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Abstract

Working memory capacity has long been the subject of intense re-
search interest, but few studies have systematically investigated the
dependence of capacity on memory load that exceeds our retention
abilities. Under this real-world scenario, WM performance typically
declines beyond a critical load among low-capacity subjects, a phe-
nomenon known as working memory overload. We used a fronto-
parietal cortical model to test the hypothesis that high-capacity sub-
jects select a manageable number of items for storage, thereby avoiding
overload. The model accounts for behavioural and electrophysiological
data from high-capacity subjects in a parameter regime where com-
petitive encoding in its prefrontal network selects items for storage,
inter-aerial projections sustain their representations after stimulus off-
set, and weak dynamics in its parietal network limit their mutual inter-
ference. Violation of these principles accounts for these data among
low-capacity subjects, implying that poor working memory perfor-
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mance reflects poor control over fronto-parietal circuitry, and making
testable predictions for experiments.

1 Introduction

The transient retention and manipulation of information is central to cog-
nition and is known as working memory. The modular nature of working
memory has long been recognized [see Baddeley (2012)], with visual working
memory (WM) receiving considerable attention for several decades. Much
of this research has focused on the limited capacity of WM, typically three
or four items in healthy young adults [see Luck and Vogel (2013)]. Be-
cause capacity is a reliable predictor of cognitive ability more generally [see
Unsworth, Fukuda, Awh, and Vogel (2014)], understanding its neural basis
is a fundamental goal of cognitive neuroscience.

In the laboratory, WM capacity is estimated by varying the number of
items for retention over a memory delay (WM load), but little emphasis has
been given to the dependence of capacity on load that exceeds our retention
abilities. This real-world scenario has long been of concern to instructional
designers (Sweller, 1988; Merrienboër & Sweller, 2005), who consider the
avoidance of ‘overload’ a fundamental principle of effective design. Consis-
tent with this concern, recent WM studies have shown a decrease in capacity
beyond a critical load (Chee & Chuah, 2007; Xu, 2007; Cusack, Lehmann,
Veldsman, & Mitchell, 2009; Linke, Vicente-Grabovetsky, Mitchell, & Cu-
sack, 2011; Matsuyoshi, Osaka, & Osaka, 2014; Fukuda, Woodman, & Vogel,
2015), referred to as WM overload (Matsuyoshi et al., 2014).

It is widely believed that WM storage is supported by ‘attractor states’ in
neocortex, where regenerative excitation sustains neural firing after stimulus
offset, kept in check by feedback inhibition [see Wang (2001)]. In models of
this kind, overload is a consequence of the competition imposed by inhibition
(Edin et al., 2009), but not all subjects show overload [e.g. Fukuda et al.
(2015)] and among those who do, overload is not typically as pronounced as
in these models [e.g. Wei, Wang, and Wang (2012); Section 3.1 here]. The
occurrence of overload in attractor models, however, assumes that all items in
a stimulus array are encoded for retention. Thus, a viable strategy for man-
aging overload is to limit the number of items selected for storage (Cusack
et al., 2009). We hypothesize that this selection process is implemented by
strong competitive dynamics during stimulus encoding.
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To test our hypothesis, we simulated a multiple-item WM task with bio-
physical models of posterior parietal cortex (PPC) and lateral prefrontal
cortex (PFC), both of which are extensively correlated with WM [see Curtis
(2006); Funahashi (2013)]. PPC is hypothesized to be the hub of distributed
WM storage (Palva, Monto, Kulashekhar, & Palva, 2010; Christophel, Hebart,
& Haynes, 2012; Salazar, Dotson, Bressler, & Gray, 2012) and is well char-
acterized by neural data from visual tasks [see Goldberg, Bisley, Powell, and
Gottlieb (2006); Serences and Yantis (2006)], so we first sought to determine
whether competitive encoding in a local-circuit PPC model could alleviate
overload in a manner consistent with behavioural data from high-performing
WM subjects, and with neural data from visual tasks. We reasoned that any
inconsistencies between the model and these data might point to the role
of PPC in distributed storage, and by extension, to the roles of its bidirec-
tional connectivity with PFC. Next, we did the same thing with a hierarchical
model of PPC and PFC, reasoning that the values of biophysical parame-
ters required to account for the data might identify specific computational
principles for distributed storage. If so, then violation of these principles
should account for behavioural data from low-performing subjects. Thus, we
evaluated our hierarchical model for its ability to account for capacity and
overload among subject groups distinguished according to these measures.
Finally, we sought to make predictions to test our hypothesis experimentally,
approximating electroencephalogram (EEG) recordings over PPC and PFC.
We reasoned that if this approximation could account for the different EEG
profiles of high- and how-performing subject groups during the storage of
memoranda (Fukuda et al., 2015), then its profile during stimulus encoding
would be a testable prediction for our hypothesis.

