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Abstract 
 

Cell protrusion plays important roles in cell migration by pushing plasma membrane forward. 

Cryptic lamellipodia induce the protrusion of submarginal cells in collective cell migration where 

cells are attached and move together. Although computational image analysis of cell protrusion 

has been done extensively, the study on protrusion activities of cryptic lamellipodia is limited due 

to difficulties in image segmentation. This study seeks to aid in the computational analysis of 

submarginal cell protrusion in collective cell migration by using deep learning to detect the cryptic 

lamellipodial edges from fluorescence time-lapse movies. Due to the noisy features within 

overlapping cells, the conventional image analysis algorithms such as Canny edge detector and 

intensity thresholding are limited. By combining Canny edge detector, Convolutional Neural 

Networks (CNNs), and local intensity thresholding, we were able to detect cryptic lamellipodial 

edges of submarginal cells with high accuracy from the fluorescence time-lapse movies of PtK1 

cells stained with a plasma membrane marker. We used relatively small effort to prepare the 

training set to train the CNN to detect the cryptical lamellipodial edges in fluorescence time-lapse 

movies. This work demonstrates that deep learning can be combined with the conventional image 
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analysis algorithms to facilitate the computational analysis of highly complex time-lapse movies 

of collective cell migration. 

 

Introduction 
 

Computational analyses of fluorescence images of migrating cells have been used as a major 

method for quantitative understanding of cell migration [1, 2]. Cell migration is a process in which 

actin filaments are rapidly assembled and disassembled to make the leading edge of the cell to 

protrude and move forward in respond to its environment [3]. Results of cell migration serve  as a 

great biological importance and are essential in physiological and pathophysiological processes 

such as wound healing, embryonic development, immune responses, and cancer metastasis.  

In both physiological and pathophysiological conditions many cell types migrate together 

in a group [4]. This collective cell migration plays very important roles in tissue remodeling and 

morphogenesis since it keeps the tissue intact and allows the communication between cells [4-8]. 

Collective cell migration shares many mechanistic characteristics with single cell migration, which 

requires mechanochemical cycles of leading edge protrusion, front adhesion formation, rear 

adhesion disruption, and cell body contraction [9-11]. However, understanding single cell 

migration is not sufficient enough to understand collective migration since cells are connected and 

they communicate with each other. One important characteristic of epithelial sheet migration is 

the coordination of movement between neighboring cells [12, 13]. These cells affect neighboring 

cells mechanochemically through cadherin-mediated cell-cell junctions and continuously 

rearrange tissue structures [14-20]. Recent studies showed that cell-cell junctions during collective 

migration is mechanosensitive, further suggesting that cells harness mechanical forces to 

communicate with each other [14, 15, 20], and the force generation from this cell protrusion 

process can affect mechanosensitive cell-cell junctions [14]. This suggests that the interaction 
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between cell protrusion and cell-cell junctions are crucial in collective cell migration. To better 

understand these phenomena, it is essential to develop a quantitative live cell imaging approach to 

allow us to characterize the coordination of cellular activities among neighboring cells. 

Fluorescence imaging has been used as a major method to help capture cell migration 

patterns [1]. Images taken from the time-lapse recording can then be used to further study 

important cellular activities in cell migration. Computational image analysis is the way of 

interpreting information extracted by a computer from a given image [21], and edge detection is 

one of the most fundamentals algorithms in image processing. Moreover, it is usually the first step 

for computational image analysis. Although conventional segmentation method is efficient in 

identifying outside borders of cells, it is difficult to successfully identify cell edges when they 

overlap with each other during collective cell migration [22]. Any other noisy image features 

surrounding the edges could also decrease the accuracy and reliability of the image analysis.  While 

edges of cells are often distinguishable with the human eye, mistakes are often made. As the need 

to detect edges of cells and patterns in cell migration continues to increase in complexity such as 

analyzing clusters of cells or whole tissues, a computational method, rather than a manual method, 

is required [23].  

Deep learning can help by using computers to accurately and efficiently self-determine the 

edges of cells in a given image, thus helping in analyzing cell migration patterns [24, 25]. Deep 

learning is a branch of machine learning in which the computer creates an algorithm based on a 

training set and applies it to another set later on [26]. Recent well-known examples of using deep 

learning as a complex decision maker include, ImageNet [27], a program designed for object 

recognition, and AlphaGo [28], a program designed to play the board game Go. While deep 

learning has also been applied for image segmentation and edge detection[24, 25], most of the 
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applications are completely independent of the traditional image algorithms such as Canny 

detector and intensity thresholding. In this study, we focused on aiding the conventional algorithms 

using deep learning. We demonstrate that deep learning can be effectively integrated into the 

conventional image algorithms to enhance the performance of the detection of edges of cryptic 

lamellipodia. 

