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Abstract

For the past decade, research on the storage limitations of working

memory has been dominated by two fundamentally different hypothe-

ses. On the one hand, the contents of working memory may be stored

in a limited number of ‘slots’, each with a fixed resolution. On the

other hand, any number of items may be stored, but with decreasing

resolution. These two hypotheses have been invaluable in character-

izing the computational structure of working memory, but neither

provides a complete account of the available experimental data, nor

speaks to the neural basis of the limitations it characterizes. To ad-

dress these shortcomings, we simulated a multiple-item working mem-

ory task with a cortical network model, the cellular resolution of which

allowed us to quantify the coding fidelity of memoranda as a function

of memory load, as measured by the discriminability, regularity and

reliability of simulated neural spiking. Our simulations account for a

wealth of neural and behavioural data from human and non-human

primate studies, and they demonstrate that feedback inhibition not

only lowers capacity, but also lowers coding fidelity by all three mea-

sures. Because the strength of inhibition scales with the number of
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items stored by the network, increasing this number progressively low-

ers fidelity until capacity is reached. As such, the model provides a

mechanistic explanation for experimental data showing that working

memory precision decreases with increasing memory load before level-

ling off at capacity. Crucially, the model makes specific, testable pre-

dictions for neural activity on multiple-item working memory tasks.

Introduction

Working memory refers to the retention of information for use in cognitive
tasks, over intervals on the order of seconds. Visual working memory (WM)
is a particularly active research field, largely because the high precision of
the visual system affords fine-grained measurements that address the storage
limitations of WM. These limitations are highly correlated with measures
of intelligence and are currently the subject of intense research interest [see
Luck and Vogel (2013)].

For several decades, research on storage limitations was dominated by the
hypothesis that WM is supported by a small number of discrete ‘slots’. Ac-
cordingly, information is either stored with high precision in a slot or is simply
not encoded if the number of items n exceeds the number of slots [see Cowan
(2001)]. More recently, evidence has emerged for an alternative hypothesis,
according to which a limited ‘resource’ R is allocated to n items, with no
limit on n. Accordingly, the precision of WM representations decreases with
increasing n, since less resource is available for the encoding of each item,
i.e. precision tracks R/n. Thus, the nature of WM storage limitations is
fundamentally different under the slot and resource hypotheses, attributing
constraints to capacity and resolution respectively. It is increasingly clear,
however, that neither is complete [see Luck and Vogel (2013); Ma, Husain,
and Bays (2014)]. Generally, the slot hypothesis (Slot) is over-constrained
with respect to resolution, since it can’t account for a gradual decrease in
precision with increasing n (Bays, Catalao, & Husain, 2009). Equally, the
resource hypothesis (Resource) is over-constrained with respect to capacity,
since it can’t account for a plateau in imprecision with a critical number
of items, where this number appears to correspond to capacity (Zhang &
Luck, 2008). Consequently, several hybrid hypotheses have been presented,
accounting for data that can’t be explained by Slot or Resource alone (Zhang
& Luck, 2008; van den Berg, Shin, Chou, George, & Ma, 2012).
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The above work has been invaluable in characterizing the storage limita-
tions of WM, but does not speak to its neural basis. WM is widely believed
to be supported by ‘attractor states’ in neocortex, emerging from recurrent
excitation and feedback inhibition in local circuits. Under this framework,
recurrent excitation sustains neural firing in the absence of driving stimuli
(persistent activity), while feedback inhibition prevents this activity from
running away [see Wang (2001)]. If R is instantiated by the cortical tissue
mediating a task-relevant feature domain, e.g. spatial location, then feed-
back inhibition necessarily constrains capacity, since WM items will compete
for representational space [see Franconeri, Alvarez, and Cavanagh (2013)]. If
so, R cannot be infinitely divisible. Rather, it will be allocated to n ≤ K
items, with capacity K determined by the properties of feedback inhibition,
e.g. its strength and breadth. In other words, the simultaneous encoding
of an arbitrary number of WM items is incompatible with feedback inhibi-
tion between stimulus-selective neural populations, a fundamental principle
of neural information processing. The application of these principles to Re-
source leads to a strong hypothesis: a decrease in precision with increased
memory load must be limited by capacity.

Here, we test this hypothesis with a biophysically-based model of a local
circuit in posterior parietal cortex (PPC), a cortical area extensively cor-
related with WM (Gnadt & Andersen, 1988; Todd & Marois, 2004; Palva,
Monto, Kulashekhar, & Palva, 2010; Christophel, Hebart, & Haynes, 2012;
Salazar, Dotson, Bressler, & Gray, 2012). Previous studies have used simi-
lar models to offer mechanistic explanations for capacity (Edin et al., 2009),
precision (Almeida, Barbosa, & Compte, 2015) and their relationship (Wei,
Wang, & Wang, 2012; Roggeman, Klingberg, Feenstra, Compte, & Almeida,
2013), but these studies did not explain precision under the principles of Re-
source. Rather, they equated imprecision with the ‘drift’ of item-encoding
neural populations in cortical tissue. As such, they make different predictions
than our model (see the Discussion). According to Resource, imprecision re-
flects the signal-to-noise ratio (SNR) of neural representations. We extend
this hypothesis from SNR to coding fidelity more generally, measuring the
regularity and reliability of simulated spiking activity. In doing so, we demon-
strate and explain the deterioration of coding fidelity with increasing n under
established statistical measures, where this deterioration levels off at a crit-
ical n. Thus, we offer a novel explanation for resource-like coding and its
relationship with capacity, unifying a large body of neural and behavioural
data, and making specific predictions for experimental testing.
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Methods

Our local-circuit PPC model is a network of simulated pyramidal neurons and
inhibitory interneurons, connected by AMPA, NMDA and GABA receptor
conductance synapses (Figure 1A). Synaptic connectivity within and between
classes of neuron was structured according to in vitro data, including struc-
tured and unstructured components of the connectivity to pyramidal neurons
from interneurons (Figure 1B, Parameter Values in Methods). We refer to
the former and latter components as local and broad inhibition respectively.

We ran simulations of two common visual and WM tasks, a visually-
guided delayed saccade task (the visual task) and a memory-guided delayed-
saccade task (the memory task) [e.g. Paré and Wurtz (1997)]. Each task
consists of three intervals: a pre-trial interval, a stimulus interval and a de-
lay interval. Following the pre-trial interval, items are presented during the
stimulus interval on both tasks, remaining present during the delay interval
on the visual task, but not the memory task (Figure 1C). We constrained the
model by setting its parameter values according to anatomical and physio-
logical data (Parameter Values in Methods), and by stipulating that it must
qualitatively reproduce signature neural data from PPC (see Results, Figure
2). We then measured its storage capacity and coding fidelity as a function
of n. Capacity was defined as the mean number of accurately encoded items
during the last 300ms of the delay interval (the statistics window), where
accurate encoding was determined by the rate, position (relative to stim-
ulus position) and discriminability of item-encoding populations. We used
three standard measures of coding fidelity: the SNR of stimulus-selective
spiking, the coefficient of variation (CV) of interspike intervals (ISI), and the
Fano factor (FF) of between-trial spike counts. SNR quantifies the degree
to which selective spiking is discriminable from baseline activity, while CV
and FF quantify the within-trial regularity and between-trial reliability of
spiking respectively.

