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Abstract

Background

Biomarkers are a key component of precision medicine. However, full clinical integration of
biomarkers has been met with challenges, partly attributed to analytical difficulties. It has been
shown that biomarker reproducibility is susceptible to data preprocessing approaches. Here, we
systematically evaluated machine-learning ensembles of preprocessing methods as a general
strategy to improve biomarker performance for prediction of survival from early breast cancer.

Results

We risk stratified breast cancer patients into either low-risk or high-risk groups based on four
published hypoxia signatures (Buffa, Winter, Hu, and Sorensen), using 24 different
preprocessing approaches for microarray normalization. The 24 binary risk profiles determined
for each hypoxia signature were combined using a random forest to evaluate the efficacy of a
preprocessing ensemble classifier. We demonstrate that the best way of merging preprocessing
methods varies from signature to signature, and that there is likely no ‘best’ preprocessing
pipeline that is universal across datasets, highlighting the need to evaluate ensembles of
preprocessing algorithms. Further, we developed novel signatures for each preprocessing
method and the risk classifications from each were incorporated in a meta-random forest
model. Interestingly, the classification of these biomarkers and its ensemble show striking
consistency, demonstrating that similar intrinsic biological information are being faithfully
represented. As such, these classification patterns further confirm that there is a subset of
patients whose prognosis is consistently challenging to predict.

Conclusions

Performance of different prognostic signatures varies with pre-processing method. A simple
classifier by unanimous voting of classifications is a reliable way of improving on single
preprocessing methods. Future signatures will likely require integration of intrinsic and extrinsic
clinico-pathological variables to better predict disease-related outcomes.

Keywords: random forest, machine-learning, ensemble methods, classification, microarray,
biomarker, computational biology, breast cancer, hypoxia signature

Abbreviations: AUC, area under the receiver operating characteristic curve; GCRMA, GeneChip
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Introduction

Cancer is fundamentally a disease driven by genetic alterations, with the stepwise accumulation
of mutational hits in oncogenes and tumor suppressors [1]. However, cancer is not one disease
but many, with significant variability between tumor subtypes and within individual tumours in
both the rate of mutation and the specific genes that are mutated [2]. Consequently, the
molecular landscape of tumours can vary wildly, leading to differences in progression and
overall prognosis. These differences are described as genetic heterogeneity, while intra-tumor
heterogeneity refers to heterogeneity within a tumor [3-6].

Currently, treatment decisions for individual patients are largely based on tumor subtype,
histology and pathology; clinico-pathological correlation; and tumor size, nodal and metastatic
status (TNM stage), along with a few molecular characteristics. This approach does not account
for the wide spectrum of genetic burden experienced by the individual patients, leading to
divergent responses to therapy that are currently unpredictable. Accordingly, biomarkers play a
key role in the realization of precision oncology to determine the treatment that generates
optimal response with minimal toxicity [7]. Biomarkers could be used at all stages of disease
management, including prognosis (determining an individual patient’s likely course of disease-
related outcomes such as recurrence and survival), or drug-sensitivity prediction [8, 9]. An ideal
biomarker may predict multiple of these end-points simultaneously, and current research
focuses on creating panels of biomarkers for each disease.

To this end, numerous groups have sought to develop transcriptomic biomarkers using
microarray and RNA-sequencing approaches [7]. These efforts have resulted in a wide spectrum
of signatures with prognostic potential, with the hope of fulfilling the gap between the
underlying genomic heterogeneity and clinical oncology. However, few of these signatures have
been successfully translated into routine clinical practice [10]. There are several reasons for this
high failure rate of biomarkers [11]. First, there is little overlap in the genes incorporated across
biomarkers, leading to criticism that variability in the experimental and computational
techniques introduce artificial noise [12, 13]. Second, signatures have been derived from a
variety of sources including cell lines, transgenic mouse models, combination of biological
pathways known to be perturbed in tumor subtypes, and profiling of tumor specimens. Third,
small sample size with low statistical power limits the generalizability of the signatures [14].
Fourth, biases often exist between the training and testing populations, yielding a signature
that reflects interdependencies between known clinical variables [15]. Fifth, the lack of
guidelines on strenuous evaluation of biomarker performance in independent validation
datasets further accentuates false-positive rates and confuses the literature [14]. Finally, lack of
standardized preprocessing methods challenge the consistency of the data obtained, which is
often re-used in secondary studies.

Several groups have demonstrated that biomarker reproducibility is highly sensitive to the
choice of preprocessing algorithm [13, 16, 17]. For example, we demonstrated that applying 24
preprocessing techniques for mRNA abundance normalization and predicting two established
signatures led to only ~33% of patients having consistent predictions in a cohort of 442 non-
small cell lung cancer (NSCLC) patients [18]. Surprisingly, those patients with unanimous
predictions across all preprocessing methods had more robust classifications than those from


https://doi.org/10.1101/181289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181289; this version posted August 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

any individual preprocessing algorithm alone. These findings were corroborated when we
evaluated pipeline concordance in a cohort of 1,564 early breast cancers using hypoxia
signatures. The ensemble approach of merging multiple preprocessing methods improved the
performance of hypoxia signatures, outperforming any individual method [19].

Hypoxia is the result of cancer altering cellular metabolism to focus on anaerobic glycolysis
along with the tortuous nature of their blood vessels [19]. Hypoxic regions of the tumor have
been implicated in promoting genomic heterogeneity, genomic instability and subclonal
expansion of a more aggressive tumor cells [20, 21]. The selective pressures experienced by
tumor cells in hypoxic conditions consequentially results in altered gene expression by
epigenetics and transcription factor activation for angiogenesis, and gaining of metastatic
features. Hypoxia is associated with poor prognosis and treatment failure, prompting the
development of several biomarkers to identify such patients [21, 22].