Methods and Materials 
 

Fluorescence images of PtK1 cells (kidney epithelial cells from a rat kangaroo) stained with 

CellMask Orange (Invitrogen) were taken using a spinning disk confocal microscope (Fig. 1A). 

During their wound healing process, the PtK1 cells tend to attach together and move as a group. 

As a result, images taken of PtK1 cells can contain cell boundaries of multiple cells, which may 

make image analysis difficult. Also, the cryptic lamellipodial protrusion is underneath the adjacent 

cells, meaning that we need to segment the cryptic lamellipodial protrusion from the background 

of other cells (Fig. 1A). This background cell images are highly variable in terms of images 

features and signal intensity. Therefore, it is very difficult to develop a segmentation algorithm 

relying on conventional image analysis algorithm. To tackle this complexity, we established a 

segmentation pipeline combining convolutional neural networks (CNN) with other image analysis 

algorithms as described in Fig. 2. 

Our pipeline starts with first selecting possible cell-edge candidates through Canny edge 

detection [29]. By focusing on these edge candidates, we can substantially reduce the 

computational cost. The Canny algorithm begins by using Gaussian smoothing to remove noise in 

the image. The edge filters, which calculate the image gradient are used to determine the possible 

location of edges. Then, non-maximum suppression is used to make the edges thinner [29]. The 
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resulting “Canny image” contained enhanced edges of the original cell image that served as 

possible edge candidates (Figure 1B).  

These edge candidates included the outer and inner boundaries of the cell, which served as 

real edges of the cell, as well as the other numerous edges inside the cell, which were originated 

from other cellular features. These false positive edge candidates needed to be removed, and outer 

and inner edges needed to be distinguished to create a cell image with distinct outer and inner 

edges. To achieve this, we trained Convolutional Neural Networks (CNNs) [30]. The input data of 

CNNs are small image patches (71X71 pixels) whose center has the edge candidate point from 

Canny edge detector. The output of the CNNs are the classification results of outer/inner/noisy 

edges. The CNN accepts the raw intensity input from the images and classifies the edges.  

There are three types of layers in CNN [30]. These layers are the convolutional layers, 

pooling layers, and fully connected layers. In convolutional layers, filters are applied to each input 

layer. As the filter is moved across the layer, outputs known as feature maps are produced. In 

between convolutional layers, there are usually pooling layers. These layers help to reduce 

overfitting by reducing the size of feature representations. To prevent overfitting, the dropout layer 

was also used [31]. Finally, at the end of the network, fully connected layers are used to make 

predictions and create any final feature combinations.  

As seen in the CNN architecture in Figure 2B, the structure starts with a input layer. The 

size of input image patches was specified 71x71 pixel2. The number of feature maps and the filter 

size for the next layer, the convolutional layer, was listed in the Fig. 2B. Next, a dropout layer set 

to randomly take out 20% of the neurons present in the layer was included to prevent overfitting 

[31]. The following layer, the max pooling layer, was configured to have a pool size of 3x3 and 

also serves as a way to control overfitting. The flattening layer, which enables the output to be 
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processed by fully connected layer, was then included. The structure ends with a “hidden” layer, 

or the fully connected layer, which has 512 neurons and the output layer. Training was done based 

on a categorical cross-entropy loss function. Using the result of the loss function, weights were 

updated through back propagation [32] to increase the accuracy percentage by training the neural 

networks to reduce the amount of errors made.  

To prepare the training set, we chose the images for the training set every 30 frames in the 

time lapse movie. In this study, the frame rate of the movie was 5 sec/frame, and the movie 

contained 200 frames. We chose the frames 1, 31, 61, 91 for the training sets. The canny edge 

images of those frames were created, and the outer, inner, and other edges were manually isolated. 