The network model

The local circuit model is a fully connected network of leaky integrate-and-
fire neurons (Tuckwell, 1988), comprised of Np = 400 simulated pyramidal
neurons and N i = Np/4 fast-spiking inhibitory interneurons (putative basket
cells). Each model neuron is described by
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C{p,i}
m

dV

dt
= −g

{p,i}
L (V − E

{p,i}
L )− I, (1)

Figure 1 (preceding page): The local-circuit PPC model and simulated tasks.
(A) Schematic of the model. Solid circles depict pyramidal neurons (green)
and inhibitory interneurons (red), arranged periodically by their connectivity
structures. The 4-to-1 ratio of pyramidal neurons to interneurons preserves
their population sizes in the model. Arced and straight arrows depict synap-
tic connectivity within and between classes of neuron respectively. Thin
Gaussian curves depict the structure of this connectivity (within, solid; be-
tween, dotted). The thick Gaussian curve depicts the RF of a pyramidal
neuron. Red arrows depict GABAR synapses, the open green arrow de-
picts AMPAR-only synapses, and wide green arrows depict synapses with
AMPARs and NMDARs. (B) Approximation of synaptic connections onto
pyramidal neurons and interneurons from small, medium and large basket
cells (SBC, MBC, and LBC respectively). Rectangles depict unstructured
connectivity within each class of cell, and onto pyramidal neurons from each
class. The red curve approximates their combined structure. (C) The visual
and memory tasks are comprised of a pre-trial interval, stimulus interval and
delay interval (top panel). Spiking statistics are taken during the last 300ms
of the delay interval, referred to as the statistics window. Stimulus onset
follows a 50ms visual response delay. On the visual (memory) task, stimuli
persist (do not persist) throughout the delay interval, depicted by the dashed
horizontal line. The decaying input signal simulates upstream response adap-
tation. An example trial of the 1-item memory task is shown in the middle
and bottom panels. In the raster plot (middle panel), pyramidal neurons and
interneurons are indexed from 1−400 and 401−500 respectively. Mean SDF
(see text) over all pyramidal neurons and interneurons during the statistics
window is shown to the right of the plot. Mean SDF over the item-encoding
pyramidal population is shown in the bottom panel. (D) Synaptic currents
onto a pyramidal neuron (solid) and an interneuron (dotted) during the de-
lay interval of the 1-item memory task. Red, green and black curves show
GABAR, AMPAR and NMDAR currents respectively. (E) Membrane poten-
tial of a pyramidal neuron and an interneuron during the pre-trial interval.
(F) Mean rate over all pyramidal neurons during the statistics window of cor-
rect trials on the memory task for each value of control parameter γrec = 1/γg
(see text).
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where Cm is the membrane capacitance of the neuron, gL is the leakage
conductance, V is the membrane potential, EL is the equilibrium potential,
and I is the total input current. When V reaches a threshold ϑv, it is reset
to Vres, after which it is unresponsive to its input for an absolute refractory
period of τref . Here and below, superscripts p and i refer to pyramidal
neurons and interneurons respectively, indicating that parameter values are
assigned separately to each class of neuron.

The total input current at each neuron is given by

I = Isel + Irec + Iback, (2)

where Isel is stimulus-selective synaptic current (set to 0 for interneurons),
Irec is recurrent (intrinsic) synaptic current and Iback is background current.
Isel and Irec are comprised of synaptic currents, and Iback is comprised of
synaptic current and injected current. Synaptic currents driven by pyramidal
neuron spiking are mediated by simulated AMPA receptor (AMPAR) and/or
NMDA receptor (NMDAR) conductances, and synaptic currents driven by
interneuron spiking are mediated by simulated GABA receptor (GABAR)
conductances. For AMPAR and GABAR currents, synaptic activation (the
proportion of open channels) is defined by

dgaAMPA

dt
= −

gaAMPA

τ
{p,i}
AMPA

+ δ(t− tf)

dga
GABA

dt
= −

ga
GABA

τ
{p,i}
GABA

+ δ(t− tf),

(3)

where τAMPA and τGABA are the time constants of AMPAR and GABAR
deactivation respectively, δ is the Dirac delta function, tf is the time of
firing of a pre-synaptic neuron and superscript a indicates that synapses
are activated by different sources of spiking activity (selective, recurrent and
background). NMDAR activation has a slower rise and decay and is described
by

dgaNMDA

dt
= −

gaNMDA

τ
{p,i}
NMDA

+ αNMDA · ωNMDA(1− gaNMDA), (4)

where τNMDA is the time constant of receptor deactivation and αNMDA con-
trols the saturation of NMDAR channels at high pre-synaptic spike frequen-
cies. The slower opening of NMDAR channels is captured by
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dωNMDA

dt
= −

ωNMDA

τω
+ δ(t− tf ), (5)

where τω determines the rate of channel opening.
Intrinsic (recurrent, local feedback) synaptic current to each neuron j is

defined by

Irecj = IrecAMPA,j + IrecNMDA,j + IrecGABA,j

IrecAMPA,j =
∑

k
G

{p,i}
AMPA

γg
· grecAMPA,k(Vj − VE) · W

rec|pp,ip
j,k

IrecNMDA,j =
∑

k
G

{p,i}
NMDA

γg
· grecNMDA,k(Vj − VE) · ηj · W

rec|pp,ip
j,k

IrecGABA,j =
∑

k
G

{p,i}
GABA

γg
· grecGABA,k(Vj − VI) · W

rec|pi,ii
j,k ,

(6)

where γg is a scale factor controlling the relative strength of extrinsic and in-
trinsic synaptic conductance; GAMPA, GNMDA and GGABA are the respective
strengths of AMPAR, NMDAR and GABAR conductance; VE is the rever-
sal potential for AMPARs and NMDARs, and VI is the reversal potential
for GABARs; grecAMPA,k, g

rec
NMDA,k and grecGABA,k are the activation of AMPAR,

NMDAR and GABAR receptors respectively by pre-synaptic neurons k; η
governs the voltage-dependence of NMDARs; and matrices W rec|pp,ip and
W rec|pi,ii scale conductance strength or weight according to the connectiv-
ity structure of the network. This structure depends on the class of neu-
ron receiving and projecting spiking activity, where superscripts pp, ip, pi
and ii denote connections to pyramidal neurons from pyramidal neurons, to
interneurons from pyramidal neurons, to pyramidal neurons from interneu-
rons, and to interneurons from interneurons respectively. For each of these
structures s ∈ {pp, ip, pi, ii}, W rec|s is a Gaussian function of the distance

between periodically-arranged neurons, where the weight W
rec|s
j,k to neuron j

from neuron k is given by

W
rec|s
j,k = e

−d2/2σ2

rec|s · (1− ζrec|s) + ζrec|s. (7)

The distance between neurons is defined by d = min(|j − k|∆xp, 2π − |j −
k|∆xp) for W rec|pp, d = min(|j − k|∆xi, 2π − |j − k|∆xi) for W rec|ii, d =
min(|j−zpi|∆xp, 2π−|j−zpi|∆xp) forW rec|pi, and d = min(|j−zip|∆xi, 2π−
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|j − zip|∆xi) for W rec|ip, with scale factors ∆xp = 2π/Np and ∆xi = 2π/N i.
For W rec|pi and W rec|ip, zpi = Np/N i · k and zip = N i/Np · k respectively.
Parameter σrec|s determines the spatial extent of connectivity and parameter
ζrec|s allows the inclusion of a baseline weight, with the function normalized
to a maximum of 1 (0 ≤ ζrec|s < 1).

