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Abstract 

We present here novel computational techniques for tackling four problems related to analyses 

of single-cell RNA-Seq data: (1) a mixture model for coping with multiple cell types in a cell 

population; (2) a truncated model for handling the unquantifiable errors caused by large 

numbers of zeros or low-expression values; (3) a bi-clustering technique for detection of sub-

populations of cells sharing common expression patterns among subsets of genes; and (4) 

detection of small cell sub-populations with distinct expression patterns. Through case studies, 

we demonstrated that these techniques can derive high-resolution information from single-cell 

data that are not feasible using existing techniques. 

 

Introduction 

Single cell sequencing represents a new generation of sequencing technique, allowing the 

capture of genomic and transcriptomic differences in a cell population, consisting of possibly 

different cell types. Compared to the currently available RNA-Seq data for tissue samples such 

as those in the TCGA database [1], which measure the averaged expression levels of genes 

across all the cells, single-cell RNA-Seq data contain gene-expression levels of individual cells, 

hence enabling studies of behaviors of individual cells or cell types as well as their complex 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 27, 2017. ; https://doi.org/10.1101/181362doi: bioRxiv preprint 

mailto:qin.ma@sdstate.edu
mailto:czhang87@iu.edu
https://doi.org/10.1101/181362


interactions under specific conditions. Using cancer as an example, such new data will enable 

studies of a wide range of issues that are currently infeasible such as (1) how stromal and some 

immune cells co-evolve with the diseased cells under persistent stressful conditions such as 

oxidative stress or acidosis; (2) what specific conditions each key cancer-related mutation such 

as TP53 or Ras mutation is selected in specific tissues to overcome, hence gaining detailed 

understanding of how selected mutations contribute to the development of a cancer; and (3) 

what specific conditions, as reflected by the expression levels of some genes in some cell types, 

drive a cancer to metastasize.  

The single-cell sequencing technique has been applied to study various challenging 

biological problems in the past few years, such as studies of stem cell differentiation trajectories 

[2], embryonic development [3-7], distinctive cellular responses to external stimuli [8], lineage 

hierarchy construction in a whole tissue [9], intra-tissue heterogeneity [10-12], and cancer 

metastasis origin using circulating tumor cells (CTCs) [13], all of which are feasible only 

because of the single cell sequencing technique. 

Along with these new exciting possibilities also come new challenges in effectively 

analyzing and interpreting single-cell data. We have identified a number of challenges based on 

our own experience in using such data, which, we believe, are of fundamental importance and 

practical generality. Here we present our developed novel techniques to address four such 

problems. The first challenge is that a target cell population may consist of multiple cell types, 

suggesting the high possibility of genes showing different behaviors in different cell types, 

hence the need for a mixture model of multiple distributions for each gene [14, 15]. Some work 

has been done on this particular issue. For example, Shalek et.al modeled single cell RNA-Seq 

data by using a bimodal distribution, in which an expression threshold is applied to distinguish 

samples that significantly express a gene from those that do not [8]. This over-simplistic 

approach has a number of intrinsic issues such as a gene’s expression pattern could be of more 

than two peaks, which has limited its applications. The second challenge lies in the 

unquantifiable errors in the large number of observed zeros or low expression values in a single-

cell expression profile, causing traditional Gaussian models not directly applicable. A third 

challenge was to detect sub-populations of cells sharing common expression patterns by some 

(to be identified) subsets of genes, which may represent different subtypes of cells that have 
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not been previously characterized. For example, our previous study has discovered that cancer 

tissues in general consist of two distinct cancer cell types, one being more anaerobic and the 

other being more like normal (aerobic) cells [16]. Our own experience has been that detection 

of sub-populations of cells sharing common expression patterns of some genes represents a 

widely encountered problem, and in general it can be modeled as a bi-clustering problem. A 

fourth challenge lies in detecting relatively small cell sub-populations with significantly distinct 

expression patterns. Principle component analysis (PCA) has been a popular approach to 

tackling this problem [17, 18]. However the basic assumption needed for using PCA, namely 

the orthogonality assumption may not be accurate since all cell types in a tissue are generally 

not orthogonal in their expressions; instead they are likely to be related. 

In this paper, we present a mixed Gaussian distribution with left truncated assumption, 

named LTMG, to model the single cell RNA-Seq data to address the first two challenges. To 

the best of our knowledge, this model is the first rigorous statistical model to fit gene expression 

profiles with a large number of zeros/low expression data that can accurately capture the 

expression patterns of a gene through multiple single cells. We also developed a procedure for 

converting a mixed Gaussian distribution into a binary, 1/0, string, representing genes being 

differentially expressed or not, on a scientifically sound basis for bi-clustering analysis using 

our in-house bi-clustering tool QUBIC [19]. This novel bi-clustering procedure proves to be 

especially effective in coping with time- and/or location-dependent single-cell data. The mixed 

Gaussian distribution also makes it apparent whether a cell is overly expressing a specific gene, 

which provides a basis for identification of small cell population bearing rare biological 

characteristics. We have implemented these novel techniques as a computer analysis pipeline, 

and demonstrated the effectiveness of these techniques and the pipeline through conducting 

three case studies.  

 

Results 

Analysis pipeline for transcriptomic data 

In this study, we developed a novel distribution to fit single-cell gene-expression profile 

under multiple conditions, along with an analysis pipeline LTMG-QUBIC, based on the 

distribution, for identifying significantly expressed genes in individual cells, clusters of cells 
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with similar expression profiles over a (not pre-defined) subset of genes, and outlier cells 

showing high expressions in a distinctively large number of genes.  