It is unclear why this ensemble-of-preprocessing methods approach works so effectively. One
hypothesis is that each individual preprocessing removes a different aspect of underlying noise
in the microarray dataset, and that the merged ensemble of noise reduction from various
perspectives allows a more accurate estimate of the true biomarker signal. The vast majority of
current implementations involve simple voting, which may significantly underestimate the
advantages of ensembles. Further, unanimous voting classification method leaves a large
fraction (36%-80% depending on the signature) of patients unclassified. To try to bring such
approaches to greater clinical utility, we set out to systematically evaluate whether ensembles
of preprocessing methods may improve classification in a greater proportion of patients. We
replaced the simple voting scheme with supervised machine-learning and evaluated a broad
range of signatures.
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Methods

Datasets

To systematically evaluate the impact of preprocessing ensemble classifier on risk stratification,
two separate sets primary breast cancer mRNA abundance were gathered. First, eight datasets
profiled on the Affymetrix Human Genome U133A (HG-U133A) microarray platform were
obtained and integrated, comprising a total of 1,564 early breast cancer patients [23-30].
Second, two datasets profiled on the Affymetrix Human Genome Plus 2.0 (HG-U133 Plus 2.0)
GeneChip Array were obtained for a total of 579 early breast cancer patients [31, 32]. All
samples incorporated in the analysis were surgical specimens taken prior to any treatment.

Preprocessing pipelines

To evaluate the performance of preprocessing ensemble classifiers learnt from various
preprocessing pipelines, data from the two microarray platform datasets specified above were
preprocessed in 24 different ways. There were three aspects that were considered to yield the
unique 24 preprocessing methods: six preprocessing algorithms, two gene annotation methods,
and two dataset handling procedures. The combinations of these that precipitate the 24
preprocessing pipelines were carried out as previously described [19]. Briefly, the six
preprocessing algorithms include 4 without log;-transformation [Robust Multi-array Average
(RMA) [33], MicroArray Suite 5.0 (MAS5) [34], Model-base Expression Index (MBEI) [35],
GeneChip Robust Multi-array Average (GCRMA) [36]], and 2 log,-transform versions of MAS5
and MBEI. These algorithms were all available in the R statistical environment (R packages: affy
v1.36.0, gcrma v2.30.0). Additional file 1: Table S1 provides a brief summary of each of these
algorithms. The two dataset handling approaches include either independent or merged
preprocessing. The two ProbeSet annotations used were either default Affymetrix gene-
annotation (R packages: hgul33aprobe v2.10.0, hgul33acdf v2.10.0, hgul33a.db v2.8.0,
hgul33plus2probe v2.6.0, hgul33plus2cdf v2.6.0, hgul33plus2.db v2.8.0) or an alternative
Entrez Gene-based updated annotation (R pack- ages: hgul33ahsentrezgprobe v15.1.0,
hgul33ahsentrezgcdf v15.0.0, hgul33plus2hsentrezgprobe v15.1.0, hgul33- plus2hsentrezgcdf
v15.1.0). Additional file 2: Table S2 provides a summary of each of these preprocessing
pipelines.

Patient risk classification: hypoxia signatures

To assess the influence of preprocessing variation on risk stratification of patients, we used four
published hypoxia gene signatures: Buffa metagene [37], Winter metagene [38], Hu signature
[39], and Sorensen gene set [40]. These signatures were chosen as they exhibited the best
performance in predicting patient outcome in our previous work. Briefly, each gene signature
was used to stratify patients into either low-risk or high-risk. Following pre-processing of data
using pipelines, the multi-gene signature score was calculated for each patient using all genes
on the signature’s gene list. First, for each gene of the signature, patients were median
dichotomized (0 or 1) based on the signal-intensity of the gene compared to the expression
level of that gene across all patients. Next, the multi-gene signature score for each patient was
calculated as the sum of all gene scores. Finally, the scores were used to median dichotomize
patients into high and low risk groups for each signature.
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For preprocessing pipelines with independent dataset preprocessing, stratification was
conducted independently. In preprocessing pipelines with merged dataset preprocessing,
stratification was conducted simultaneously. In summary, for each patient, 24 risk
classifications (high or low risk) was derived from 24 different pre-processing pipelines based
on gene signature expression.

Brief descriptions of the original studies deriving these signatures are provided in Additional
file 3: Table S3. Of note, genes contained in these signatures are genes that were found to be
upregulated in hypoxic tumor environments, resulting in worse prognosis.

Ensemble classifier: risk classification votes

The primary endpoint was to delineate whether an ensemble of preprocessing pipeline
classifiers using hypoxia signatures may improve the prediction of prognosis in early breast
cancer patients beyond that achieved by single pipeline classifiers. Since cause-specific
mortality data is lacking in our study, individual patient survival outcome was defined as either
0 or 1 to represent dead or alive status at 5-years, respectively (events occurred after 5-years
were censored). Five-year survival was chosen as it is an important survival time-point for
breast cancer survivors due to the increasing causes of death unrelated to breast cancer in
subsequent survivorship years. At the end of 5 years, 1193 were censored while 371 cancer-
related events occurred for patients profiled on the HG-U133A platform. For patients profiled
on the HG-U133 Plus 2.0 platform, 352 were censored while 227 events occurred.