Background activity

For each neuron, in vivo cortical background activity is simulated by current
Iback, defined by

Iback = Iback,syn + Iback,inj, (8)

where Iback,syn is driven by synaptic bombardment and Iback,inj is noisy
current injection. The former is generated by AMPAR synaptic activation,
where independent, homogeneous Poisson spike trains are provided to all
neurons at rate µback. I

back,syn is therefore defined by

Iback,syn = γg · λ · G
{p,i}
AMPA · gbackAMPA(V − VE), (9)

where λ is a scale factor and gbackAMPA is given in Equation 3.
For Iback,inj, we used the point-conductance model by (Destexhe, Rudolph,

Fellous, & Sejnowski, 2001):

Iback,inj = ge(t)(V − VE) + gi(t)(V − VI). (10)

The time-dependent excitatory and inhibitory conductances ge(t) and gi(t)
are updated at each timestep ∆t according to

ge(t+∆t) = g0e + [ge(t)− g0e] · e−∆t/τe + AeΥ (11)

and

gi(t +∆t) = g0i + [gi(t)− g0i] · e−∆t/τi + AiΥ (12)

respectively, where g0e and g0i are average conductances, τe and τi are time
constants, and Υ is normally distributed random noise with 0 mean and unit
standard deviation. Amplitude coefficients Ae and Ai are defined by

Ae =

√

Deτe
2

[

1− exp
(

−2∆t

τe

)]

(13)
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and

Ai =

√

Diτi
2

[

1− exp
(

−2∆t

τi

)]

(14)

respectively, where De = 2σ2
e/τe and Di = 2σ2

i /τi are noise ‘diffusion’ coeffi-
cients. See Destexhe et al. (2001) for the derivation of these equations.

Experimental design and statistical analysis

Simulated experimental tasks

We simulated the target stimuli in both tasks by providing independent,
homogeneous Poisson spike trains to all pyramidal neurons j in the network,
where spike rates were drawn from a normal distribution with mean µsel

corresponding to the centre of a Gaussian response field (RF) defined by
W rf

j,k = exp(−d2/2σ2
rf). Constant d is given above for recurrent synaptic

structureW rec|pp, σrf determines the width of the RF and subscript k indexes
the neuron at the RF centre. Spike response adaptation by upstream visually
responsive neurons was modelled by a step-and-decay function

µsel(t) =

{

(µinit − µinit/µdiv) e
−(t−tvrd)/τµ + µinit/µdiv for t > tvrd

0 for t ≤ tvrd
(15)

where µinit determines the initial spike rate, µdiv determines the asymptotic
rate, τµ determines the rate of upstream response adaptation, and tvrd is
a visual response delay. We simulated the visual task by providing these
selective spike trains for 1300ms, following the 300ms pre-trial interval. We
simulated the memory task by providing the selective spike trains for 300ms,
following the pre-trial interval and followed by a 1000ms delay (Figure 1C).
The stimuli were mediated by AMPARs only, so for all pyramidal neurons j
in the PPC network,

Iselj = γg · λ · Gp
AMPA · gselAMPA,j(Vj − VE) · W rf

j,k. (16)

All simulations were run with the standard implementation of Euler’s
forward method, where the timestep was ∆t = 0.25ms.
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Determining working memory performance

We ran 400 trials of the visual and memory tasks with 1− 5 stimuli (hence-
forth the n-item visual and memory tasks; 1 ≤ n ≤ 5). To determine WM
performance on each trial of the memory task, spike density functions (SDFs)
were calculated for all pyramidal neurons in the network by convolving their
spike trains with a rise-and-decay function

(1− e−t/τf ) · e−t/τd

τ2
d

τr+τd

(17)

where t is the time following stimulus onset and τr = 1ms and τd = 20ms are
the time constants of rise and decay respectively (Thompson, Hanes, Bichot,
& Schall, 1996; Standage & Paré, 2011). On each n-item trial, we calcu-
lated the mean of the SDFs over the last 300ms of the delay, obtaining the
average activity over the network, and then partitioned the network into n
equal regions. The location of each item was centred within each region. We
then fit the mean activity in each region with a Gaussian function with four
parameters: the height of the peak, the position of the peak, the standard
deviation (controlling width), and the height that is approached asymptoti-
cally from the peak. An item was considered accurately stored if the fitted
Gaussian satisfied three criteria: the height parameter exceeded 30Hz, the
difference between the height and the fitted asymptote on both sides of the
peak exceeded 15Hz, and the position parameter was within ∆c = 10 de-
grees of the centre of the RF for that item. For the first criterion, we chose
30Hz because this spike rate implies ∼ 10 spikes during the 300ms statistics
window, as required to faithfully calculate CV and FF (Nawrot, 2010). The
second criterion dictates that items are only considered accurately stored if
the population response is discriminable. The third criterion ensures that
the memory of the location of the item is close to the actual location, the
precise value of which wasn’t crucial to our results (∆c >∼ 5).

Calculating spiking statistics

We selected m = 20 simulated pyramidal neurons from the network (the
target neurons) and recorded their activity on m trials each. This population
of neurons consisted of the neuron at the centre of the RF for a given target,
and the m− 1 neurons closest to the RF centre. For each of the two tasks,
the SNR of each target neuron was calculated on each trial by subtracting
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the spike count during the 300ms pre-trial interval from the spike count
during the statistics window and dividing the result by the latter [SNR =
(SCdel − SCpre)/SCpre, where SC is the spike count].

The CV of ISI was calculated for each target neuron on each trial by
dividing the mean ISI by the standard deviation of ISI during the statistics
window (CV = σISI

del /µ
ISI
del ). The FF was calculated for each target neuron

by recording the spike count during the statistics window on each trial, and
dividing the variance by the mean over all trials for that neuron (FF =
σSC2

del /µSC
del ). These statistics were only calculated for accurately stored items,

and from neurons that emitted at least 9 spikes during the 300ms statistics
window (30Hz, see previous section). To increase statistical power on memory
trials with n > 1 items, if the network did not accurately store the ‘first’ item,
we searched for a corresponding neuron in another item-encoding population,
where correspondence was determined relative to the RF centre, e.g. if the
target neuron was located 3 indeces below the RF centre of item 1, we used
a neuron located 3 indeces below the RF centre of another item. If no items
were accurately stored, the trial was discarded for statistical purposes.

Parameter values

In setting parameter values in the model, our aim was to justify every value by
anatomical and physiological data, thus constraining our choices as much as
possible, and then to use a single control parameter to explore the model’s
performance and spiking statistics on the visual and memory tasks. Our
control parameter was γg, governing the relative strengths of extrinsic and
intrinsic synaptic conductance and therefore the strength of recurrent pro-
cessing.

For cellular parameters, we used standard values for integrate-and-fire
neurons in cortical simulations (Compte, Brunel, Goldman-Rakic, & Wang,
2000), justified by electrophysiological data in earlier, related work (Troyer &
Miller, 1997; Wang, 1999). These values are Cp

m = 0.5nF, gpL = 25nS, Ep
L =

−70mV, ϑp
v = −50mV, V p

res = −60mV and τ pref = 2ms; and C i
m = 0.2nF,

giL = 20nS, Ei
L = −70mV, ϑi

v = −50mV, V i
res = −60mV and τ iref = 1ms.