The analysis pipeline consists of four steps, as illustrated in Figure 1: (I) log-transformed 

RPKM (Reads Per Kbp of transcripts) [20] values of each gene measured from single cell RNA-

Seq experiment is first fitted by a Left Truncated Mixed Gaussian (LTMG) distribution; (II) the 

fitted model is then applied to evaluate significantly expressed genes and outlier cells; (III) the 

fitted distributions are then used to identify statistically significant bi-clusters in a specified 

dataset using our in-house bi-clustering tool QUBIC; and (IV) functional enrichment analysis 

is applied to infer the functional characteristics of individual cells and bi-clusters. More details 

of the analysis pipeline are listed as follows. 

Figure 1. The analysis pipeline. (A) Left truncated mixed Gaussian distribution to fit the log-

transformed RPKM single-cell gene expression profile. In the histogram of the log-transformed RPKM 

gene expression data, the left most bar shows the number of left censored data while the red and green 

curves represent the two Gaussian distributions identified by using our LTMG model. (B) The left panels 

show the gene expression profile of one significantly expressed gene (upper) and one non-expressed gene 

(lower) with estimated mean value smaller than threshold Zcut; the right panel shows a heatmap of the 

gene expression data of outlier and non-outlier samples, in which low and high expressions are 

represented by red and blue colors, respectively. (C) Identified significant bi-clusters using QUBIC, 
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where the heatmap shows the gene expression data of two identified bi-clusters. (D) Pathway enrichment 

analysis is applied to capture high-level functions of each identified bi-cluster. The left panel shows genes 

significantly enriched in certain pathways and the right presents the spatial pattern of the samples in one 

bi-cluster identified in the spatial transcriptomic data. 

 

Step I: Mixed Gaussian model with left truncation assumption to model single cell RNA-Seq 

profile: 

Single cell RNA-Seq samples collected under different conditions may give rise to an 

expression distribution with more than one peak for each gene [14, 15]. Hence a mixed 

distribution needs to be employed to model an expression profile across multiple cell types, 

especially for genes that only express in some subsets of the RNA-Seq samples [21]. Noting 

the large number of zero values in single cell RNA-Seq data may cause unquantifiable errors 

in fitting the distribution to the expression profile, we employed a left truncation assumption to 

model the log-transformed RPKM expression values by mixed Gaussian distributions [22]. 

Specifically, the expression values lower than a threshold are treated as left censored data when 

the gene expression profile is fitted using a mixed Gaussian distribution as shown in Figure 1A. 

The detailed information regarding how a gene-expression profile is fitted by a mixed Gaussian 

distribution with left truncation assumption using the EM algorithm is given in the Material and 

Methods section. 

 

Step II: Identification of significantly expressed genes and outlier samples 

One challenging problem in single cell RNA-Seq data analysis is to determine if a gene is 

truly expressed when small PRKM values are observed. Using our LTMG model, a gene is 

considered as significantly expressed when the mean of the fitted distribution is greater than a 

preselected threshold when the distribution has only one peak, or the distribution has more than 

one peak. More details about the gene-specific threshold for significant expression is given in 

the Material and Methods section. The non-expressed genes were excluded from further 

analyses. 

Another challenging issue in single cell RNA-Seq data analyses is to reliably identify 

outlier cells defined by cells with a large number of highly expressed genes, and such samples 
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may represent certain rare events such as stem cells or early response to stimuli in the immune 

system as in our case studies. Since the expression profile of each gene has its mixed Gaussian 

distribution, thus for any individual sample, we can assess whether its expression of the gene 

is significantly high by computing the probability of obtaining an expression value equal or 

greater than what was actually observed for the sample based on the fitted distribution. By 

doing this, we can count the number of genes with significantly high expression in each sample, 

and an outlier sample is called if it has significantly large number of such highly expressed 

genes, and the significance of such an observation can be evaluated by using permutation tests. 

(See the Material and Methods section for details). 

 

Step III: Bi-clustering analysis to identify significant co-expression patterns 

 It has been well recognized that bi-clustering analyses are essential to discovery of novel 

biological pathways and functionally associated genes, which offer more powerful analysis 

capabilities than the traditional one-dimensional clustering techniques [23]. The key idea is to 

find subsets of all genes and subsets of all cells that exhibit common expression patterns. Here 

we convert each gene-expression level to a binary number, 0 or 1, representing no or differential 

expression as required by our bi-clustering software QUBIC, based on a rule detailed in the 

Material and Methods section. Then a bi-cluster is defined as an all “1” sub-matrix of the 0/1 

matrix representing the expression levels of genes (rows) in specific cells or under specific 

conditions (columns). 

 

Step IV: Linking bi-clusters to cell type or spatial specific expression patterns 

 Genes and conditions in each identified bi-cluster are then analyzed by pathway 

enrichment analyses to infer higher-level functional information associated with specific cells 

or cell groups. 