The 24 dichotomized risk profiles determined from each hypoxia signature were combined to
develop a preprocessing ensemble classifier using random forest (randomForest package
v4.6.10) to stratify patients within the HG-U133A and HG-U133A Plus 2.0 datasets, respectively,
as good or poor prognosis. The HG-U133A and HG-U133A Plus 2.0 datasets were independently
separated into training and testing sets by a sample size ratio of 1:1. Random sampling was
employed to determine the training and testing set, maintaining a balanced ratio between
mortality and survival events in subsequent datasets. Random forest classifier was trained on
the training set of HG-U133A and HG-U133A Plus 2.0, respectively, to prognosticate survival.
Parameter was set at the upper limit of the total number of events in the training set to
maintain equal sampling from patients who survived and those who experienced an event at 5
years. Tuning of random forest classifier parameters mtry (values 1, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24) and nee (values 500, 1000, 2000, 5000) was done using grid. The best tuning
parameters for the final classifier were selected based on the performance measure accuracy,
as specified below.

The test dataset was evaluated using each of the tuned models to produce 0 or 1 to predict
whether each patient died by 5 years. To calculate performance, patients alive at 5 years were
considered to be true negatives (TNs) if the classifier correctly assigned them to good prognosis
group, whereas they were considered as false negatives (FNs) if they died within 5 years.
Similarly, patients who died within 5 years were considered to be true positives (TPs) if the
classifier correctly assigned them to poor prognosis group, whereas they were considered as
false positives (FPs) if they were alive at 5 years. Subsequently, sensitivity, specificity, and
accuracy were calculated accordingly. The area under the receiver operator curve (AUC) was
calculated based on the receiver operator characteristic (ROC) analysis using the random forest
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classification probability (pROC v1.8). The final tuning parameters selected were those that
yielded the highest accuracy.

Ensemble classifier: engineered variables

Following random forest classification using only the risk classification votes from different
pipeline variants, classifiers were constructed using summary statistics as additional features.
The engineered summary variables capture the total number of poor prognosis votes based on
the variable aspects of preprocessing pipelines as follows: total number votes overall, total
number of votes for pipelines using separate preprocessing, total number of votes for pipelines
using merged preprocessing, total number of votes for RMA pipelines, total number of votes for
GCRMA pipelines, total number of votes for MBEI pipelines, total number of votes for MAS5
pipelines, total number of votes for log, MBEI pipelines, total number of votes for log, MAS5
pipelines, total number of votes for RMA and MASS5 pipelines, total number of votes for
pipelines using default annotation, and total number of votes for pipelines using alternative
annotation. The derivation of engineered variables is summarized in Additional file Table S4.

Random forest models were built upon the following feature combinations: ensemble of
preprocessing pipeline variants and the engineered variables, ensemble of engineered
variables, and ensemble of only feature variables selected by the Boruta algorithm (Boruta
v4.0.0). Random forest models were tuned based on performance similar to above. For the HG-
U133A dataset, models were constructed by incorporating all patients in the cohort or only the
subset of patients with unanimous agreement across the preprocessing pipelines. For the HG-
U133A Plus 2.0 dataset, given the smaller sample size, models were constructed by
incorporating all patients in the cohort to maintain sufficient statistical power.

Classifier evaluation

The prognostic performance of the tuned classifiers was evaluated on the test set Kaplan-Meier
estimates with the log-rank test and unadjusted Cox proportional hazard ratio model used to
compare between the two groups (survival v2.38.0). In order to assess the performance of
random forest-based ensemble classifiers, we compared the random forest classifier hazard
ratio (HR), the HR in the subset of patients with unanimous agreement across 24 preprocessing
pipelines, as well as the HR of individual preprocessing pipelines. Similarly, binary classification
measure accuracy was compared. To compare between the random forest classifiers derived
for each hypoxia signature, we assessed prognostic performance using the AUC. The ROC
analysis was conducted for each signature using the random forest classification probability
(pPROCV1.8).

Statistical comparison analysis

We compared the HR performance in the array of random forest classifier models for each
hypoxia signature. The classifier HRs were split based on the features used to build the
classifier: preprocessing pipelines, engineered variables, and feature variable selection. A
paired t-test was used to assess statistical differences in the log;-transformed Hazard Ratios.

New signature creation using preprocessing ensembles

Using the HG-U133A platform datasets, we sought to elucidate the ability of preprocessing
ensemble classifiers to improve upon performance of novel signatures. To this end, we
generated a 100-top-ranked-gene novel signature for individual preprocessing pipelines. This
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was done for preprocessing pipelines where all HG-U133A datasets were preprocessed
together, yielding 12 individual signatures. To ascertain the signatures, each preprocessing
normalization method was used to median-dichotomize the patient cohort by low or high
abundance for each gene. The unadjusted Cox proportional hazard model was used to
determine the univariate performance of individual genes to prognostic outcome. Statistical
significance was assessed using the Wald test and p-values were false-discovery rate (FDR)
adjusted to correct for multiple-testing. The 100 top-ranked genes with adjusted p-values <
0.05 were selected to constitute the signature. The individual signatures from the 12
preprocessing pipelines were validated using random forest classifiers using 10-fold cross-
validation, where the random forest classifiers were trained on a training set and internally
validated on a separate test set. The 12 good versus poor prognosis classifications were
subsequently combined in a meta-random forest to evaluate its ability to predict prognosis
compared to individual signature classifiers. The random forest model parameters were tuned
as described above.