Likewise, synaptic reversal potentials are VE = 0mV and VI = −70mV, and
the parameters governing the opening and saturation of NMDARs are τω =
2ms and αNMDA = 0.5kHz respectively (Compte et al., 2000). The voltage-
dependence of NMDARs is given by η = 1/[1+Mg · exp(−0.062 · V )/3.57],
where Mg = 1mM is the extracellular Magnesium concentration and V is
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measured in millivolts (Jahr & Stevens, 1990).
In setting parameters for the conductance strengths and time constants

of decay of AMPARs and NMDARs, we followed Standage, You, Wang,
and Dorris (2013), emphasising fast inhibitory recruitment in response to
slower excitation [see Povysheva et al. (2006) for discussion]. For AMPARs,
Gp

AMPA = 0.2nS, Gi
AMPA = 2·Gp

AMPA, τ
p
AMPA = 4ms and τ iAMPA = τ pAMPA/2;

and for NMDARs, Gp
NMDA = 4nS, Gi

NMDA = Gp
NMDA/2, τ

p
NMDA = 100ms

and τ iNMDA = τ pNMDA/2. These values produce fast-decaying AMPAR cur-
rents on the order of 10pA (Angulo, Rossier, & Audinat, 1999; Desai, Cud-
more, Nelson, & Turrigiano, 2002) that are stronger and shorter-lived onto in-
hibitory interneurons than onto pyramidal neurons (Hestrin, 1993; J.McBain
& Fisahn, 2001; Hull, Isaacson, & Scanziani, 2009), and slow-decaying NM-
DAR currents on the order of 10pA (Berretta & Jones, 1996; Angulo et al.,
1999) that are stronger and longer-lived at synapses onto pyramidal neu-
rons than onto inhibitory interneurons (Hull et al., 2009). For GABARs,
Gp

GABA = 1.5nS and Gi
GABA = Gp

GABA/2, producing GABAR currents several
times stronger than the above excitatory currents, where the stronger conduc-
tance at synapses onto pyramidal neurons captures their greater prevalence
of GABARs (Markram et al., 2004). GABAR time constants were set to
τ pGABA = τ iGABA = 10ms (Salin & Prince, 1996; Xiang, Huguenard, & Prince,
1998). Example synaptic currents are shown in Figure 1D.

The connectivity structures W rec|pp,ip,pi,ii capture the probability of lat-
eral synaptic contact within and between classes of neurons in local cortical
circuitry (Wilson & Cowan, 1973; Somers, Nelson, & Sur, 1995). A consid-
erable volume of data indicates that the probability of lateral synaptic con-
tact between cortical pyramidal neurons is normally distributed with mean
0 and half-width of ∼ 0.25mm (Hellwig, 2000; Berger, Perin, Silberberg, &
Markram, 2009; Voges, Schüz, Aertsen, & Rotter, 2010). Thus, σrec|pp corre-
sponds to 0.25mm, determining the size of the cortical region being modelled,
and ζrec|pp = 0. We are unaware of any data suggesting that the lateral pro-
jections of pyramidal neurons target basket cells differently than they target
other pyramidal neurons, so we set σrec|ip = σrec|pp and ζrec|ip = ζrec|pp. Ar-
guably, σrec|ip should be narrower than σrec|pp, since the dendritic trees of
basket cells are less extensive than those of pyramidal neurons, but setting
these parameters to equal values supported more stable network dynamics,
i.e. it furnished sufficient local-circuit inhibition for the model to simulate
the experimental tasks without modifications to other parameter values.

For connectivity structures W rec|pi,ii, values for σrec|pi,ii and ζrec|pi,ii are
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justified by four premises: firstly, we assume that basket cells are a major
source of lateral inhibition (Krimer & Goldman-Rakic, 2001) and we limit
our focus to this class of inhibitory interneuron; secondly, basket cells synapse
onto the somatic and perisomatic regions of their targets [see Markram et
al. (2004)]; thirdly, the axons of basket cells contact their targets indiscrim-
inately throughout the range of their ramifications (Packer & Yuste, 2011);
and fourthly, the basket cell population can be divided into small (local ar-
bour), medium (medium arbour) and large (wide arbour) cells in equal pro-
portion, i.e. one third each (Krimer et al., 2005). Under the first and second
premises, we do not need to consider the dendritic morphology of the targets
of inhibitory interneurons, so we set σrec|pi = σrec|pp. Under the second and
third premises, we assume a uniform synaptic distribution for inhibitory tar-
gets, where the axonal ramifications of small, medium and large basket cells
cover progressively larger areas (Krimer & Goldman-Rakic, 2001; Krimer
et al., 2005), with large basket cells (LBC) covering the entire local circuit
(Kisvárday, Beaulieu, & Eysel, 1993; Markram et al., 2004). We therefore
approximate this connectivity structure by setting σrec|pi = σrec|ii = 2 ·σrec|pp

and ζrec|pi = ζrec|ii = 1/3, where the former corresponds to a half-width of
∼ 0.5mm [cf. Kisvárday et al. (1993); Krimer and Goldman-Rakic (2001);
Krimer et al. (2005)] and the latter refers to the 1/3 proportion of LBCs.
This approach to determining inhibitory connectivity parameters is depicted
in Figure 1B. We set σrec|pp = 0.2 because this value supported the simultane-
ous representation of 5 simulated visual stimuli, corresponding to the upper
limit on human WM capacity, i.e. 4± 1 items (Luck & Vogel, 1997; Cowan,
2001). Finally, we set σrec|ii = σrec|pi because LBCs make extensive contacts
onto one another over the full range of their axonal ramifications (Kisvárday
et al., 1993). Note that we do not attribute biological significance to the
spatial periodicity of the network. Rather, this arrangement allows the im-
plementation of W rec|pp,ip,pi,ii with all-to-all connectivity without biases due
to asymmetric lateral interactions between neurons, and further captures
the topographic mapping of spatially periodic stimuli in many visual [e.g.
Thomas and Paré (2007)] and WM [e.g. Funahashi, Bruce, and Goldman-
Rakic (1989); Matsuyoshi, Osaka, and Osaka (2014)] tasks. In Results section
‘Feedback inhibition underlies slot-like capacity and resource-like coding’, we
eliminated broad inhibition by setting ζrec|pi and ζrec|ii to 0, and we increased
the strength of local feedback inhibition by setting Gp

GABA and Gi
GABA to

3.5nS and 1.75nS respectively.
In setting parameter values for background activity in each network, we
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initially omitted background synaptic input Iback,syn and followed the data
by Fellous, Rudolph, Destexhe, and Sejnowski (2003) to produce Iback,inj,
where g0e = 5nS and g0i = 25nS, τe = 2.5ms, τi = 10ms, σe = 5nS and
σi = 12.5nS. Because the average inhibitory background conductance g0i is
five times the average excitatory background conductance g0e [see Destexhe
(2010)], our simulated pyramidal neurons did not respond adequately to se-
lective stimuli under these parameter values. We therefore reduced the aver-
age conductances by a factor of two, setting g0e = 2.5nS, retaining the ratio
of inhibitory to excitatory conductance strength g0i = 5 · g0e = 12.5nS, and
simulating the ‘other half’ of upstream cortical background activity by pro-
viding independent, homogeneous Poisson spike trains to all neurons in the
network. As such, we assumed that each neuron forms ∼ 10, 000 synapses
with upstream cortical neurons (Douglas, Markram, & Martin, 2004), and
that by dividing g0e and g0i by two, we were effectively omitting ∼ 5, 000
background inputs. We therefore approximated 5000 upstream cortical neu-
rons firing at 1Hz each by setting the rate of background Poisson spike trains
to µback = 500Hz and setting the extrinsic synaptic scale factor to λ = 10,
trading temporal summation for spatial summation (Prescott & De Koninck,
2003; Standage et al., 2013). As noted above, background spike trains were
provided to all pyramidal neurons and interneurons in each network, medi-
ated by AMPARs on the assumption that spike trains converging on PPC
(an association cortical area) are predominantly ascending. Evidence for
AMPAR-mediated ascending activity is provided by Self, Kooijmans, Supèr,
Lamme, and Roelfsema (2012). This approach simultaneously released the
network model from the overly-strong background inhibitory currents and
implemented an established, biologically plausible form of gain modulation
[balanced background inputs (Chance, Abbott, & Reyes, 2002)], rendering
the PPC network responsive to simulated visual stimuli. Note that our pa-
rameter values for background current injection (g0e, g0i, τe, τi, σe and σi)
were based on recordings from pyramidal neurons (Fellous et al., 2003), but
since we are unaware of any data to guide these parameters for inhibitory
interneurons, we assigned them the same values for all neurons. The effect of
this background activity on the membrane potential of a pyramidal neuron
and an interneuron is shown in Figure 1E.