 

Application of the analysis pipeline on single cell and spatial transcriptomic data 

We applied our analysis pipeline on three recently published datasets: (1) GSE48968, a 

single-cell RNA-Seq time-course dataset of 1,700 primary mouse dendritic cells treated with 

three pathogenic agents and multiple control experiments [24]; (2) GSE57872, a single cell 
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RNA-Seq dataset of 430 glioblastoma cells isolated from five distinct tumors with known 

clinical information [12]; and (3) GSE60402, an bRNA-Seq dataset of laser-capture micro-

dissected tissue cubes from the medial ganglionic eminence of wild-type and GFRa1 mutant 

mice where each cube containing ~100 cells was treated as a single cell with detailed spatial 

coordinates [25]. More detailed information on the three datasets could be found in the Material 

and Methods section. Each of the three datasets contains multiple sub-datasets collected under 

different conditions as summarized in Table 1 with more detailed information given in 

Supplementary Table S1-S3. The numbers of significantly expressed genes, outlier samples and 

bi-clusters were identified using the analysis pipeline on each sub-dataset. 

 

Table 1. The numbers of significantly expressed genes, genes with multiple distribution peaks, 

outlier samples, and bi-clusters in each analyzed data set.  

Data ID 

#significant

ly expressed 

genes 

#genes with 

multiple 

distribution 

peaks 

#significant 

outlier 

samples 

#significant 

bi-clusters 

GSE60402-Mutant 8,589 8,497 24 37 

GSE60402-Wildtype1 6,957 6,887 12 40 

GSE60402-Wildtype2 8,600 8,490 15 120 

GSE57872-MGH26 4,490 3,823 7 44 

GSE57872-MGH28 5,426 4,768 17 131 

GSE57872-MGH29 5,558 4,339 16 43 

GSE57872-MGH30 5,425 4,698 16 17 

GSE57872-MGH31 5,146 4,062 12 42 

GSE57872-ALL 5,814 5,584 109 460 

GSE48968-LPS 9,980 9,872 123 51 

GSE48968-PAM 8,451 8,307 71 24 

GSE48968-PIC 8,834 8,697 90 17 

 

GSE48968  

 We first used our LTMG model to analyze the single cell time-course RNA-Seq data of the 

1,700 primary mouse dendritic cells (DCs) collected at 1h, 2h, 4h and 6h after treatment with 

three pathogenic agents, namely LPS (lipopolysaccharide), PAM (synthetic mimic of bacterial 

lipopeptides) and PIC (viral-like double-stranded RNA) and untreated controls [24]. On 

average, 9,088 genes were found to be significantly expressed, 94 outlier cells and 31 bi-clusters 
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are identified in the three pathogen-treated datasets. One question raised in the original work is 

to identify the genes with significant bimodal distributions. By our LTMG model, 52.21% 

(7306/13991) genes were fitted as bimodal and 18.34% (2566/13991) genes are fitted as 

multimodal distribution in the data of LPS treatment while the percentages are 52.95% 

(6951/13127) and 10.32% (1356/13127) in the PAM data and 52.46% (7152/13632) and 11.33% 

(1545/13632) in the PIC data, respectively (see Table 1). This shows the advantage of our 

method assuming a variable number of peaks for single cell gene expressions compared with 

the original study. 

Principle component analysis was applied in the original study to identify time-dependent 

immune responses by assuming a fixed number of time-dependent patterns. However, the 

number of true time-dependent patterns could be much larger than the estimated fixed number. 

By applying our LTMG-QUBIC analysis, all the possible time-dependent immune responses 

were comprehensively identified by bi-clustering analyses that simultaneously cluster genes 

and cells sharing a common time-dependent pattern. In total, 51, 24 and 17 statistically 

significant bi-clusters were identified in the datasets treated with LPS, PAM and PIC, 

respectively. For each bi-cluster, the Fisher exact test was conducted on its constituting samples 

to assess if significant over-representation by any time points could be found within the bi-

cluster. For those bi-clusters showing significant association with the time-course, a pathway 

enrichment analysis on genes of the bi-cluster is conducted to infer the biological characteristics 

of the bi-cluster. At the end, 30 bi-clusters that are significantly over-represented by one or 

several consecutive time points have been identified in the LPS dataset using 𝛼=0.005 as the 

significance cutoff and six of them with distinct time dependence (p<1e-22) are presented in 

Figure 2. 

Specifically, bi-cluster BC013 consists of untreated samples and samples collected at 1h 

after LPS treatment, which represents the earliest response to LPS, and enriches multiple 

immune response pathways such as T-cell activation and interleukin signaling pathway (Figure 

2A). Bi-cluster BC005 consists largely of untreated samples and samples collected at 1h and 

2h after the LPS treatment, which also enrich immune response pathways but more responses 

to virus, T cell chemotaxis, NK cell activation, and regulation of NF-kB (Figure 2B), 

representing further responses compared to BC013. The immune response pathways enriched 
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in these two bi-clusters suggest that the immune response is the earliest response to the LPS 

treatment in dendritic cells. BC009 (Figure 2C) and BC001 (Figure 2D) are enriched by 

samples collected at 1h and 2h after the LPS treatment, which include a wider range of stress-

response pathways such as hemostasis, apoptotic mitochondrial changes, glucose metabolism, 

lipid and fatty acid metabolism, NOTCH, P53 and HIF signaling and immunological synapse 

formation pathways, suggesting that the activation of stress response pathways and altered 

metabolisms as secondary responses after the early immune response. BC025 (Figure 2E) is 

enriched with samples collected at 4h and 6h after the LPS treatment, whose genes enrich 

pathways of NOTCH transcription and translation, NIK/NF-kB signaling, regulation of cell 

migration, endothelial cell morphogenesis, hematopoietic progenitor cell differentiation, and 

regulation of stress-activated MAPK cascade. Another bi-cluster BC002 consists of largely 

samples collected at 4h and 6h after the LPS treatment with genes that enrich pathways related 

to growth factor binding, lipopolysaccharide-mediated signaling, cell membrane, cell junction, 

cell-cell adhesion, leukocyte chemotaxis, and calcium ion homeostasis pathways (Figure 2F). 