2 Methods

Our local-circuit PPC model (the PPC-only model, Figure 1A) is a network
of simulated pyramidal neurons and inhibitory interneurons, connected by
AMPA, NMDA and GABA receptor conductance synapses (AMPAR, NM-
DAR and GABAR). Our hierarchical model (the PPC-PFC model, Figure
1D) is comprised of two such networks, bidirectionally connected. In both
models, intrinsic synaptic connectivity within and between classes of neuron
was structured according to in vitro data, as was the connectivity between
networks in the PPC-PFC model. Our chosen parameters and their values
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are justified in Section 2.6.
We ran simulations of a visuospatial WM task with both models, where

the number of items for retention ranged from 1 to 8. On each trial of the
task, a stimulus interval was preceded by a pre-trial interval and followed by
a delay of 1s. In both models, the items were provided to the PPC network
during the stimulus interval and their accurate retention (or otherwise) was
determined from its activity at the end of the delay (Sections 2.4 and 2.5).

2.1 The network model

Each local circuit is a fully connected network of leaky integrate-and-fire neu-
rons (Tuckwell, 1988), comprised of Np = 400 simulated pyramidal neurons
and N i = 100 fast-spiking inhibitory interneurons. Each model neuron is
described by

C{p,i}
m

dV

dt
= −g

{p,i}
L (V − E

{p,i}
L )− I, (1)

where Cm is the membrane capacitance of the neuron, gL is the leakage
conductance, V is the membrane potential, EL is the equilibrium potential,
and I is the total input current. When V reaches a threshold ϑv, it is reset
to Vres, after which it is unresponsive to its input for an absolute refractory
period of τref . Here and below, superscripts p and i refer to pyramidal
neurons and interneurons respectively, indicating that parameter values are
assigned separately to each class of neuron.

The total input current at each neuron is given by

I = Isel + Irec + Ihier + Iback, (2)

where Isel is stimulus-selective synaptic current (set to 0 for all neurons in
the PFC network and for interneurons in the PPC network), Irec is recur-
rent (intrinsic) synaptic current, Ihier is hierarchical (inter-aerial) synaptic
current projected to PPC from PFC and vice versa (set to 0 in single-circuit
simulations) and Iback is background current. Of these currents, Isel, Irec and
Ihier are comprised of synaptic currents, and Iback is comprised of synaptic
current and injected current. Synaptic currents driven by pyramidal neu-
ron spiking are mediated by simulated AMPA receptor (AMPAR) and/or
NMDA receptor (NMDAR) conductances, and synaptic currents driven by
interneuron spiking are mediated by simulated GABA receptor (GABAR)
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conductances. For AMPAR and GABAR currents, synaptic activation (the
proportion of open channels) is defined by

dga
AMPA

dt
= −

ga
AMPA

τ
{p,i}
AMPA

+ δ(t− tf)

dga
GABA

dt
= −

ga
GABA

τ
{p,i}
GABA

+ δ(t− tf),

(3)

where τAMPA and τGABA are the time constants of AMPAR and GABAR
deactivation respectively, δ is the Dirac delta function, tf is the time of
firing of a pre-synaptic neuron and superscript a indicates that synapses
are activated by different sources of spiking activity (selective, recurrent,
hierarchical and background). NMDAR activation has a slower rise and
decay and is described by

dgaNMDA

dt
= −

gaNMDA

τ
{p,i}
NMDA

+ αNMDA · ωNMDA(1− gaNMDA), (4)