Since we relied on the canny detector for this purpose, the human effort for the training set is 

relatively low in comparison to other edge detection training where humans need to draw the 

accurate edges pixel by pixel. Three separate images were then created from the markings, and 

from each image (Fig 3A). Then small image patches (Figure 3B) were extracted around the edge 

points and marked as either a noisy edge (0), an inner edge (1), or an outer edge (2) depending on 

whether the center of the image was a part of these boundaries or not. The corresponding 

coordinates of these patches were matched to the original image to mark where in the original 

image points of the outer boundary, inner boundary, and of neither boundary existed. The original 

image was then cropped to create the training set. We used four images out of 100 frame movies 

to extract total 20,000 images patches for the training set. These data set was randomly divided 

into 80% training and 20% validation sets. In order to prevent overfitting, we performed the data 

augmentation before the training. The training data were augmented to 10 times within the ranges 

of 30 degree rotation and 20% zoom using Keras package. 
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Once the CNNs had completed training from the training set, a separate cell image was 

applied for testing. A final image representing the outer and inner edges of the newly applied cell 

image was then produced based on the trained CNNs. Due to the errors in initial Canny edge 

detection and the CNN classification, the outcomes from the neural network tend to contain the 

disconnected edges. To address this issue, we applied the local thresholding to achieve the 

continuous edges. First, we removed the small isolated edges whose pixel size is less than 5. 

Subsequently, from each edge point, we extracted the local image patches (61X61) and we 

calculated the intensity threshold values by CNN. In order to reduce the effects of noise, we first 

applied Gaussian filter to the original images. Then, we calculated the median edge intensity of 

the filtered images, which was used to segment the images. After that, we also perform the edge 

refinement using image opening operation to remove finger-like edges caused by the bright spots. 

 

Results 
 

CellMaskOrangeTM stains plasma membrane and provide a convenient way to monitor cellular 

leading edge dynamics by a spinning disk confocal microscope. High contrast images of leading 

edges of marginal PtK1 cells in wound healing responses can be obtained (Fig. 1A). However, the 

leading edges of submarginal cells, which is driven by cryptic lamellipodia, are overlapping with 

other neighboring cells, which generate the non-uniform background. Also, bright fluorescence 

puncta make it even more challenging to identify the inner edges of submarginal cells (Fig. 1A).  

We applied conventional Canny edge detection algorithm to this image. Canny edge detection [29] 

can not only identify outer and inner cell edges, but it also generates numerous noisy edges from 

the inside of the cell.  Another common method of image segmentation is intensity thresholding. 

When Otsu algorithm [33] is applied to the cell images, it fails to segment the submarginal cells 

correctly due to the highly non-uniform background (Fig. 1C). To handle this, we also applied 
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local Otsu method [34] which calculates the local threshold values to segment the images. The 

result in Fig. 1D suggests that this local thresholding can be a feasible method to identify the inner 

edges since it correctly identifies cell edges. However, the method can be sensitive to the parameter 

of local window size. It is necessary to manually fine-tune the parameter in each frame of the time-

lapse movie. Therefore, there are inconsistent segmentation results in different frames. 

To address this, we combined deep learning technique with Canny edge detection and local 

thresholding (Fig. 2A). Deep learning can identify true edges from Canny detection results, which 

will be fed into local thresholding to produce accurate edge detection. The Convolutional Neural 

Network (CNN) was trained to classify outer, inner, and noisy edges (Fig. 3). The training curve 

(Fig. 4A) showed that the training accuracy and the validation accuracy increased and the training 

loss and validation loss decreased (Figure 4A). As demonstrated in the training curves, our CNN 

model was able to distinguish outer, inner, and other edges, which created outer/inner edge as 

expected (Fig. 4B).  

In order to reduce the amount of the training set, the data augmentation and dropout were 

included in the CNN training. To see their effects on the training performance, we compared the 

results using Dice Similarity Coefficients indicating the similarity between the edges from deep 

learning and the ground truth [35]. We chose The testing frame #16 which is in the middle of the 

training frame #1 and #31, and the testing frame #46 in the middle of the training frame #31 and 

#61. We also chose the testing frame #191 in order to see how trained edge detection efficiency 

decreased when the testing image is not close to the training images. As in Fig. 5A, the data 

augmentation was highly effective in substantially increasing the Dice Similarity Coefficients and 

helped the CNN to find some of the missing edges in the images (Fig. 5F). The drop-out also helps 
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for the generalization so that it marginally increased the Dice coefficient and allowed the CNN to 

produce visually better results (Fig. 5G).  

After we had final images of edges, we ran post-processing to remove misclassified edges. 