In addition, both BC025 and BC002 genes enrich pathways associated with alterations in cell 

morphogenesis, migration and cell-cell junction. Overall these observations suggest that our 

analysis is capable of identifying all the major responses to the LPS treatment in a time-

dependent manner. Detailed pathways enriched by the six bi-clusters are given in Figure 2. 

Similarly, time-dependent immune responses are identified from 11 and 13 time-course 

associated bi-clusters in the PAM and PIC datasets. The detailed information of these bi-clusters 

is given in Supplementary Figure S1 and Supplementary Table S1. 

Another key question addressed in the original study of this dataset is to identify cells 

showing early response to the pathogens at each time point. As a comparison, we pooled the 

samples at two adjacent time points (unstimulated and 1h, 1h and 2h, 2h and 4h, and 4h and 6h) 

with the same pathogenic agent treatment, and applied the analysis pipeline on four pooled 

datasets. In total, three, three, seven and one significant outlier cells are identified in the datasets 

collected at 1h, 2h, 4h and 6h after the LPS treatment, respectively. Pathways enriched by the 

significantly expressed genes in the outlier cell samples include cell’s response to interleukin 

and interferon signaling, ion homeostasis and cell-cell junction, suggesting that these outlier 

cells represent stronger response to the LPS treatment comparing to the other cells at the same 
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time interval. Similarly, outlier cell samples responding to PAM and PIC treatments are also 

identified. Specifically, two outlier cells show early immune response with highly expressed 

immune responsive pathways among the 2h cells in the PAM data and 1h cells in the PIC data, 

which are consistent with the reported results in the original study. The detailed information of 

the identified outlier samples is given in Supplementary Table S1. 

 

 

Figure 2. Time-dependent distribution of samples and enriched pathways by genes in six selected 

bi-clusters identified in the LPS data. In each panel, the five bars from left to right show the proportion 

of the untreated samples and samples collected at 1h, 2h, 4h and 6h after the LPS treatment. 

 

GSE57872 

 We then applied our pipeline on the dataset of 430 single-cell samples collected from five 
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glioblastoma tumors to allow a systematic characterization of intra-tumor and inter-tumor 

variability as well as identification of stem-like cells. Specifically, our bi-clustering analysis of 

the data set of each tumor captures the intra-tumor variability associated gene co-expression 

patterns while inter-tumor variability associated co-expression patterns were identified by using 

the data from all five tumors. Outlier identification method was then applied to target stem-like 

cells. On average, 87.58%(5,209/5,948) genes are identified as significantly expressed gene, 14 

cells are predicted as outliers and 35 bi-clusters are identified in the dataset of each tumor while 

97% (5,814/5,948) significantly expressed genes with 109 outliers and 679 bi-clusters are 

identified in the merged data set (Table 1). It is noteworthy that only 5,948 genes were measured 

in the original study. 

 The most frequently observed pathways in the above bi-clusters are related to cell cycle 

phases, glucose, fatty acid, amino acid and glycan metabolisms and hypoxia response genes, 

suggesting that the intra-tumor variability is majorly reflected on the cell proliferation and 

metabolism level, which is consistent with the original report of the dataset [12]. In addition, 

our method identified numbers of novel pathways showing significant intra-tumor variability 

in each tumor including proteasome and NF-kB activation in MGH26, cellular export 

machinery, N-linked glycosylation and post translational modification in MGH28, mRNA 

decay, cellular export machinery and steroid synthesis in MGH 29, cholesterol biosynthesis, 

cellular export machinery and MYC pathway in MGH30, and proteasome, amino acid 

metabolism and regulation of apoptosis in MGH31. 

 460 statistically significant bi-clusters were identified in the pooled dataset, in which 413 

were significantly enriched by samples from one or several tumors (tested by the Fisher exact 

test with p-value < 0.005) that are considered as inter-tumor variability associated gene 

expression patterns. Pathway enrichment analyses on these bi-clusters revealed that the most 

frequently observed inter-tumor variability associated pathways cover TP53 signaling, EGFR 

signaling, MTOR and AMPK signaling, glycosaminoglycan metabolism, cell cycle, lipids 

metabolism, cell adhesion, apoptosis, immune response and central metabolism pathways. 

Specifically, glycolysis and TP53 signaling pathways are identified in one bi-cluster 

corresponding to tumor MGH29 with TP53 mutation. EGFR signaling, G2-M phase in cell 

cycle and lipid metabolism pathways are identified in bi-clusters composed of samples from 
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MGH26 and MGH31, both of which harbor copy number variations of EGFR. Cells from 

MGH28 and MGH29 with wild type EGFR show distinct expression patterns in the pathways 

of immune response, CD8 T cell and MHC class 1 complex, compared with the rest of the 

tumors in the dataset. Bi-clusters corresponding to the samples in MGH26, MGH29, MGH28, 

MGH28_29_30, MGH26_31, MGH26_28_31, MGH29_30, MGH28_29, and MGH26_30_31 

with enriched pathways are selected and presented in Figure 3. 

