome-wide kinship. We investigated 

candidate genes within 5kb on each side of SNPs with –log(p-value) above 5.  

 

Genetic correlations and shared genetics 

To investigate genetic correlations we computed BLUPs for each heritable hub and 

estimated Pearson’s correlation coefficient for each pair of hubs. Representation in the form of a 

graph of significant pairwise correlations (p-value≤0.01) revealed a cluster of 10 genetically 

correlated heritable hubs. This cluster includes heritable hubs detected in multiple locations and 

years suggesting variation is shaped by shared genetics. In order to identify consistently shared 

genetics across those 10 heritable hubs, we computed a combined p-value using Fisher’s method 
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24. SNPs with combined association scores log10(combined p-value)≥8, a threshold 

corresponding to the top 64 for SNPs out of 1,004,654 included this analysis. Candidate genes 

were investigated within 10kb on each side of associated SNPs. 

 

Estimation of seed production 

The experiments each included 8 replicates per block per accession (24 replicates per 

experiment). While we harvested 2 replicates per block (6 replicates per experiment) for 

microbiota analysis, the remaining plants were left to grow, flower and produce seeds in the 

field. We harvested the mature stems of all remaining plants at the end of the spring, when all 

plants had finished flowering and siliques were mature, and stored them flat in individual paper 

envelops. We estimated fecundity by the size of the mature stems. After removing remaining 

traces of roots and rosettes, each mature plant was photographed on a black background, using a 

DSLR camera (Nikon 60D) mounted on a copy-stand and equipped with a 60mm macro lens 

(Nikon 60mm). The photographs were segmented (using custom scripts in R based on the 

EBimage package 62 to isolate plants from the image background and estimate the total surface 

of the image they occupied.  

We validated this method with mature plants harvested from a previous experiment that 

was planted in N1 in fall 2010, and that included the 200 accessions used in this study. We 

counted siliques and estimated the average silique size for 1607 mature stems that were also 

photographed. The total silique length produced per plant (number * average size) was highly 

correlated with our size estimates based on image analysis (Spearman’s rho=0.84) and displayed 

a clear linear relationship.  
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Heritable hubs and fecundity  

To investigate the relationship between heritable hubs and fecundity in each experiment, 

we computed BLUPs (breeding values) per accessions for both heritable hubs and square-root 

transformed fecundity estimates. We then performed three different analyses. First we calculated 

Pearson’s correlation coefficients, which is a classical measure of genetic correlations among 

normally distributed estimates of breeding values. Second, to account for potential confounding 

that could arise from population structure, we used the same BLUPs in a linear mix-model 

accounting for the genetic relatedness among accessions (pairwise kinship matrix) using the 

function lmekin the R package coxme 63. Third, in order to account both for non-linear 

relationships and population structure, we constructed random-forest models 64 for each 

experiment aiming to explain fecundity breeding values per accessions with breeding values for 

each heritable OTU and 3 components resulting from the multi-dimensional scaling of a 1-

kinship distance matrix among accessions. For each experiment, we computed 10000 trees, 

sampling 1 third of the heritable OTUs. 

 

Repeatability of analysis and data availability 

All scripts used to performed the analyses presented in this paper as well as non-essential but 

complementary figures are available in the repository https://bitbucket.org/bbrachi/microbiota.git  

The sequencing data used in this study is available for download from MG-RAST. 
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