For the target stimuli, the width of RFs was determined by σrf = σpp/2.
This narrow width captures the less-extensive dendritic branching in corti-
cal (input) layer 4 compared to layers 2/3 and 5 (see above for justification
of lateral connectivity in the model). The initial spike rate at the RF cen-
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tre was µinit = 10, 000/γgHz, which (for γg = 1) can be equated with e.g.

100 upstream, visually-responsive neurons firing at 100Hz each, given our
use of homogeneous, independent Poisson spike trains. Note, however, that
the synaptic scale factor λ = 10 probably renders this spike rate unreal-
istically high, since it implies e.g. 1000 upstream neurons firing at 100Hz.
Nonetheless, the high initial spike rate ensured a rapid-onset, high-rate visual
response in the network for all processing regimes furnished by control pa-
rameter γg, as observed experimentally [e.g. Paré and Wurtz (1997); Thomas
and Paré (2007); Churchland, Kiani, and Shadlen (2008)]. Upstream, visual
response adaptation was simulated by µdiv = 10 and τµ = 50ms. The former
is somewhat extreme, but allowed the rate of the initial population response
in PPC to exceed the steady state response on the visual task for all values
of γg [e.g. Paré and Wurtz (1997); Churchland et al. (2008)]. Our use of
γg as a denominator in determining µinit (Equation 15) supported stronger
selective inputs when the network had stronger recurrent processing (smaller
γg), allowing the rapid-onset, high-rate visual response described above. For
larger γg, the network more readily gives way to its inputs, so a weaker in-
put is sufficient to elicit a similar response. The visual response delay was
tvrd = 50ms (Thomas & Paré, 2007).

Results

To systematically investigate network performance on the visual and mem-
ory tasks, we varied a single parameter γg, scaling the relative strength of
intrinsic (Equations 6) and extrinsic (Equations 9 and 16) synaptic con-
ductance. We ran a block of trials for a range of values of this parameter
(increments of 0.05), searching for values supporting a mean capacity of at
least 0.95 items on the n-item memory task for n ≤ 5, and for which all
item-encoding populations on the 5-item task co-existed at the end of the
stimulus interval (with excessively strong intrinsic synapses, feedback in-
hibition produced strong competition between populations, so that not all
populations were extant at the onset of the memory delay). Thus, we inter-
polated between upper and lower bounds on the strength of recurrent drive
that support performance of the task, finding that our criteria were satisfied
by γg ∈ {0.45, 0.5, 0.55, 0.6, 0.65}. We confirmed that these values support
a stable background state (no structured activity before stimulus onset) by
running a single trial with no stimuli for 10s, and that they support perfor-
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mance of the visual task (more than 99% of items were accurately encoded
during the statistics window for all n and gain conditions). Because lower
values of γg produce stronger recurrent drive and higher neuronal gain (Fig-
ure 1F), it is convenient to define γrec = 1/γg. We refer to the values of γrec
(equivalently γg) as the gain conditions of the network. A single trial of the
1-item memory task is shown in Figure 1C.

The model complies with signature neural data from

PPC

Electrophysiological recordings from PPC show that on 1-item visual and
memory tasks, the rate of stimulus-selective activity is higher during the
visual delay than the memory delay; and on the memory task, the rate is
higher during the stimulus interval than the memory interval (Paré & Wurtz,
1997). More generally, PPC activity consistently shows several characteris-
tics across visual tasks, including a rapid-onset, high-rate response that drops
to a steady state prior to movement-related activity [e.g. Paré and Wurtz
(1997); Churchland et al. (2008); Louie, Grattan, and Glimcher (2011)], and
a decrease in rate with an increase in the number of stimuli [e.g. Thomas
and Paré (2007); Churchland et al. (2008); Louie et al. (2011)]. Consistent
with these data, the mean rate of stimulus-selective spiking in the model
was higher during the visual delay than the memory delay on the 1-item
tasks (Figures 2A and B), and was higher during the stimulus interval than
the delay interval on the memory task (2B). On the multiple-item visual
tasks (2 ≤ n ≤ 5), selective spike rates were higher during the stimulus
interval than the delay interval, and the rate of stimulus-selective activity
decreased with increasing n (Figure 2C). These results were the case for all
gain conditions, indicating that the model captured the relevant aspects of
PPC processing over its full dynamic range.

For all gain conditions on the 1-item tasks, delay activity in the model had
a lower SNR, higher CV and higher FF during the memory delay than the
visual delay (Figures 2D, E and F). Thus, persistent activity encoded a low-
fidelity representation of the stimulus, as reported in monkey PPC (Johnston
et al, SfN abstracts, 2009). Higher gain conditions supported higher-fidelity
encoding of the stimulus (see results for n = 1 in Figure 5C, D and E).
Quantitative consideration of these results is provided in the Discussion.
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Figure 2: The model qualitatively reproduces signature neural data recorded
from PPC during 1-item visual and memory tasks, and multiple-item visual
tasks. (A) Mean activity at the RF centre of the item-encoding population
on the 1-item visual task for each value of control parameter γrec = 1/γg
(each gain condition, see text). Darker shades correspond to higher γrec (see
legend in Figure 1F). (B) Mean activity at the RF centre on the 1-item
memory task. (C) Mean activity at the RF centre of a single item-encoding
population on the n-item visual task for all n (1 ≤ n ≤ 5). Results are
shown for the highest gain condition. Thick horizontal bars show the timing
of the target stimuli. (D-F) Persistent activity in the model encodes a low
fidelity representation of an earlier stimulus, characterized by a lower SNR
(D), higher CV (E) and higher FF (F) during the memory delay than the
visual delay. Error bars show standard error of the mean. Results are shown
for the lowest gain condition.
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Working memory performance in the model is consis-

tent with that of monkeys and humans

To measure WM performance, we calculated the mean number of accurately
stored items on each n-item memory task, referring to this quantity as ca-
pacity K(n). Example trials are shown in Figure 3. Mean spike rates at
the RF centres of all accurate item-encoding populations are shown in Fig-
ure 4. Moderate to high gain conditions supported a maximum capacity
(max[K(n)]) of around 2 and 3 items respectively (Figure 5A), consistent
with WM capacity in monkeys (Heyselaar, Johnston, & Paré, 2011) and
humans (Vogel & Awh, 2008; Luck & Vogel, 2013). In keeping with ear-
lier models of this class (Edin et al., 2009; Wei et al., 2012), K(n) con-
formed to WM ‘overload’, decreasing beyond a critical n for all gain condi-
tions (Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel, 2015). Finally,
capacity was roughly tracked by the total pyramidal neuron activity in the
network (Figure 5B), similar to electroencephalogram (EEG) recordings from
PPC (Vogel & Machizawa, 2004).