We identified  approximately 14 outlier cells in the data of each tumor. In each of the five 

tumors, 4-8 outlier cells are enriched by highly expressed cell cycle genes and at least one cell 

with highly expressed stem cell marker genes. In addition, the most frequently observed 

pathways that are enriched by the highly expressed genes in outlier cells include: innate immune 

response and interferon gamma signaling, TCA cycle and electron respiration chain, cell cycle 

and stem cell marker. 

 

Figure 3. Enriched pathways of genes in selected bi-clusters identified in GSE57872 dataset, and 

the tumor tissues that the samples in these bi-clusters come from. The heatmap represents the 

proportion of the samples in each tumor identified in each bi-cluster with color key given in the right. 

 

GSE60402 

This dataset contains samples dissected from three mouse medial ganglionic eminence 

tissues with known spatial coordinates that enable the analysis of location-dependent 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 27, 2017. ; https://doi.org/10.1101/181362doi: bioRxiv preprint 

https://doi.org/10.1101/181362


characteristics such as cell differentiation trajectories in neuron development. Each biological 

sample in the dataset contains approximately 100 cells, which were treated as a single cell when 

generating their transcriptomic data (see Material and Methods). Our bi-clustering and outlier 

analysis were applied on the dataset to identify location-dependent cell clusters and spatial 

distribution of cells showing unique expressions of neuron development related genes. Our 

analysis identified 75.67% (8,048 out of 10,037) genes as significantly expressed, 17 outlier 

cells and 136 bi-clusters out of the three datasets corresponding to the three different mice (See 

Table 1 for details). 

 37, 40, and 120 bi-clusters were identified in the mutant, wild type 1 and wild type 2 

datasets, respectively, and analyzed regarding the spatial distribution of cells in each bi-cluster. 

All the four spatial clusters with distinct expression patterns by cell cycle, cell morphogenesis 

and neuron development genes, as reported in the original study, were identified by our bi-

clustering and pathway-enrichment analysis (Figure 3A, 3C) [25]. In addition, our method 

discovered more distinctions across the four clusters as follows: cytokine-cytokine receptor, 

mitochondrial fatty acid beta oxidation, phospholipid metabolism, telomere maintenance, 

galactose metabolism, histidine metabolism, O-linked glycosylation, ribosome, spliceosome, 

and circadian. 

In addition to the four major clusters, more than 50% of the identified bi-clusters tend to 

contain samples from nearby spatial locations. Our analysis has identified 19, 23 and 48 

additional bi-clusters with samples covering cells in adjacent spatial regions in the three data 

sets as shown in Supplementary Figure S2. Pathway enrichment analysis revealed that these bi-

clusters mostly enrich pathways of TCA cycle, respiratory electron transport, oxidative 

phosphorylation, signaling by WNT, Huntington’s disease, Alzheimer’s disease, Parkinson’s 

disease, regulation of apoptosis, chromatin modification, cell-cell adhesion, and translation, 

suggesting spatial dependent variabilities of these pathways. 

 12, 15 and 24 significant outlier samples were identified in the mutant, wildtype 1 and 

wildtype 2 data, respectively. Pathway enrichment analysis revealed that most of these outliers 

have highly expressed genes that enrich the cellular functions such as histone H3 tri-

methylation marker at K27, high-CpG-density promoters (HCP) with un-methylated histone 

H3, stem cell markers, cell cycle, oligodendrocyte development and differentiation, suggesting 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 27, 2017. ; https://doi.org/10.1101/181362doi: bioRxiv preprint 

https://doi.org/10.1101/181362


a possible association between stem properties and specific methylation pattern of H3. It is 

noteworthy that the outliers with highly expressed stem cell markers tend to be located at the 

intermediate region between two adjacent (or overlapping) bi-clusters in the three datasets as 

shown in Figure 3B and 3D. Our interpretation is that these location-dependent expression 

patterns may be caused by parallel and independent differentiations from common stem cells. 
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Figure 4. The spatial coordinates of samples in identified bi-clusters and outlier samples in the wild 

type 1 (A and B) and wild type 2 (C and D) datasets. A) The spatial coordinates of samples in the four 

bi-clusters identified in wild type 1 single cell samples. Colors red, green, cyan and dark blue represent 

samples in four different bi-clusters. B) In addition to the coordinates of bi-cluster samples, the yellow 

cubes represent significant outlier samples. C) The same information as in A) except the samples are 

from wild type 2 mouse. D) The same information as in D) except the samples are from wild type 2 

mouse. 

 

Conclusion 

A computational analysis pipeline for single-cell RNA-Seq data has been developed and 

presented here. The pipeline consists of four novel methods for tackling challenging analysis 

problems of single-cell RNA-Seq data, including (1) effective modeling of multimodal gene-

expression profiles across multiple cell types; (2) handling the unquantifiable errors due to the 

large number of zeros and low-expression levels often observed in single-cell RNA-Seq data; 

(3) reliable and efficient identification of sub-populations of cells sharing common expression 

patterns by some not pre-selected genes; and (4) detection of relatively small cell sub-

populations with significantly distinct gene expression patterns. We fully anticipate that these 

techniques and the analysis pipeline will prove to be a useful resource to the analysts and users 

of single-cell RNA-Seq data in their tissue- or other mixed cell population based studies.  