Program usage

All statistical analyses and plotting were performed in R statistical environment (v3.2.1). The
following packages were used for statistical analyses: randomForest v4.6.10, Boruta v4.0.0,
survival v2.38.0, and pROC v1.8. All plots were generated in R using custom scripts for lattice
(v0.2.31) and latticeExtra (v0.6.26).
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Results

Study design: ensembles of preprocessing pipelines

Our overall approach to evaluate non-linear preprocessing ensembles is outlined in Figure 1.
Our goal was to determine how multiple pre-processing methods might best be combined to
improve biomarkers predictive of patient prognosis. The datasets used were separated based
on the microarray platform — HG-U133A and HG-U133 Plus 2.0 — because of previously reported
differences in their noise characteristics [19]. The union of all HG-U133A datasets contains
1,564 patients while that of the HG-U133 Plus 2.0 datasets contains 579. Each individual
dataset was preprocessed using 24 pipeline variants, and then each hypoxia signature was
scored for each pre-processing variant. This resulted in 24 predictions for each combination of
patient and signature. Additionally, we derived several engineered variables from counting the
total number of votes based on various preprocessing pipeline characteristics (Additional file 4:
Table S4). Random forest classifiers were constructed to predict prognosis for individual
patients using combinations of the ensemble of 24 preprocessing pipeline predictions and the
engineered features. We evaluated the performance of these classifiers using Kaplan-Meier
analysis, Cox proportional hazard model, and the binary classification accuracy.

Different preprocessing ensembles perform best for different biomarkers

We compared the performance of the individual preprocessing pipelines with to those of
ensemble approaches. This process was conducted for each of the four hypoxia signatures and
both microarray platforms. Additional file 5 and 6: Table S5 (HG-U133A) and S6 (HG-U133 Plus
2.0) comprise the hazard ratios (HRs) and 95% confidence intervals (Cls) determined for each of
the 24 preprocessing pipelines, the random forest classifiers evaluated, and the simple
preprocessing unanimous classifier, for each signature. Note that in this design each classifier is
evaluated on a fully-independent validation cohort, to mitigate over-fitting.

Figure 2A shows a representative forest plot of the prognostic ability of various classifiers
measured in HRs for the Winter metagene signature, using the HG-133A microarray platform.
The best prediction of prognosis was observed in the subset of patients with unanimous
agreement across the pipelines [HR 3.48, 95% confidence interval (Cl) 2.44-4.95, p = 4.99 x 10
12, However, the unanimous classification method only makes predictions for 41% (642) of
patients while the remainder are unclassified. With incorporation of all patients in the HG-
U133A dataset, the random forest classifier using engineered variables derived from votes of
preprocessing pipeline features appeared to be a better predictor of prognosis than any
individual pipelines (HR 2.39, 95% Cl 1.94-2.93, p = 9.89 x 10'Y7). Similarly, the prognostic ability
of two other ensemble random forest classifiers (preprocessing pipeline in combination with
engineered variables, and preprocessing pipelines ensemble) also performed better than any
individual pipelines (HR 2.25, 95% Cl 1.83-2.76, p = 9.59 x 10'*> and HR 2.24, 95% CI| 1.82-2.75, p
=1.41x 1014).

Surprisingly, though, this improved performance of random forest classifier of pre-processing
methods was not a general feature of signatures. Rather, the performance of the ensemble
classifier in comparison to individual pipeline variants was highly variable for the Buffa
(Additional file 8: Figure S1) Hu (Additional file 9: Figure S2) and Sorensen signatures
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(Additional file 10: Figure S3). Further, the combination of features resulting in the best
classifier was not consistent across the four signatures: engineered variables were important
for the Buffa and Winter signatures (Buffa: HR 2.15, 95% Cl 1.75-2.64, p = 4.03 x 107'3; Winter:
HR 2.39, 95% Cl 1.94-2.93, p = 9.89x 10'/), but feature selection using the Boruta algorithm
yielded the highest performing classifier for Hu (HR 1.63, 95% Cl 1.32-2.00, p = 3.87 x 10®) and
Sorensen signatures (HR 2.28, 95% Cl 1.87-2.78, p = 2.51 x 10°%).

These findings of strong divergence in the best way to merge pre-processing algorithms held
when we considered other metrics of classification accuracy besides HRs. For example,
classification accuracy and evaluation of the area under the receiver operating characteristics
curve (AUC) again show the benefits of specific pre-processing ensembles for the Winter
signature (Figure 2B) matching those in the HR analysis, and analogously for the Buffa
(Additional file 8: Figure S1), Hu (Additional file 9: Figure S2), and Sorensen signatures
(Additional file 10: Figures S3).

These trends were also independent of the specific microarray platform used: results were
comparable in patients analyzed using the HG-U133 Plus 2.0 microarray platform (Additional
file 11-14: Figure S4-S7). The preprocessing unanimous classifier based on simple risk voting
resulted in superior prognostication compared to individual preprocessing variants for all
signatures except for Sorensen. Furthermore, the random forest classifiers evaluated did not
improve upon unanimous classification, except for the Sorensen signature. The best performing
random forest classifier was also inconsistent and variable across the biomarkers evaluated.
The Kaplan-Meier plots for the HG-U133A dataset are shown in Additional file 15-18: Figure S8-
S11. The Kaplan-Meier plots for the HG-U133 Plus 2.0 dataset are shown in Additional file 19-
22: Figure S12-S15.

Comparison of patient prognosis prediction between signature classifiers

Taken together, our results show that it is possible to improve upon individual pre-processing
pipelines using ensemble techniques, but that the best way to assemble these ensembles varies
with the biomarker signature, and not the microarray platform. Figure 3A compares the best
ensemble of pre-processing methods to the best individual preprocessing method for each
signature and microarray platform. Consistent with our previous results, the random forest
classifier outperformed the preprocessing method for Winter and Sorensen signatures, but not
for Buffa and Hu signatures. The ROC curve and corresponding AUC obtained for the best
ensemble of preprocessing strategies is shown in Figure 3B and Figure 3C. The Buffa, Winter,
and Sorensen signature classifiers demonstrated similar AUCs for mortality risk stratification
between the two microarray platforms. Conversely, the Hu signature classifier showed better
risk stratification using the HG-U133 Plus 2.0 platform compared to the HG-U133A platform.