Figure 1 (preceding page): (A) Schematic of the PPC-only model. Solid
circles depict pyramidal neurons (green) and inhibitory interneurons (red),
arranged periodically by their connectivity structures. The 4-to-1 ratio of
pyramidal neurons to interneurons preserves their population sizes in the
model. Arced and straight arrows depict synaptic connectivity within and
between classes of neuron respectively. Thin Gaussian curves depict the
structure of this connectivity (within, solid; between, dotted). The Gaussian
curve on the left depicts the RF of a pyramidal neuron. Red, open green
and wide green arrows depict GABAR, AMPAR-only, and AMPAR-NMDAR
synapses respectively. (B) Synaptic currents onto a pyramidal neuron (solid)
and an interneuron (dotted) during the delay interval of the 1-item mem-
ory task. Red, light green and dark green curves show GABAR, AMPAR
and NMDAR currents respectively. (C) Membrane potential of a pyramidal
neuron and an interneuron during the pre-trial interval. (D) Schematic of
the PPC-PFC model. The PPC network is identical to the PPC-only model.
The PFC network differs only in the strength of GABAR conductance onto
pyramidal neurons. Open and thin arrows depict topographically aligned
feed-forward and feedback projections, mediated by AMPARs and NMDARs
respectively. See Section 2 for description of the model.
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where τNMDA is the time constant of receptor deactivation and αNMDA con-
trols the saturation of NMDAR channels at high pre-synaptic spike frequen-
cies. The slower opening of NMDAR channels is captured by

dωNMDA

dt
= −

ωNMDA

τω
+ δ(t− tf ), (5)

where τω and η determine the rate of channel opening and the voltage-
dependence of NMDARs respectively.

Recurrent synaptic current to each neuron j is defined by

Irecj = IrecAMPA,j + IrecNMDA,j + IrecGABA,j

IrecAMPA,j =
∑

k 1/γ
{ppc,pfc}
g · G

{p,i}
AMPA · grecAMPA,k(Vj − VE) · W

rec|pp,ip
j,k

IrecNMDA,j =
∑

k 1/γ
{ppc,pfc}
g · G

{p,i}
NMDA · grecNMDA,k(Vj − VE) · W

rec|pp,ip
j,k · ηj

IrecGABA,j =
∑

k 1/γ
{ppc,pfc}
g · G

{p,i}
GABA · grecGABA,k(Vj − VI) · W

rec|pi,ii
j,k ,

(6)
where γ{ppc,pfc}

g is a scale factor controlling the relative strength of extrin-
sic and intrinsic synaptic conductance (subscripts ppc and pfc indicate that
its value is assigned separately to each network, see Section 2.6); GAMPA,
GNMDA and GGABA are the respective strengths of AMPAR, NMDAR and
GABAR conductance; VE is the reversal potential for AMPARs and NM-
DARs, and VI is the reversal potential for GABARs; grecAMPA,k, g

rec
NMDA,k and

grecGABA,k are the activation of AMPAR, NMDAR and GABAR receptors re-

spectively by pre-synaptic neurons k; and matrices W rec|pp,ip and W rec|pi,ii

scale conductance strength or weight according to the connectivity struc-
ture of the network. This structure depends on the class of neuron receiving
and projecting spiking activity, where superscripts pp, ip, pi and ii denote
connections to pyramidal neurons from pyramidal neurons, to interneurons
from pyramidal neurons, to pyramidal neurons from interneurons, and to
interneurons from interneurons respectively. For each of these structures
s ∈ {pp, ip, pi, ii}, W rec|s is a Gaussian function of the distance between

periodically-arranged neurons, where the weight W
rec|s
j,k to neuron j from

neuron k is given by

W
rec|s
j,k = e

−d2/2σ2

rec|s · (1− ζrec|s) + ζrec|s. (7)
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The distance between neurons is defined by d = min(|j−k|∆x, 2π−|j−k|∆x)
for W rec|pp and W rec|ii, and by d = min(|j− z|∆x, 2π−|j− z|∆x) for W rec|ip

and W rec|pi, where z = Np/N i · k for W rec|ip and z = N i/Np · k for W rec|pi.
∆x = 2π/N{p,i} is a scale factor and σrec|s determines the spatial extent of
connectivity. Parameter ζrec|s allows the inclusion of a baseline weight, with
the function normalized to a maximum of 1 (0 ≤ ζrec|s < 1).