 

Discussion 

Single-cell sequencing has enabled new transcriptome-based studies, including study of 

distinct responses by different cell types in the same population when encountered by the same 

stimuli or stresses, and identification of the complex relationships among different cells in 

complex biological environments such as tissues. In this paper, we presented a novel 

computational method for analyses of single-cell based transcriptomic data, which allows to 

reliably address the following types of questions: (1) which genes in which cells show responses 

to specific stimuli, through reliable detection of differentially expressed genes in specific cells 

or cell types; (2) how a cell sub-population responds to specific stimuli, in terms of the common 

responses by the whole cell sub-population, detected through bi-clustering analyses, as well as 
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outlier responses by small subsets of the sub-population; and (3) location and time-dependent 

cellular responses. To address these issues reliably, we have to overcome a number of technical 

challenges.  

A key challenge lies in that a target cell population may consist of multiple cell types, 

suggesting the high possibility of genes showing different behaviors in different cell types. Our 

mixed Gaussian distribution assumes variable expression patterns for each gene, and effectively 

captured as much expression patterns as possible of through multiple single cells. 

A second challenge arises when the large number of observed zeros or low expression 

values causes unquantifiable errors in a single cell expression profile, making traditional 

Gaussian models not directly applicable. This issue is handled through left truncating a 

Gaussian distribution and treating these truncated values as missing data. To the best of our 

knowledge, our left truncated mixed Gaussian model is the first rigorous statistical model to fit 

gene expression profiles with a large number of zeros/low expression data, which can 

accurately capture the expression patterns of a gene across different cell types  

A third challenge, in our view, is to address the need for answering: how different (not pre-

determined) sub-populations of cells respond differently to specific stimuli. In essence, this is 

to solve a bi-clustering problem. We have previously developed a computational program 

QUBIC, now widely used for solving a bi-clustering problem. In the current study, we 

developed a procedure for converting a mixed Gaussian distribution into a binary, 0/1, string, 

to represent no or differentially expressed genes as required by the QUBIC program for bi-

clustering analyses. Notably, we extended the bi-clustering analyses to include a new capability 

to capture co-expressed genes in a time- or location-dependent manner. Our case studies show 

that the integration of our model with the QUBIC bi-clustering method works well with single 

cell RNA data under multiple treatment conditions and/or in a temporal/spatial dependence 

manner. 

A fourth challenge is to detect relatively small cell sub-populations with significantly 

distinct gene expression patterns. Our mixed Gaussian distribution allows for rigorously 

assessing the statistical significance in observing high expression of a gene in a sample. 

By integrating these novel capabilities, we developed a computational pipeline for 

handling single-cell RNA-Seq data in an automated manner, hence allowing application of our 
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new analysis tools to large quantities of single-cell data through web-based server techniques, 

which is currently under construction, aiming to serve a large user community. 

Through three case studies, we demonstrated that (1) our new method can not only detect 

what the original study of each of the three datasets detected, but also offer new information 

not provided by the original studies; (2) our novel distribution for modeling single-cell gene 

expression profiles provides a statistically rigorous model for single-cell gene expression data 

across different cell types, and offers an effective framework for identification of outlier cells 

bearing rare biological characteristics; (3) our bi-clustering method proves to be capable of 

handling expression data with complex experimental conditions, including both temporal or 

spatial information. 

Through utilizing time-dependent data, our analysis has identified a cascade of immune 

responses to the external pathogenic treatment. On the glioblastoma data, our analysis detected 

stem-cell related functionalities as well as intra-tumor variabilities represented by cell 

proliferation and central metabolism and distinct inter-tumor variability as reflected by 

glycosaminoglycan metabolism and cell growth signals. On the spatial transcriptomic data, we 

discovered spatially adjacent single cells may have high co-expression patterns, and particularly, 

two distinct spatially clustered cells may be originally derived from the same stem cell. 

 

Material and Methods: 

Data selected in the analysis 

Datasets GSE57872 and GSE58968 are downloaded from the GEO database and raw reads 

of GSE60402 are retrieved from SRA database [26, 27]. The RPKM values for the first two 

datasets are available from the GEO database, and the RPKM values for GSE60402 were 

calculated by using software packages TopHat [28] and Cufflink [29]. All these single-cell 

datasets have large sample sizes, and are collected using the latest experimental protocols. Each 

dataset is split into multiple subsets based on experimental conditions, each of which was 

analyzed separately. The detailed information of the selected and split datasets are listed in 

Table 3. 
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GEO 

Accession 

ID 

Data ID Description 

Number  

of 

samples 

Number  

of genes 

GSE60402 GSE60402-Mutant From Gfra1 mutant sample 94 11094 

GSE60402 GSE60402-Wildtype1 From wild type mouse 1 124 10037 

GSE60402 GSE60402-Wildtype2 From wild type mouse 2 94 10714 

GSE57872 GSE57872-MGH26 From Tumor sample MGH26 53 5948 

GSE57872 GSE57872-MGH28 From Tumor sample MGH28 94 5948 

GSE57872 GSE57872-MGH29 From Tumor sample MGH29 75 5948 

GSE57872 GSE57872-MGH30 From Tumor sample MGH30 73 5948 

GSE57872 GSE57872-MGH31 From Tumor sample MGH31 70 5948 

GSE57872 GSE57872-ALL Complete GSE57872 data set 430 5948 

GSE48968 GSE48968-LPS LPS treated cell with control 527 13991 

GSE48968 GSE48968-PAM PAM treated cell with control 325 13127 

GSE48968 GSE48968-PIC PIC treated cell with control 419 13632 

Table 3. Data information. 