To determine if there are general properties of an ensemble of preprocessing methods that
contribute to its performance, we compared each classifier feature to the ultimate
performance of the classifier. This was done separately for both microarray platforms. For the
HG-U133A platform, patients where all preprocessing methods gave a consistent results
(unanimous preprocessing agreement) were statistically easier to classify than those where
there was divergence amongst the pre-processing methods. These patients are thus more
difficult to prognose, even though ensembles do improve upon the best individual pre-
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processing method. Similarly for the HG-U133 Plus 2.0 platform, patients with unanimous
preprocessing agreement were statistically significantly or trend significantly easier to classify
than those with divergence across classifiers. This trend was consistent across all four
signatures evaluated, and across both platforms, suggesting that there is a patient sub-group
that is fundamentally easier to classify, and that on the agreement of pre-processing methods
on this sub-group can give increased confidence to the accuracy of molecular biomarkers.

Generalization to Non-Hypoxia Signatures

To assess the generality of these observations, we trained independent prognostic signatures
on each pre-processing method (Figure 4). Thus the same training dataset was pre-processed in
12 distinct ways, and then a learner was applied to each of these, leading to 12 distinct
prognostic biomarkers. We focused on the HG-U133A data for this experiment, given its larger
sample-size. We selected a standard straight-forward machine-learning approach, involving
feature-selection with a univariate statistical text (Cox proportional hazards modeling) and
modeling using the non-metric random forest approach. We then evaluated whether these 12
separate classifiers gave similar predictions for each individual patient, and attempted to create
an ensemble of them. Finally the twelve separate and one ensemble classifiers were validated
on the independent validation dataset using the AUC and Cox proportional hazards modeling.

The signatures trained with each of the 12 preprocessing pipelines had remarkably similar
accuracy and HRs (Figure 5A), and a subset of genes overlapped across multiple signatures
(Additional file 7: Table S7). An ensemble of these 12 classifiers resulted in marginally, but not
statistically significant, improved predictions, suggesting that the signatures are not providing
complementary information. To verify this, we compared the agreement of the per-patient
predictions across all signatures. Figure 5B illustrates the predictions of individual signature
classifiers across all patients stratified by the true survival outcome. The signature showed
highly concordant classification, with patients with mortality events were similarly classified as
having poor prognosis across the signatures and patients with continued survival were similarly
classified as having good prognosis across the signatures. Similarly, inaccurate predictions of
survival and mortality occurred in a comparable subset of patients across the signatures. Taken
together, it appears that all signatures predict either good or poor survival for a similar cohort
of patients, and that there remains a group of patients whose prognosis is difficult to predict
and that leveraging orthogonal information from multiple pre-processing schemes will not help
in making more accurate predictions for these.


https://doi.org/10.1101/181289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181289; this version posted August 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Discussion

Some groups have suggested that different preprocessing methods have minor effect on
predictive signatures [41, 42]. Other work has suggested that this is incorrect, and that different
preprocessing algorithms results in substantial differences in outcomes [18, 19]. Indeed we
previously showed that ensemble classification combining preprocessing techniques using a
unanimous voting method could identify high-confidence predictions, thereby giving increased
confidence to risk stratification tools. We sought here to extend this approach and to discover if
the predictions from multiple pre-processing algorithms might be combined into more accurate
ensemble calls.

Our results demonstrate that there is indeed value to leveraging multiple pre-processing
techniques. However, they yield the surprising result that the optimal way to do so is
dependent on the characteristics of an individual signature. That is, one must consider all pre-
processing methodologies for each new biomarker to determine if and to what extent
combining them will improve predictions: there is no apparent universal approach to optimize
this problem, even holding the dataset constant. Further, in ensembles appear to be limited in
the extent to which they can improve signatures — there remains a subset of hard-to-classify
patients for whom varying characteristics of the pre-processing do not help in classification.
Large inter-individual differences exist in a plethora of extrinsic factors that play an equally
imperative role in driving survival outcomes. These include environmental exposure factors,
socioeconomic factors, patient compliance concerns, patient preferences, and social habits
[43]. Treatment factors include success of surgery such as extent of margins, factors involved in
the delivery of adjuvant treatments, as well as variability in the decision-making process
between the patient and the treating physician. Currently, much of this information is not
considered in the evaluation of intrinsic biological pattern on prognosis. Optimal prediction of
outcomes will likely necessitate the integration of both intrinsic and extrinsic information in the
biomarker development process. These findings are thus highly consistent with that
demonstrated by Tofigh et al., whereby the prognosis for a subset of breast cancer patients was
intrinsically more difficult to predict [44].

Our results are not without limitations. First, the datasets included in the analyses herein
represent only therapy-naive early breast cancer tumors. It is well known that cancer is a
disease of many, given the inter-tumor and intra-tumor heterogeneity observed. This precludes
generalizations of these results to other tumor types. Second, we used random forests to derive
classifiers, but potentially other machine learning algorithms may vyield different results. Third,
our study focused on four previously published hypoxia signatures and it would be difficult to
extrapolate our findings to other microarray-based signatures. Studies are needed to elucidate
the findings herein for other clinically promising signatures. Lastly, we only used microarray
datasets to assess the utility of random forest classifiers for risk stratification. It may be that
preprocessing ensemble classifications will be of greater benefit in fields where existing
preprocessing methods are less robust [45].

Taken together, our data further highlights the need to incorporate extrinsic factors not
accounted for by intrinsic biological signals, in the pursuit of integrative signatures that will
allow for the realization of precision oncology.


https://doi.org/10.1101/181289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181289; this version posted August 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Declarations

Acknowledgements

The authors thank all members of the Boutros lab for helpful comments and suggestions. This
study makes use of data generated by the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC). Funding for the project was provided by Cancer Research UK and the
British Columbia Cancer Agency Branch.