2.2 Background activity

For each neuron, in vivo cortical background activity is simulated by current
Iback, defined by

Iback = Iback,syn + Iback,inj, (8)

where Iback,syn is driven by synaptic bombardment and Iback,inj is noisy
current injection. The former is generated by AMPAR synaptic activation,
where independent, homogeneous Poisson spike trains are provided to all
neurons at rate µback. I

back,syn is therefore defined by

Iback,syn = γ{ppc,pfc}
g · γext

g · G
{p,i}
AMPA · gbackAMPA(V − VE), (9)

where γext
g is a scale factor and gbackAMPA is given in Equation 3.

For Iback,inj, we used the point-conductance model by (Destexhe, Rudolph,
Fellous, & Sejnowski, 2001):

Iback,inj = ge(t)(V − VE) + gi(t)(V − VI). (10)

The time-dependent excitatory and inhibitory conductances ge(t) and gi(t)
are updated at each timestep ∆t according to

ge(t+∆t) = g0e + [ge(t)− g0e] · e−∆t/τe + AeΥ (11)

and

gi(t +∆t) = g0i + [gi(t)− g0i] · e−∆t/τi + AiΥ (12)

respectively, where g0e and g0i are average conductances, τe and τi are time
constants, and Υ is normally distributed random noise with 0 mean and unit
standard deviation. Amplitude coefficients Ae and Ai are defined by
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Ae =

√

Deτe
2

[

1− exp
(

−2∆t

τe

)]

(13)

and

Ai =

√

Diτi
2

[

1− exp
(

−2∆t

τi

)]

(14)

respectively, where De = 2σ2
e/τe and Di = 2σ2

i /τi are noise ‘diffusion’ coeffi-
cients. See (Destexhe et al., 2001) for the derivation of these equations.

2.3 The PPC-PFC model

In the hierarchical model, inter-aerial projections mediate synaptic currents
Ihier ∈ {Iff , Ifb}, where superscript ff (fb) refers to feedforward (feedback)
currents onto neurons in the PFC (PPC) network from neurons in the PFC
(PPC) network. Only pyramidal neurons make inter-aerial projections, where
feedforward projections are mediated by AMPARs (onto pyramidal neurons
only) and feedback projections are mediated by NMDARs (onto pyramidal
neurons and interneurons). Feed-forward currents at each pyramidal neuron
j in the PFC network are defined by

Iffj =
∑

k

γext
g · Gp

AMPA · gffAMPA,k(Vj − VE) · W ff
j,k (15)

where γff
g is a scale factor, gffAMPA,k is the activation of AMPAR receptors by

pre-synaptic pyramidal neurons k in PPC, and matrixW ff
j,k = exp(−d2/2σ2

ff )
scales conductance strength according to the structure of FF connectivity.
Constant d is given above for recurrent synaptic structure W rec|pp, where the
two networks are considered to be topographically aligned, i.e. the lateral
distance between neuron j in PFC and neuron k in PPC is the same as that
between neurons j and k within either network.

Feedback currents at each neuron j in the PPC network are defined by

Ifbj =
∑

k

γfb
g · G

{p,i}
NMDA · gfbNMDA,k(Vj − VE) · W

fb|pp,ip
j,k (16)

where γfb
g is a scale factor, gfbNMDA,k is the activation of NMDAR receptors

by pre-synaptic pyramidal neurons k in PFC, and matrices W fb|pp,ip scale
conductance strength according to the structure of FB connectivity. Each
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of these structures s ∈ {pp, ip} is defined by W
fb|s
j,k = e

−d2/2σ2

fb|s , where d is

defined for W fb|pp and W fb|ip in the same way as for W rec|pp and Wrec|ip
respectively above.

2.4 Simulated working memory task

We simulated the stimulus array by providing independent, homogeneous
Poisson spike trains to all pyramidal neurons j in the PPC network, where
spike rates were drawn from a normal distribution with mean µsel corre-
sponding to the centre of a Gaussian response field (RF) defined by W rf

j,k =
exp(−d2/2σ2

rf). Constant d is given above for recurrent synaptic structure

W rec|pp, σrf determines the width of the RF and subscript k indexes the
neuron at the RF centre. Spike response adaptation by upstream visually
responsive neurons was modelled by a step-and-decay function

µsel(t) =

{

(µinit − µinit/µdiv) e
−(t−tvrd)/τµ + µinit/µdiv for t > tvrd

0 for t ≤ tvrd
(17)

where µinit determines the initial spike rate, µdiv determines the asymptotic
rate, τµ determines the rate of upstream response adaptation, and tvrd is a
visual response delay. These selective spike trains were provided for 300ms,
following the 300ms pre-trial interval and followed by a 1000ms delay (e.g.
Figure 2A). The stimuli were mediated by AMPARs only, so for all pyramidal
neurons j in the PPC network,

Iselj = γppc
g · γext

g · Gp
AMPA · gselAMPA,j(Vj − VE) · W rf

j,k. (18)

All simulations were run with the standard implementation of Euler’s
forward method, where the timestep was ∆t = 0.25ms.