 

Log-mixed Gaussian model with left truncation assumption to model the expression profile of 

each gene measured using the RPKM normalized expression level 

To accurately model the gene expression profile of single cell data, we specifically 

developed a mixed Gaussian model with left truncation assumption to fit the log transformed 

gene expression measured by RPKM. Mixed Gaussian distribution has been widely applied to 

model multiple peaks in gene expression data, and the model fits very well the single-cell 

transcriptomic data where a large number of genes express only in some subsets of all the 

samples in each dataset [30]. Noting that the error of the RPKM expression level at zero or the 

low-expression values does not fit a normal distribution, we have therefore introduced a left 

truncation assumption when fitting the mixed Gaussian model [22]. 

Denoting the observed log-transformed RPKM expression level of gene X over N cells as 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁). We assume that 𝑥 ∈ 𝑋 follows a mixture Gaussian distribution with K 

components corresponding to K possible peaks and the density function of X is: 

𝑝(𝑋|Θ) = ∏ 𝑝(𝑥𝑗|Θ) = ∏ ∑ 𝑎𝑖𝑝𝑖(𝑥𝑗|𝜃𝑖) = ∏ ∑ 𝑎𝑖

1

√(2𝜋𝜎𝑖)
 = 𝑒

−
(𝑥𝑗−𝜇𝑖)

2

2𝜎𝑖
2

𝐾

𝑖=1

𝑁

𝑗=1

𝐾

𝑖=1

𝑁

𝑗=1

𝑁

𝑗=1

= 𝐿(Θ|𝑋) 

where parameters Θ = {𝑎𝑖, 𝑢𝑖 𝜎𝑖 | 𝑖 = 1 … 𝐾} and 𝑎𝑖 , 𝑢𝑖 𝑎𝑛𝑑 𝜎𝑖 are the proportion, mean and 

standard deviation of each Gaussian distribution, respectively, which can be estimated by the 

EM algorithm with given datasets X: 
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Θ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥Θ 𝐿(Θ|𝑋 )  

To model the errors at zero and the low expression values, we introduce a parameter Zcut 

for each gene expression profile and consider the expression values smaller than Zcut as left 

censored data [22]. With the left truncation assumption, the gene expression profile are split 

into M truly measured expression value (> Zcut) and N-M left censored gene expressions (≤

Zcut) for the N conditions. Latent variables 𝑦𝑖  and  Zj are introduced to estimate  by the 

following Q function and using the EM algorithm: 

𝒬(Θ, Θ𝑡−1) = ∑ ∑ 𝑙𝑜𝑔(𝑎𝑖𝑝𝑖(𝑥𝑗|𝑢𝑖, 𝜎𝑖))𝑝(

𝑀

𝑗=1

𝐾

𝑖=1

𝑦𝑗 = 𝑖|𝑥𝑗, Θ𝑡−1) 

+ ∑ ∫ ∑ 𝑙𝑜𝑔(𝑎𝑖𝑝𝑖(𝑍𝑗|𝐾
𝑖=1

Zcut

−∞
𝑁
𝑗=𝑀+1 𝑢𝑖, 𝜎𝑖))𝑝(𝑦𝑗 = 𝑖|𝑍𝑗 , Θ𝑡−1)𝑝(𝑍𝑗|𝑥𝑗, Θ𝑡−1)𝑑𝑍𝑗  

, where Θ = {𝑎𝑖, 𝑢𝑖 𝜎𝑖 | 𝑖 = 1 … 𝐾} are the parameters, t is the current iteration step, Zcut is 

the cutoff of the measured gene expression level of X to have reliable Gaussian errors; 𝑥𝑗 is 

the measured gene expression level of X, i.e., log-transformed RPKM value in cell j; Zj is the 

latent variable reflecting the real expression level of X if the measured expression level is 

smaller than Zcut  and 𝑦𝑗  is the latent variable reflecting that 𝑥𝑗  is the from the 𝑦𝑗 th 

Gaussian distribution. 

To estimate the parameters Θ  that maximizes the likelihood function, we have 

Maximization step of the EM algorithm as: 

𝑎𝑖
𝑡 =

1

𝑁
(∑ 𝑃(𝑖|𝑥𝑗 , Θ𝑡−1)

𝑀

𝑗=1

+ ∑ 𝑃(𝑖|𝑍𝑗 , 𝑍𝑐𝑢𝑡 , Θ𝑡−1))

𝑁

𝑗=𝑀+1

 

𝑢𝑖
𝑡 =

∑ 𝑥𝑗𝑃(𝑖|𝑥𝑗 , Θ𝑡−1) + ∑ (𝑢𝑖
𝑡−1 − 𝜎𝑖

𝑡−1𝐻(
𝑍𝑐𝑢𝑡 − 𝑢𝑖

𝑡−1

𝜎𝑖
))𝑃(𝑖|𝑍𝑗 , 𝑍𝑐𝑢𝑡, Θ𝑡−1)𝑁

𝑗=𝑀+1
𝑀
𝑗=1

∑ 𝑃(𝑖|𝑥𝑗, Θ𝑡−1)𝑀
𝑗=1 + ∑ 𝑃(𝑖|𝑍𝑗, 𝑍𝑐𝑢𝑡, Θ𝑡−1)𝑁

𝑗=𝑀+1

 