Funding

This study was conducted with the support of the Ontario Institute for Cancer Research to PCB
through funding provided by the Government of Ontario. PCB was supported by a CIHR New
Investigator Award and a Terry Fox Research Institute New Investigator Award. This work was
supported by the Canadian Institutes of Health Research (CIHR), CIHR Canadian Graduate
Scholarship - Michael Smith Foreign Study Supplements, the Medical Biophysics Excellence
University of Toronto Fund Scholarship and the University of Toronto Geoff Lockwood and
Kevin Graham Medical Biophysics Graduate Scholarship to NSF. The above funders had no
involvement in the study design, in the collection, analysis and interpretation of data, in the
writing of the document or in the decision to submit the work for publication.

Availability of data and material
All METABRIC data is publicly available [46].

Competing interests
The authors declare no competing interests.

Authors' contributions
Project conception: IYG, PCB. Statistical and bioinformatics analyses: IYG, NSF, PCB. Composed
the first draft of the manuscript: IYG. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.


https://doi.org/10.1101/181289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181289; this version posted August 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure Legends

Figure 1 | Summary of the study design for ensemble classification for evaluation of a
biomarker. Microarray data are obtained from specific platforms and preprocessing using 24
different pipelines to normalize the mRNA gene expression. Risk groups are then assigned
based on the biomarker of interest, resulting in a collection of either good or poor prognosis
stratification based on the expression obtained from various preprocessing methods.
Stratification into either good or poor prognosis represents a vote for that group, resulting in a
score between 0 and 24. The ensemble of classifications is combined as features for random
forest based machine learning. Random forest classifiers learning on a selected training set and
evaluated on the test set. The robustness of the classifier derived for the biomarker of interest
is evaluated with Cox proportional hazard ratio modeling and Kaplan-Meier survival estimates.

Figure 2 | Representative hazard ratio forest plot and accuracy for Winter metagene signature
using the HG-U133A microarray platform. (A) Forest plot of log, hazard ratios with 95%
confidence intervals obtained for each of the 24 preprocessing (PP) methods, the random
forest classifiers evaluated, and the simple unanimous vote classifier (total number of votes for
poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted
line represents a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval
represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy
obtained for each of the 24 preprocessing methods, the random forest classifiers evaluated,
and the simple unanimous vote classifier. The bars are ordered by preprocessing pipelines, the
unanimous classifier, and the best performing random forest classifier, from left to right.

Figure 3 | Summary hazard ratio forest plot and receiver operator curves. (A) Forest plot of log;
hazard ratios with 95% confidence intervals obtained for the best performing preprocessing
method, best performing random forest classifier, and the unanimous vote classifier. Plot is
ordered by decreasing hazard ratio within each signature and microarray platform evaluated.
Colors correspond to the specific signature evaluated. (B and C) Receiver operator curves and
area under the curve (AUC) obtained from the best performing random forest classifier for each
biomarker, as determined by the highest hazard ratio. HG-U133A ROC curves shown in A, and
HG-U133 Plus 2.0 ROC curves shown in B.

Figure 4 | Summary of the study design for development of novel signature classifiers for each
preprocessing pipeline and evaluating its performance in a meta-ensemble classifier.
Microarray data are obtained from specific platforms and preprocessing using 24 different
pipelines to normalize the mRNA gene expression. The gene expression is median dichotomized
into two expression groups. Novel signatures are determined as the top 100 genes that reached
significant after adjustment for false discovery rate, for each preprocessing pipeline (total 12).
The training of a random forest classifier based on the individual novel signatures result in
individual risk classifications of survival prognosis. These risk stratification are subsequently
combined in a meta-random forest classifier to evaluate the robustness of the signature with
Cox proportional hazard ratio modeling and Kaplan-Meier survival estimates.

Figure 5 | Hazard ratio forest plots of classifier performance and heatmap of individual classifier
predictions of survival prognosis. (A) Forest plot with 95% confidence intervals of novel
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signature classifiers. The forest plot is ordered as decreasing hazard ratio. The dotted line
represents a hazard ratio of 1. (B) Heatmap of classifier predictions of 5-year survival status.
The classifiers (by row) from signatures are ordered by decreasing performance of patient
outcome prediction. Patients (by column) are ordered by the degree of agreement of
predictions across the array of novel signatures identified from 12 different preprocessing
variant pipelines. The true outcome of patients is shown as either 5-year survival status or
overall survival status up to the end of study follow-up. Blue represents true positives with
correct prediction of poor prognosis. Purple represents true negatives with correct prediction
of good prognosis. The white part of the heatmap represents incorrect predictions of good or
poor prognosis.
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Additional Files

Additional file 1: Table S1. Overview of preprocessing algorithms.

Additional file 2: Table S2 Summary of 24 preprocessing methods.

Additional file 3: Table S3 Overview of hypoxia prognostic signatures.

Additional file 4: Table S4 Summary of votes used to calculate engineered variables.

Additional file 5: Table S5 Hazard ratios and 95% confidence intervals obtained for each of the
24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous
vote classifier, per signature (HG-U133A microarray platform).

Additional file 6: Table S6 Hazard ratios and 95% confidence intervals obtained for each of the
24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous
vote classifier, per signature (HG-U133 Plus 2.0 microarray platform).

Additional file 7: Table S7 Frequency of top ranked genes selected from each of the
preprocessing pipelines by univariate Cox proportional hazard models.