2.5 Determining working memory performance

We ran 100 trials with 1 − 8 stimuli (henceforth the n-item memory task;
1 ≤ n ≤ 8). To determine WM performance on each trial, spike density
functions (SDFs) were calculated for all pyramidal neurons in the network
by convolving their spike trains with a rise-and-decay function

(1− e−t/τf ) · e−t/τd

τ2
d

τr+τd

(19)
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where t is the time following stimulus onset and τr = 1ms and τd = 20ms are
the time constants of rise and decay respectively (Thompson, Hanes, Bichot,
& Schall, 1996; Standage & Paré, 2011). On each n-item trial, we calcu-
lated the mean of the SDFs over the last 300ms of the delay, obtaining the
average activity over the network, and then partitioned the network into n
equal regions. The location of each item was centred within each region. We
then fit the mean activity in each region with a Gaussian function with four
parameters: the height of the peak, the position of the peak, the standard
deviation (controlling width), and the height that is approached asymptoti-
cally from the peak. An item was considered accurately stored if the fitted
Gaussian satisfied three criteria: the height parameter h exceeded 30Hz, the
difference between h and the fitted asymptote on both sides of the peak ex-
ceeded h/2Hz, and the position parameter was within ∆c = 10 degrees of the
centre of the RF for that item. For the first criterion, we chose 30Hz because
in electrophysiological experiments with macaque monkeys (Johnston et al,
SfN abstracts, 2009), memory trials were discarded if the recorded PPC neu-
ron did not fire at least 10 spikes during the last 300ms of the delay. The
second criterion dictates that items are only considered accurately stored if
the population response is discriminable. The third criterion ensures that
the memory of the location of the item is close to the actual location.

2.6 Parameter values

In setting parameter values in the two models, our aim was to justify every
value by anatomical and physiological data, thus constraining our choices as
much as possible, and then to use control parameters to explore the models’
performance on simulated WM tasks. In the PPC-only model, our control
parameter was γppc

g (Equations 6, 9 and 18), governing the relative strengths
of extrinsic and intrinsic synaptic conductance and therefore the strength of
recurrent processing (see Section 3.1). In the PPC-PFC model, the PPC
network was identical to the PPC-only model, and the PFC network was
identical to the PPC network, except for the strength of GABAR conduc-
tance onto pyramidal neurons. Parameter values for inter-aerial projections
in the PPC-PFC model are described below (Section 2.6.1). Control param-
eters for the PPC-PFC model are described in Section 3.2.

For cellular parameters, we used standard values for integrate-and-fire
neurons in cortical simulations (Compte, Brunel, Goldman-Rakic, & Wang,
2000), justified by electrophysiological data in earlier, related work (Troyer &
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Miller, 1997; Wang, 1999). These values are Cp
m = 0.5nF, gpL = 25nS, Ep

L =
−70mV, ϑp

v = −50mV, V p
res = −60mV and τ pref = 2ms; and C i

m = 0.2nF,
giL = 20nS, Ei

L = −70mV, ϑi
v = −50mV, V i

res = −60mV and τ iref = 1ms.
Likewise, synaptic reversal potentials are VE = 0mV and VI = −70mV, and
the parameters governing the opening and saturation of NMDARs are τω =
2ms and αNMDA = 0.5kHz respectively (Compte et al., 2000). The voltage-
dependence of NMDARs is given by η = 1/[1+Mg · exp(−0.062 · V )/3.57],
where Mg = 1mM is the extracellular Magnesium concentration and V is
measured in millivolts (Jahr & Stevens, 1990).