𝜎𝑖
𝑡2

=
∑ 𝑃(𝑖|𝑥𝑗, Θ𝑡−1)(𝑥𝑗 − 𝑢𝑖

𝑡−1)2 + 𝜎𝑖
𝑡−12

∑ (1 −
𝑍𝑐𝑢𝑡 − 𝑢𝑖

𝑡−1

𝜎𝑖
∗ 𝐻(

𝑍𝑐𝑢𝑡 − 𝑢𝑖
𝑡−1

𝜎𝑖
)) ∗ 𝑃(𝑖|𝑍𝑗 , 𝑍𝑐𝑢𝑡 , Θ𝑡−1)𝑁

𝑗=𝑀+1
𝑀
𝑗=1

∑ 𝑃(𝑖|𝑥𝑗 , Θ𝑡−1)𝑀
𝑗=1 + ∑ 𝑃(𝑖|𝑍𝑗, 𝑍𝑐𝑢𝑡 , Θ𝑡−1)𝑁

𝑗=𝑀+1

 

, where 𝑃(𝑖|𝑍𝑗 , 𝑍𝑐𝑢𝑡 , Θ𝑡−1) =
𝑃(−∞<𝑍𝑗<𝑍𝑐𝑢𝑡|𝑢𝑖

𝑡−1,𝜎𝑖
𝑡−1)

∑ 𝑃(−∞<𝑍𝑗<𝑍𝑐𝑢𝑡|𝑢𝑖
𝑡−1,𝜎𝑖

𝑡−1)𝐾
𝑖=1

, 𝐻(𝑥) =
𝜙(𝑥)

Φ(𝑥)
, 𝜙(𝑥) and Φ(𝑥) are 

the pdf and cdf of standard normal distributions.  

Parameters Θ  can be estimated by iteratively running the estimation (E) and 

maximization (M) steps. The complete algorithm is given in the Supplementary Method. In this 
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study, Zcut  is set for each gene as logarithm of the minimal non-zero RPKM value in the 

gene’s expression profile. The EM algorithm is conducted for K = 1, …, 9 to fit the expression 

profile of each gene and the K that gives the best fit is selected according to the Bayesian 

Information Criterion (BIC) [30]. 

 

Assessment of the significantly expressed genes and identification of outliers 

For the gene expression profile fit by one Gaussian distribution, the gene is considered as 

non-expressed if the mean value of the distribution is smaller than Zcut  while the gene is 

considered as expressed if the mean value is larger than Zcut. Note that for the gene expressions 

fit by multiple Gaussian distributions, they have at least one component with mean value larger 

than Zcut, hence considered as significantly expressed genes. Significantly expressed genes are 

applied in outlier identification and bi-clustering analysis. 

The likelihood of each expression value xj  with respect to distribution 𝑖  can be 

computed by: 

𝐿(xj|𝑖) = 𝑎𝑖

1

√2𝜋𝜎𝑖

𝑒

−(𝑥𝑗−𝑢𝑖)
2

2𝜎𝑖
2

 

And xj is determined to correspond to component i if 𝐿(xj|𝑖) = max
𝑘=1...𝐾

(𝐿(xj|𝑘)). 

 An expression outlier is identified as a sample whose expression is significantly high with 

respect to the fitted distribution, and the significance, 𝑝𝑗 , is defined as the probability of 

observing an expression with a larger value than the currently observed expression 𝑥𝑗  

𝑝𝑗 = ∫ ∑ 𝑎𝑖

1

√2𝜋𝜎𝑖

𝑒

−(𝑥𝑗−𝑢𝑖)
2

2𝜎𝑖
2

𝑖=1

∞

𝑥𝑗

 

A gene’s expression level is deemed as significantly high in sample j if 𝑝𝑗 < 0.005. A 

1,000-time permutation test is performed to find samples with a significantly large number of 

outlier expressions (called outlier samples) and p=0.005 is applied as the cutoff for determining 

an outlier sample. More details of the permutation test are available in the Supplementary 

Method. 

 

Data discretization and bi-clustering analysis 
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To apply our in-house bi-clustering analysis tool QUBIC, the expression profile of each 

gene is discretized into 1/0 values as required by QUBIC. Specifically, for each gene whose 

expression profile can be fitted with one Gaussian distribution (with left truncation), the top 10% 

expressed (non-zero) samples are assigned with 1 and the rest 0. For a gene whose expressions 

are fitted by a mixture of K (K > 1) Gaussian distributions, K discretized vectors are generated. 

Then, each sample i is assigned to its most probable component calculated as arg 

max
𝑘=1...𝐾

(𝐿(xi|𝑘)) for the gene, and for the kth vector corresponding to the gene, its ith element 

takes value 1 only when the ith sample’s expression of the gene is from the kth component of 

the fitted mixed Gaussian distribution, and 0 otherwise.  

We applied our QUBIC to identify bi-clusters from the discretized data. To ensure high 

identification specificity, we set the parameter f as 0.25 to ensure that the bi-clusters will not 

overlap with each other substantially (with other parameters as default). The significance of 

each identified bi-cluster is estimated by running the bi-clustering procedure on 1000 randomly 

shuffled discretized data. The S score in the QUBIC output is applied to estimate the p value of 

each bi-cluster; and p=0.005 is applied as the significance cutoff. See details of this part in the 

Supplementary Method. 

 

Pathway enrichment analysis 

Pathway enrichment analysis is conducted and the statistical significance of each enriched 

pathway is assessed by using a hypergeometric test (statistical significance cutoff = 0.005) 

against 4,725 curated gene sets in the MsigDB database, which includes 1,330 canonical KEGG, 

Biocarta and Reactome pathways, and 3,395 gene sets representing expression signatures 

derived from experiments with genetic and chemical perturbations, together with 6,215 Mouse 

GO terms each containing at least 5 genes [31, 32]. 
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