Additional file 8: Figure S1 Hazard ratio forest plot and accuracy for Buffa metagene signature
using the HG-U133A microarray platform. (A) Forest plot of log, hazard ratios with 95%
confidence intervals obtained for each of the 24 preprocessing (PP) methods, the random
forest classifiers evaluated, and the simple unanimous vote classifier (total number of votes for
poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted
line represents a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval
represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy
obtained for each of the 24 preprocessing methods, the random forest classifiers evaluated,
and the simple unanimous vote classifier. The bars are ordered by preprocessing pipelines, the
unanimous classifier, and the best performing random forest classifier, from left to right.

Additional file 9: Figure S2 Hazard ratio forest plot and accuracy for Hu signature using the HG-
U133A microarray platform. (A) Forest plot of log, hazard ratios with 95% confidence intervals
obtained for each of the 24 preprocessing (PP) methods, the random forest classifiers
evaluated, and the simple unanimous vote classifier (total number of votes for poor prognosis
either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted line represents
a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval represents the hazard
ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy obtained for each of the
24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous
vote classifier. The bars are ordered by preprocessing pipelines, the unanimous classifier, and
the best performing random forest classifier, from left to right.

Additional file 10: Figure S3 Hazard ratio forest plot and accuracy for Sorensen signature using
the HG-U133A microarray platform. (A) Forest plot of log, hazard ratios with 95% confidence
intervals obtained for each of the 24 preprocessing (PP) methods, the random forest classifiers
evaluated, and the simple unanimous vote classifier (total number of votes for poor prognosis
either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted line represents
a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval represents the hazard
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ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy obtained for each of the
24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous
vote classifier. The bars are ordered by preprocessing pipelines, the unanimous classifier, and
the best performing random forest classifier, from left to right.

Additional file 11: Figure S4 Hazard ratio forest plot and accuracy for Buffa metagene signature
using the HG-U133 Plus 2.0 microarray platform. (A) Forest plot of log, hazard ratios with 95%
confidence intervals obtained for each of the 24 preprocessing (PP) methods, the random
forest classifiers evaluated, and the simple unanimous vote classifier (total number of votes for
poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted
line represents a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval
represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy
obtained for each of the 24 preprocessing methods, the random forest classifiers evaluated,
and the simple unanimous vote classifier. The bars are ordered by preprocessing pipelines, the
unanimous classifier, and the best performing random forest classifier, from left to right.

Additional file 12: Figure S5 Hazard ratio forest plot and accuracy for Winter metagene
signature using the HG-U133 Plus 2.0 microarray platform. (A) Forest plot of log, hazard ratios
with 95% confidence intervals obtained for each of the 24 preprocessing (PP) methods, the
random forest classifiers evaluated, and the simple unanimous vote classifier (total number of
votes for poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio.
The dotted line represents a hazard ratio of 1. The blue hazard ratio with its 95% confidence
interval represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of
accuracy obtained for each of the 24 preprocessing methods, the random forest classifiers
evaluated, and the simple unanimous vote classifier. The bars are ordered by preprocessing
pipelines, the unanimous classifier, and the best performing random forest classifier, from left
to right.

Additional file 13: Figure S6 Hazard ratio forest plot and accuracy for Hu signature using the
HG-U133 Plus 2.0 microarray platform. (A) Forest plot of log, hazard ratios with 95% confidence
intervals obtained for each of the 24 preprocessing (PP) methods, the random forest classifiers
evaluated, and the simple unanimous vote classifier (total number of votes for poor prognosis
either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted line represents
a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval represents the hazard
ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy obtained for each of the
24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous
vote classifier. The bars are ordered by preprocessing pipelines, the unanimous classifier, and
the best performing random forest classifier, from left to right.

Additional file 14: Figure S7 Hazard ratio forest plot and accuracy for Sorensen signature using
the HG-U133 Plus 2.0 microarray platform. (A) Forest plot of log, hazard ratios with 95%
confidence intervals obtained for each of the 24 preprocessing (PP) methods, the random
forest classifiers evaluated, and the simple unanimous vote classifier (total number of votes for
poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted
line represents a hazard ratio of 1. The blue hazard ratio with its 95% confidence interval
represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy
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obtained for each of the 24 preprocessing methods, the random forest classifiers evaluated,
and the simple unanimous vote classifier. The bars are ordered by preprocessing pipelines, the
unanimous classifier, and the best performing random forest classifier, from left to right.

Additional file 15: Figure S8 Kaplan-Meier survival curves evaluating the prognostic ability of
the Buffa metagene signature using HG-U133A microarray platform. (A) Prognostic ability of
signature in patients with unanimous ensemble agreement across preprocessing pipelines. (B)
Prognostic ability of signature classification using the best performing preprocessing pipeline.
(C) Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.

Additional file 16: Figure S9 Kaplan-Meier survival curves evaluating the prognostic ability of
the Winter metagene signature using HG-U133A microarray platform. (A) Prognostic ability of
signature in patients with unanimous ensemble agreement across preprocessing pipelines. (B)
Prognostic ability of signature classification using the best performing preprocessing pipeline.
(C) Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.

Additional file 17: Figure S10 Kaplan-Meier survival curves evaluating the prognostic ability of
the Hu signature using HG-U133A microarray platform. (A) Prognostic ability of signature in
patients with unanimous ensemble agreement across preprocessing pipelines. (B) Prognostic
ability of signature classification using the best performing preprocessing pipeline. (C)
Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.

Additional file 18: Figure S11 Kaplan-Meier survival curves evaluating the prognostic ability of
the Sorensen signature using HG-U133A microarray platform. (A) Prognostic ability of signature
in patients with unanimous ensemble agreement across preprocessing pipelines. (B) Prognostic
ability of signature classification using the best performing preprocessing pipeline. (C)
Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.