We measured the pixel numbers of each edge. If this number was less than 5 pixels, we treated 

them as noises and discarded them. This process was able to clean up some noises within the final 

image (Fig. 6A). Then the local thresholding was applied to the image patches around the detected 

edges based on the average intensity of the edges within the patches (Fig. 6B). This operation tends 

to produce a large segmented object with real edges. Therefore, the large segmented objects were 

selected and the boundary was refined by the image close operation to fill the small gaps within 

the masks, followed by edge extraction (Fig. 6C-D). As demonstrated, the final results were highly 

accurate edge detection of inner edges of cryptic lamellipodia (Fig. 6E-F), and the time evolution 

of the cryptic lamellipodial edge was obtained as in Fig. 6G. 

 

Conclusion 
 

 This work serves to create an efficient method of detecting cell edges from cryptic 

lamellipodia in cell images for collective cell migration studies. By assisting the conventional 

image analysis algorithms using deep learning techniques, our pipeline was shown to detect cell 

edges at a high performance. Whereas most of the deep learning application to image segmentation 

is completely independent of the conventional algorithms [24, 25], we aimed to take advantage of 

deep learning to enhance the conventional approaches. The advantage of this deep learning 

application is that it allows us to take advantage of decades of works in computational image 

analysis without replacing them. In this work, we demonstrated that deep learning is flexible 

enough to be incorporated into existing analysis workflow and substantially improve the analysis 

results.  
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 Using Canny edge detection on the original cell image, we confined training within the 

edge candidate points suggested by the Canny edge detector. This simplified the training, reduced 

the computation time, and required less data for the deep learning. Furthermore, the inner edges 

suggested by the CNN provided valuable information with the local thresholding algorithms to 

achieve highly accurate continuous edges. This work demonstrated the feasibility of deep learning 

application in complex cell segmentation or cell migration studies. 

Images analyses highly rely on the accuracy of edge detection. However, when cells 

overlap with each other, it is increasingly difficult to robustly detect cell edges due to the complex 

background patterns. Usually conventional algorithms alone are unable to reliably distinguish cell 

edges in an image where cells are overlapping. Therefore, the computational studies of cell 

biological phenomena during intercellular interaction are limited. This pipeline showed a 

beneficial application that can be made to the research on cryptic lamellipodial protrusion in 

collective cell migration. We believe that this pipeline is not limited in the cryptic lamellipodial 

segmentation. It can be also used in many time-lapse movies where cells interact with neighboring 

cells. 
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Figure 1. Results of conventional image analysis algorithms for cryptic lamellipodial edges

(A) A spinning disk confocal image of PtK1 cells stained with a plasma membrane marker,

CellMaskOrangeTM. The image contains multiple PtK1 cells, one whose edge is overlapped

by the other cells. Bar: 15mm (B) Canny edge image from the image of (A). (C-D) The

thresholded image of the image of (A) using global (C) and local (D) Otsu algorithms.
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Figure 2. A schematic of the proposed pipeline. (A) Computational pipeline for the inner

edge detection combining Canny edge detector, CNN, and local thresholding. (B)

Architecture of the CNN in this study.
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Figure 3. Preparation of the training set. (A) The Canny Image was manually

divided into three separate images of the outer edges (red), the inner edges (green),

and noisy edges (blue). (B) The examples of the training set consisted of images

patches from the raw cell image that were labeled according to their central points at

(36,36).
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Figure 4. Training Result of Convolutional Neural Network (A) The training curve

represents a training progress with three classifications (noise, outer edge, inner edge). (B) Edge

image reconstruction based on the results of the CNN classification.
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Figure 5: Roles of augmentation and dropout for testing performance. (A) Dice

similarity coefficients in different combination of algorithms in each test frame (#16, 46,

and 191) (B) Raw image. (C) Ground truth of the inner edges. (D) Canny image. (E) Canny

+ CNN. (F) Canny + CNN + Augmentation. (G) Canny + CNN + Augmentation + Dropout.
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Figure 6: Results of Local Thresholding Based on the CNN Classification. (A) The small

edges (< 5 pixels) are discarded from Fig. 5G. (B) The local thresholded image. (C) The refined

segmented images where the small segmented areas were discarded and the edge was cleaned

by mask close operation. (D) the edge images of (C). (E) Final edge image (Green) overlayed

with the raw intensity image (Red). Bar: 15mm. (F). The magnified images of (E). (G) Edge

evolution of (F). The image was rotated for better visualization. Bars: 10mm.
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