Predictions for experimental testing and their implica-

tions for Slot and Resource

Having demonstrated that our simulations are qualitatively consistent with a
range of electrophysiological and behavioural data from visual andWM tasks,
we investigated the model’s predictions for coding fidelity on multiple-item
WM tasks, and the implications of these predictions for Slot and Resource.
For all gain conditions, the coding fidelity of persistent activity on the mem-
ory task deteriorated as the number of items increased from n = 1 to n = 2,
characterized by a decrease in SNR and an increase in CV and FF (Figure
5C-E). With higher gain (0.45 ≤ γg ≤ 0.55), for which K(3) > K(2), this
reduction in coding fidelity continued as the number of items increased from
n = 2 to n = 3, as measured by all three statistics. Within this range of γg,
coding fidelity leveled off as the number of items increased beyond n = 3,
roughly tracking K(n) (Figure 5A). This finding is strikingly consistent with
behavioural data showing that WM precision decreases with increasing n
until it reaches a plateau at around 3 or 4 items (Zhang & Luck, 2008). It
also suggests that the same mechanism is responsible for constraints on ca-
pacity and resolution: the competition between item-encoding populations,
mediated by broad inhibition.
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Figure 3: Three trials of the multiple-item memory task for the highest gain
condition, with three (A), four (B) and five (C) items. The model accurately
stored three items on each of these trials. Mean rates over all pyramidal
neurons during the statistics window are inset to the right of the raster plots
(see Figure 1C caption), where shades match the mean SDFs in the right-side
panels. Thick horizontal bars in the top row show the timing of the stimuli.
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conditions. Horizontal bars show the timing of the target stimuli.

Broad feedback inhibition underlies slot-like capacity

and resource-like coding

If broad inhibition is responsible for slot-like capacity and resource-like dete-
rioration of coding fidelity, then removing it will increase K(n) and eliminate
the dependence of coding fidelity on n. We therefore removed the unstruc-
tured component of feedback inhibition, maintaining network stability by
increasing the strength of local (structured) feedback inhibition (Parameter
Values in Methods). We then determined the corresponding upper and lower
values of γg according to the criteria above (top of Results), and repeated
our simulations of the visual and memory tasks under these modified param-
eter values. As expected, these changes lead to a dramatic increase in K(n)
(max[K(n)]> 4.6 for all γg) (Figure 5F) and rendered coding fidelity roughly
independent of n (Figure 5H-J).

The mechanism underlying resource-like coding is that a larger number of
active item-encoding populations drives more broad inhibition, which reduces
the (absolute) mean net current onto item-encoding neurons. This reduction
in current decreases SNR for the simple reason that it decreases stimulus-
selective spike rates (Figure 4), but pre-trial rates are fixed (constant of aver-
age). Indeed, this finding would be the case with earlier biophysical models
of WM capacity (Edin et al., 2009; Wei et al., 2012) and precision (Wei et
al., 2012; Roggeman et al., 2013; Almeida et al., 2015), since these models
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included broad inhibition (unstructured, uniform feedback inhibition). How-
ever, the reduction in current increases CV because the standard deviation
of net current increases relative to the mean (Figure 6A). In other words, CV
(the coefficient of variation of inter-spike intervals) reflects the coefficient of
variation of net current (Pearson correlation coefficient r > 0.93 for all gain
conditions). This increase in the relative variability of net current within
each trial entails an increase in the relative variability of total net current
across trials (r > 0.88 for all gain conditions), manifest as an increase in the
relative variability of spike counts and therefore FF. In other words, FF (the
Fano factor of spike counts) reflects the Fano factor of across-trial total net
current (Figure 6B). Of course, this explanation of FF assumes a tight cor-
respondence between the total net current during the statistics window and
the spike count, which is indeed the case (r > 0.97 for all gain conditions).

Discussion

Our local-circuit PPC model provides an integrated, mechanistic explana-
tion for slot-like capacity and resource-like coding. Both are consequences
of broad inhibition, which limits capacity by imposing competition (Edin et
al., 2009), and reduces coding fidelity by lowering spike rates and rendering
neurons more sensitive to current fluctuations. The model makes testable
predictions for electrophysiological studies of WM. Most prominently, it pre-
dicts that on multiple-item tasks, the SNR (CV and FF) of persistent activity

Figure 5 (preceding page): (A) The mean number of items accurately stored
on each n-item memory task, referred to as capacity K(n). Error bars show
standard error. Results are shown for the highest, median and lowest gain
conditions, where darker shades correspond to higher gain (legend in panel
D). Other gain conditions are omitted for clarity. (B) Mean spike rate of
all pyramidal neurons in the model as a function of n. (C) SNR over n.
(D) CV over n. (E) FF over n. (F-J) Removing broad inhibition increased
capacity (K(n) ≈ n for all gain conditions, F), disrupted the correspondence
between K(n) and the mean spike rate of all pyramidal neurons (G), and
rendered SNR (H), CV (I) and FF (J) roughly independent of n. Darker
shades correspond to higher gain conditions (legend in panel F), which were
determined in the same way as in the original network (see text).
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will decrease (increase) with increasing n until capacity is reached, levelling
off thereafter. These predictions (Figure 5C-E) are strikingly consistent with
behavioural data showing that WM precision decreases with increasing n
until capacity is reached, plateauing thereafter (Zhang & Luck, 2008) (bilin-
ear precision). They also explicitly demonstrate the incompatibility between
Resource and mutual inhibition. The latter dictates that coding fidelity can-
not decrease indefinitely with increasing memory load. Rather, it must be
limited by competition. In this regard, we do not suggest that competitive
dynamics in WM circuitry are immutable, dictating rigid capacity limita-
tions. Far from it, we consider context-dependent control of neural dynamics
to be fundamental to cognition [see Standage, Blohm, and Dorris (2014)],
a view supported by recent studies in relation to WM storage (Edin et al.,
2009; Roggeman et al., 2013; Almeida et al., 2015). Thus, we expect that
capacity and precision will fluctuate with task-demands, but that their in-
herent relationship will hold: imprecision must be limited by capacity. Our
findings offer a neural mechanism for this relationship.

Figure 6 (preceding page): Inhibition raises CV and FF by increasing the
relative variability of net current. Within each trial, the standard de-
viation of net current increases relative to the supra-threshold mean (A,
rheobase=0.5nA for all n and gain conditions), so the higher coefficient of
variation of net current de-regularizes spike timing to a greater degree. This
increase in the variability of within-trial net current entails an increase in
the variability of total net current on each trial (Pearson’s r > 0.88 for all
gain conditions), resulting in an increase in the Fano factor (variance divided
by the mean) of across-trial total net current (B). Given the monotonic re-
lationship between the total net current and the spike count (r > 0.97 for
all gain conditions), the FF (of spike counts) reflects the Fano factor of
total net current. (A) Mean (top), standard deviation (middle) and coeffi-
cient of variation (bottom) of within-trial net current at the RF centre of an
item-encoding population during the statistics window (highest, median and
lowest gain conditions). (B) Fano factor (variance divided by the mean) of
the across-trial total net current for each n (highest, median and lowest gain
conditions).
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Quantitative considerations of coding fidelity