Additional file 19: Figure S12 Kaplan-Meier survival curves evaluating the prognostic ability of
the Buffa metagene signature using HG-U133 Plus 2.0 microarray platform. (A) Prognostic
ability of signature in patients with unanimous ensemble agreement across preprocessing
pipelines. (B) Prognostic ability of signature classification using the best performing
preprocessing pipeline. (C) Prognostic ability of signature classification using the best
performing random forest-based ensemble of preprocessing pipelines. Hazard ratios and p-
values are from Cox proportional hazard ratio modeling.

Additional file 20: Figure S13 Kaplan-Meier survival curves evaluating the prognostic ability of
the Winter metagene signature using HG-U133 Plus 2.0 microarray platform. (A) Prognostic
ability of signature in patients with unanimous ensemble agreement across preprocessing


https://doi.org/10.1101/181289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181289; this version posted August 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

pipelines. (B) Prognostic ability of signature classification using the best performing
preprocessing pipeline. (C) Prognostic ability of signature classification using the best
performing random forest-based ensemble of preprocessing pipelines. Hazard ratios and p-
values are from Cox proportional hazard ratio modeling.

Additional file 21: Figure S14 Kaplan-Meier survival curves evaluating the prognostic ability of
the Hu signature using HG-U133 Plus 2.0 microarray platform. (A) Prognostic ability of signature
in patients with unanimous ensemble agreement across preprocessing pipelines. (B) Prognostic
ability of signature classification using the best performing preprocessing pipeline. (C)
Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.

Additional file 22: Figure S15 Kaplan-Meier survival curves evaluating the prognostic ability of
the Sorensen signature using HG-U133 Plus 2.0 microarray platform. (A) Prognostic ability of
signature in patients with unanimous ensemble agreement across preprocessing pipelines. (B)
Prognostic ability of signature classification using the best performing preprocessing pipeline.
(C) Prognostic ability of signature classification using the best performing random forest-based
ensemble of preprocessing pipelines. Hazard ratios and p-values are from Cox proportional
hazard ratio modeling.
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Figure 1 | Summary of the study design for ensemble classification
for evaluation of a biomarker. Microarray data are obtained from
specific platforms and preprocessing using 24 different pipelines to
normalize the mRNA gene expression. Risk groups are then
assigned based on the biomarker of interest, resulting in a
collection of either good or poor prognosis stratification based on
the expression obtained from various preprocessing methods.
Stratification into either good or poor prognosis represents a vote
for that group, resulting in a score between 0 and 24. The
ensemble of classifications is combined as features for random
forest based machine learning. Random forest classifiers learning
on a selected training set and evaluated on the test set. The
robustness of the classifier derived for the biomarker of interest is
evaluated with Cox proportional hazard ratio modeling and Kaplan-
Meier survival estimates.
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Figure 2 | Representative hazard ratio forest plot and accuracy for
Winter metagene signature using the HG-U133A microarray
platform. (A) Forest plot of log, hazard ratios with 95% confidence
intervals obtained for each of the 24 preprocessing (PP) methods,
the random forest classifiers evaluated, and the simple
unanimous vote classifier (total number of votes for poor
prognosis either 0 or 24). The forest plot is ordered as decreasing
hazard ratio. The dotted line represents a hazard ratio of 1. The
blue hazard ratio with its 95% confidence interval represents the
hazard ratio for the simple unanimous vote classifier. (B) Bar plot
of accuracy obtained for each of the 24 preprocessing methods,
the random forest classifiers evaluated, and the simple
unanimous vote classifier. The bars are ordered by preprocessing
pipelines, the unanimous classifier, and the best performing

random forest classifier, from left to right.
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Figure 3 | Summary hazard ratio forest plot and receiver operator
curves. (A) Forest plot of log, hazard ratios with 95% confidence
intervals obtained for the best performing preprocessing method,
best performing random forest classifier, and the unanimous vote
classifier. Plot is ordered by decreasing hazard ratio within each
signature and microarray platform evaluated. Colors correspond to
the specific signature evaluated. (B and C) Receiver operator
curves and area under the curve (AUC) obtained from the best
performing random forest classifier for each biomarker, as
determined by the highest hazard ratio. HG-U133A ROC curves
shown in A, and HG-U133 Plus 2.0 ROC curves shown in B.
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Figure 4 | Summary of the study design for development of
novel signature classifiers for each preprocessing pipeline and
evaluating its performance in a meta-ensemble classifier.
Microarray data are obtained from specific platforms and
preprocessing using 24 different pipelines to normalize the
MRNA gene expression. The gene expression is median
dichotomized into two expression groups. Novel signatures are
determined as the top 100 genes that reached significant after
adjustment for false discovery rate, for each preprocessing
pipeline (total 12). The training of a random forest classifier
based on the individual novel signatures result in individual risk
classifications of survival prognosis. These risk stratification are
subsequently combined in a meta-random forest classifier to
evaluate the robustness of the signature with Cox proportional
hazard ratio modeling and Kaplan-Meier survival estimates.
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Figure 5 | Hazard ratio forest plots of classifier performance and
heatmap of individual classifier predictions of survival prognosis. (A)
Forest plot with 95% confidence intervals of novel signature
classifiers. The forest plot is ordered as decreasing hazard ratio. The
dotted line represents a hazard ratio of 1. (B) Heatmap of classifier
predictions of 5-year survival status. The classifiers (by row) from
signatures are ordered by decreasing performance of patient
outcome prediction. Patients (by column) are ordered by the degree
of agreement of predictions across the array of novel signatures
identified from 12 different preprocessing variant pipelines. The true
outcome of patients is shown as either 5-year survival status or
overall survival status up to the end of study follow-up. Blue
represents true positives with correct prediction of poor prognosis.
Purple represents true negatives with correct prediction of good
prognosis. The white part of the heatmap represents incorrect
predictions of good or poor prognosis.
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