We have focused on the qualitative effect of memory load on coding fidelity,
i.e. the direction of change in SNR, CV and FF as a function of n, but
quantitative considerations warrant further comment. In particular, coding
fidelity in our model was somewhat high with low n according to all three
measures (Figure 5C-D). SNR is explained by low pre-trial rates (mean < 1Hz
for all γg), due to the high ratio of inhibitory to excitatory conductance in
our method of background current injection. Our parameter values were de-
termined by in vivo cortical data (see Methods section Parameter Values)
and the low pre-trial rates they engender are consistent with neurons in the
output layers of monkey primary visual cortex, in which spontaneous activity
has been thoroughly investigated (Snodderly & Gur, 1995; Gur, Kagan, &
Snodderly, 2005; Gur & Snodderly, 2008) [see also Maier, Adams, Aura, and
Leopold (2010)]. In rodents, spontaneous activity is known to depend on
intrinsic neuronal properties and connectivity, and differs between cortical
layers [see Harris and Mrsic-Flogel (2013)]. Unfortunately, there is a lack of
such data from extra-striate and association areas, an issue that should be
addressed by future neurophysiogical studies. Our focus on coding fidelity
concerns task-related spiking and we do not further pursue background ac-
tivity here. Suffice to say, higher background rates would lower SNR in
the model. As for CV and FF, it has long been maintained that their values
should be around 1 in vivo, per the assumption that cortical spiking is Poisso-
nian [see e.g. Shadlen and Newsome (1998)]. More recent data and analyses
cast doubt on this assumption, as these measures are sensitive to the finite
time windows from which they are calculated, non-stationary spike rates,
and serial correlations in spike timing [see Nawrot, Boucsein, Molina, Aert-
sen, and Rotter (2008); Farkhooi, Strube-Bloss, and Nawrot (2009); Nawrot
(2010); Rajdl and Lansky (2014)]. Of particular note, failure to account
for within-trial fluctuations in spike rate (e.g. due to sensory stimuli) can
lead to over-estimates of CV (Maimon & Assad, 2009; Nawrot, 2010), and
between-trial fluctuations in rate (e.g. due to attentional state) or an insuffi-
cient number of spikes (less than ∼ 5− 10) can lead to over-estimates of FF
(Nawrot et al., 2008). It is worth noting that CV has been reported to be as
low as ∼ 0.5 in PPC (Maimon & Assad, 2009), while FF has been reported
in the range of ∼ 0.3− 0.4 in visual cortex (Gur, Beylin, & Snodderly, 1997;
Kara, Reinagel, & Reid, 2000). These are important issues for the under-
standing of non-task-related activity and neural coding, but none of them
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impacts our explanation of WM capacity and precision, nor its qualitative
predictions.

WM capacity in our model also warrants further comment. As noted
above, max[K(n)] was 2 or 3 items in moderate to high gain conditions (Fig-
ure 5A, consistent with data from non-human primate (NHP) and human
subjects (Heyselaar et al., 2011; Luck & Vogel, 2013). Human studies have
reported WM capacity higher than 3 items though [see Cowan (2010)]. In-
creasing the strength and decreasing the width of recurrent excitation readily
increases capacity in our model, but these modifications do not change the
finding that coding fidelity tracks capacity by all three measures used (not
shown). Thus, the specific value of K(n) in each gain condition is parameter-
dependent, but our chosen parameter values are consistent with the majority
of experimental data on capacity [see Luck and Vogel (2013)]. These values
are justified in Methods section Parameter values.

Behavioural data accounted for by Slot and Resource

To a great degree, the conclusions drawn about WM storage limitations
from experimental data depend on the nature of WM tasks and the ways
in which performance is measured. For our purposes, WM tasks can be
divided into two classes, referred to below as categorical and continuous
report tasks. In both classes, information provided in a stimulus array must
be retained over a delay interval. On categorical report tasks, performance
is measured according to an all-or-none report on that information, such as
whether the value of a particular feature is unchanged in a subsequent, post-
delay stimulus array [e.g. Luck and Vogel (1997)]. On continuous report
tasks, subjects report the memory of an analogue feature value [e.g. Wilken
and Ma (2004)].

Slot accounts for behavioural data showing bilinear capacity on categori-
cal report tasks (Luck & Vogel, 1997), i.e. for capacity K, subjects retain n
items for n ≤ K and they retain K/n items for n > K. Slot also accounts for
EEG (Vogel & Machizawa, 2004) and functional magnetic resonance imag-
ing (fMRI) (Linden et al., 2003; Todd & Marois, 2004) data showing bilinear
signal amplitude, where these signals correlate with K(n) (see below). On
continuous report tasks, Slot cannot account for data showing decreasing pre-
cision with increasing n without recourse to the resource framework. Recent
work has therefore referred to ‘discrete resource’ and ‘continuous resource’
hypotheses [see Fukuda, Awh, and Vogel (2010)]. The underlying premise of
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the former is that slots are a kind of resource that are used in a quantized
manner, i.e. discrete sub-units of slots can be allocated flexibly to mem-
oranda [e.g. Zhang and Luck (2008)]. This hybrid approach accounts for
bilinear precision, since according to this hypothesis, the sub-units would be
spread more thinly with increasing n, but all would be occupied for n > K.

Conversely with Slot, Resource cannot account for bilinear capacity on
categorical report tasks, but accounts for monotonically decreasing precision
with increasing n on continuous report tasks (Bays et al., 2009). In its orig-
inal form (described above), Resource cannot account for bilinear precision,
but can do so with the addition of trial-to-trial noise in the amount of re-
source allocated to each item (van den Berg et al., 2012). Such trial-to-trial
variability has long been employed by hypotheses on cognition [e.g. per-
ceptual decision making (Carpenter & Williams, 1995; Brown & Heathcote,
2005)] and does not deviate in principle from the original Resource formula-
tion. Thus, we do not consider this approach to be a hybrid one. However,
the bilinear signal amplitude shown by EEG (Vogel & Machizawa, 2004) and
fMRI (Todd & Marois, 2004) studies on categorical report tasks poses a fun-
damental challenge to the resource framework, which can only account for
these data if the relevant resource can be continuously and partially allocated
to memoranda [see Fukuda et al. (2010)].

Neural models of WM storage limitations

Abstract models instantiating Slot and Resource have been invaluable in
characterizing WM storage limitations (Zhang & Luck, 2008; van den Berg
et al., 2012), but they do not speak to the neural mechanisms that may
implement their principles. In particular, these models do not account for
persistent activity, widely believed to instantiate WM storage [for discussion,
see Curtis and Lee (2010); D’Esposito and Postle (2015); Riley and Constan-
tinidis (2016); Christophel, Klink, Spitzer, Roelfsema, and Haynes (2015)].
A number of studies have used implementation-level models to address the
neural basis of capacity (Lisman & Idiart, 1995; Raffone & Wolters, 2001;
Tanaka, 2002; Macoveanu, Klingberg, & Tegnér, 2006; Edin et al., 2009;
Wei et al., 2012; Rolls, Dempere-Marco, & Deco, 2013). These models can
be divided into two classes, attributing capacity to fundamentally different
mechanisms. In one class, WM items are stored in oscillatory subcycles (e.g.
beta-gamma oscillations nested inside alpha-theta oscillations), where differ-
ent phases effectively isolate memoranda from one another (Lisman & Idiart,
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1995; Raffone & Wolters, 2001). As such, capacity is limited by the ratio
of high-frequency to low-frequency oscillations. This compelling possibility
relates feature-binding more broadly to WM (Raffone & Wolters, 2001), ac-
counting for the finding that capacity does not depend on the complexity
of WM items (Luck & Vogel, 1997; Awh, Barton, & Vogel, 2007) [though
see Alvarez and Cavanagh (2004); Brady, Konkle, and Alvarez (2011)]. No-
tably, phase separation is fully consistent with the notion of discrete slots,
and further accounts for data showing that different phases of gamma oscil-
lations contain information about different memoranda (Siegel, Warden, &
Miller, 2009). It is unclear, however, whether simultaneously-presented items
could be allocated different phases. If not, these models imply that differ-
ent WM mechanisms may encode simultaneously-presented and sequentially-
presented memoranda.

In the other class of implementation-level model, multiple WM items are
stored by attractor states (Tanaka, 2002; Macoveanu et al., 2006; Edin et
al., 2009; Wei et al., 2012; Rolls et al., 2013; Roggeman et al., 2013; Almeida
et al., 2015) i.e. the balance between recurrent excitation and feedback
inhibition allows a limited number of memoranda to co-exist over a delay
interval. A major difference between models of this class is the structure
of local-circuit connectivity, where different connectivity structures embody
different assumptions about the circuitry being simulated. In relation to
capacity, the upshot of these studies is that feedback inhibition necessarily
limits capacity [see Edin et al. (2009) for analysis], but the degree to which
it does so can be ameliorated by mechanisms that localize and strengthen
recurrent excitation.

Several of these studies also considered the neural basis of WM precision,
equating imprecision with ‘drift’, or the deviation of item-encoding popu-
lations from the target locations (Wei et al., 2012; Roggeman et al., 2013;
Almeida et al., 2015). In our model, drift actually decreased with n until
capacity was reached, but its magnitude was negligible. The mean difference
between drift on the 1-item task and on the n-item task corresponding to
maximum capacity was ∆d = 0.38 degrees across gain conditions (maximum
0.52 degrees), calculated as the mean difference between the position param-
eter (see Methods) and the target location over all accurately encoded items,
where ‘accuracy’ was re-calculated with C = 360/n/2. This re-calculation
provided maximum tolerance for deviations, allowing up to 180 degrees with
1 item, 90 degrees with 2 items, and so on. Thus, our model predicts that
drift has little bearing on WM precision under the task conditions simulated
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here. Interestingly, this prediction was also made by Almeida et al. (2015),
whose model showed no significant drift as memory load was increased from
1 to 4 equidistant targets (the range considered by their model). Their be-
havioural data confirmed this prediction for 3 and 4 equidistant targets (the
range considered by their experiments). Our model predicts that precision
will decrease from 1 to 3 items, before levelling off at higher n, not because
of drift, but because coding fidelity deteriorates until capacity is reached (3
items in this case). This discrepancy makes for good science: two models of-
fer different mechanistic explanations for the same data, but make a different,
testable prediction for a future experiment. Running this experiment would
provide important evidence for one hypothesis over the other, but a definitive
test requires neural data. Drift can be tested by constructing tuning curves
from electrophysiological recordings of persistent activity on multiple-item
WM tasks. To the best of our knowledge, no studies have done so, but we
are aware of one study to quantify drift in this way from single-item WM
data (Wimmer, Nykamp, Constantinidis, & Compte, 2014). These authors
reported no appreciable drift in the average tuning bias of prefrontal cortical
neurons prior to ∼ 2s (their Figure 3c). Thus, these data are in agreement
with our findings over the timescale considered here. Note that our results
were qualitatively unchanged with a 2s memory delay (not shown) and pop-
ulation width and drift remained severely limited (mean ∆d = 0.44 degrees).

The above differences between neural models largely reflect their connec-
tivity structures (our parameter values are justified in Methods). For exam-
ple, inhibition was unstructured in the model by Wei et al. (2012) (broad
inhibition only), so total pyramidal activity was invariant over memory load,
a finding that is fully consistent with Resource. In our model (with structured
and unstructured inhibition), total pyramidal activity during the statistics
window tracked K(n) on the memory task (Figure 5A and B), as did the total
(absolute) synaptic current (not shown). Our model is therefore consistent
with bilinear EEG (Vogel & Machizawa, 2004) and fMRI (Todd & Marois,
2004) signals respectively. Ultimately, WM storage limitations may reflect
constraints on the encoding, maintenance and/or decoding of memoranda
(Ma et al., 2014). Our results emphasise the discriminability, regularity and
reliability of persistent spiking as sources of WM imprecision, thereby impli-
cating maintenance and decoding; but we do not suggest that these factors
are the only sources of imprecision. Crucially, our study uses established
measures of coding fidelity for single-neuron data (SNR, CV and FF), so
our predictions for coding fidelity on multiple-item tasks are testable with
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single-neuron recordings.

Limitations of the model

Of course, our model has limitations. To begin with, it only considers the
spatial location of memoranda, ignoring other features and their conjunc-
tions. In effect, our simulations assume that everything encoded by PPC
satisfies a set of rules for selection. This approach is common among attrac-
tor models [e.g. Tanaka (2002); Macoveanu et al. (2006); Edin et al. (2009);
Wei et al. (2012); Almeida et al. (2015)] and is justified in studies focused
on storage limitations, i.e. it focuses on the mutual influence of persistently-
active neural populations, regardless of the features or rules that lead to their
initial activation. As noted above, models in which memoranda are stored in
oscillatory subcycles can account for feature binding with sequentially pre-
sented stimuli (Lisman & Idiart, 1995; Raffone & Wolters, 2001). A more
general understanding of feature-bound memoranda will likely require hier-
archical models with converging feature maps. Such models have the further
potential to explain the neural basis of ‘swap errors’, where subjects report
the feature value of a WM item other than the one probed [see Bays (2016)].
Hierarchical models also have the potential to explain the flexibility of WM
precision, that is, the finding that one item can be maintained with higher
precision than the others, but at a cost to those other items [see Ma et al.
(2014)]. This finding points to the relationship between WM and attention,
and to the modulation of item-encoding populations in distributed circuitry.
These and related phenomena are beyond the scope of the present study, the
focus of which is the mechanistic relationship between capacity and precision.

Finally, it is worth noting that our study is part of an ongoing research
program investigating the neural basis of WM storage limitations with NHP
subjects, in which in vivo electrophysiological recordings can be made dur-
ing WM tasks. Thus, our simulations are purposefully constrained by our
experiments, e.g. our use of equidistant targets [see Heyselaar et al. (2011)
for justification]. This approach facilitates the testing of our predictions for
single-neuron activity. In recent years, several studies have used categori-
cal report tasks with NHP subjects [e.g. Heyselaar et al. (2011); Elmore et
al. (2011); Lara and Wallis (2012)], but we are unaware of any studies to
use continuous reports tasks with a non-human species. Future work must
address this challenging gap.
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Conclusions

While recent studies have investigated neural mechanisms for WM capacity
and precision (Wei et al., 2012; Roggeman et al., 2013; Okimura, Tanaka,
Maeda, Kato, & Mimura, 2015), to the best of our knowledge, no previous
study has proposed a neural mechanism for precision under the principles of
Resource that also accounts for persistent activity. Studies have proposed
that Resource is implemented by the gain of item-encoding populations (van
den Berg & Ma, 2014) and by divisively-normalized probabilistic spiking
(Bays, 2014), but these studies have taken persistent activity for granted,
i.e. they did not address the mechanisms by which an unlimited number
of low-gain or divisively-normalized neural populations would be sustained
over a memory delay. As described above, nested oscillations and attrac-
tor dynamics constrain capacity, so other mechanisms would be required.
Our simulations without broad inhibition (Figure 5F-J) are instructive in
this regard, since limiting competition rendered coding fidelity independent
of memory load. In other words, the very mechanism that might allevi-
ate Resource from strong capacity constraints rendered coding fidelity less

resource-like. This conundrum points to the need for continuous report tasks
with set sizes that significantly exceed estimates of capacity on categorical
report tasks. Such large set sizes can have significant effects on capacity [e.g.
12 items (Matsuyoshi et al., 2014)] and may provide insight into its mech-
anistic relationship with precision. This relationship has received much less
attention than each of its elements. In this regard, tremendous insight into
WM capacity and precision has been gleaned from studies focusing on their
differences, guided by the principles of Slot and Resource respectively. Our
study suggests that their commonalities may be just as informative.
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