In setting parameters for the conductance strengths and time constants
of decay of AMPARs and NMDARs, we followed Standage, You, Wang,
and Dorris (2013), emphasising fast inhibitory recruitment in response to
slower excitation [see Povysheva et al. (2006) for discussion]. For AMPARs,
Gp

AMPA = 0.2nS, Gi
AMPA = 2·Gp

AMPA, τ
p
AMPA = 4ms and τ iAMPA = τ pAMPA/2;

and for NMDARs, Gp
NMDA = 4nS, Gi

NMDA = Gp
NMDA/2, τ

p
NMDA = 100ms

and τ iNMDA = τ pNMDA/2. These values produce fast-decaying AMPAR cur-
rents on the order of 10pA (Angulo, Rossier, & Audinat, 1999; Desai, Cud-
more, Nelson, & Turrigiano, 2002) that are stronger and shorter-lived onto in-
hibitory interneurons than onto pyramidal neurons (Hestrin, 1993; J.McBain
& Fisahn, 2001; Hull, Isaacson, & Scanziani, 2009), and slow-decaying NM-
DAR currents on the order of 10pA (Berretta & Jones, 1996; Angulo et al.,
1999) that are stronger and longer-lived at synapses onto pyramidal neu-
rons than onto inhibitory interneurons (Hull et al., 2009). For GABARs,
Gp

GABA = 1.5nS and Gi
GABA = Gp

GABA/2, producing GABAR currents several
times stronger than the above excitatory currents, where the stronger conduc-
tance at synapses onto pyramidal neurons captures their greater prevalence
of GABARs (Markram et al., 2004). GABAR time constants were set to
τ pGABA = τ iGABA = 10ms (Salin & Prince, 1996; Xiang, Huguenard, & Prince,
1998). Example synaptic currents are shown in Figure 1D.

The connectivity structures W rec|pp,ip,pi,ii capture the probability of lat-
eral synaptic contact within and between classes of neurons in local cortical
circuitry (Wilson & Cowan, 1973; Somers, Nelson, & Sur, 1995). A consid-
erable volume of data indicates that the probability of lateral synaptic con-
tact between cortical pyramidal neurons is normally distributed with mean
0 and half-width of ∼ 0.25mm (Hellwig, 2000; Berger, Perin, Silberberg, &
Markram, 2009; Voges, Schüz, Aertsen, & Rotter, 2010). Thus, σrec|pp corre-
sponds to 0.25mm, determining the size of the cortical region being modelled,
and ζrec|pp = 0. We are unaware of any data suggesting that the lateral pro-

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2017. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


jections of pyramidal neurons target basket cells differently than they target
other pyramidal neurons, so we set σrec|ip = σrec|pp and ζrec|ip = ζrec|pp. Ar-
guably, σrec|ip should be narrower than σrec|pp, since the dendritic trees of
basket cells are less extensive than those of pyramidal neurons, but setting
these parameters to equal values supported more stable network dynamics,
i.e. it furnished sufficient local-circuit inhibition for the model to simulate
the experimental tasks without modifications to other parameter values.

For connectivity structures W rec|pi,ii, values for σrec|pi,ii and ζrec|pi,ii are
justified by four premises: firstly, we assume that basket cells are a major
source of lateral inhibition (Krimer & Goldman-Rakic, 2001) and we limit
our focus to this class of inhibitory interneuron; secondly, basket cells synapse
onto the somatic and perisomatic regions of their targets [see Markram et
al. (2004)]; thirdly, the axons of basket cells contact their targets indiscrim-
inately throughout the range of their ramifications (Packer & Yuste, 2011);
and fourthly, the basket cell population can be divided into small (local ar-
bour), medium (medium arbour) and large (wide arbour) cells in equal pro-
portion, i.e. one third each (Krimer et al., 2005). Under the first and second
premises, we do not need to consider the dendritic morphology of the targets
of inhibitory interneurons, so we set σrec|pi = σrec|pp. Under the second and
third premises, we assume a uniform synaptic distribution for inhibitory tar-
gets, where the axonal ramifications of small, medium and large basket cells
cover progressively larger areas (Krimer & Goldman-Rakic, 2001; Krimer
et al., 2005), with large basket cells (LBC) covering the entire local circuit
(Kisvárday, Beaulieu, & Eysel, 1993; Markram et al., 2004). We therefore
approximate this connectivity structure by setting σrec|pi = σrec|ii = 2 ·σrec|pp

and ζrec|pi = ζrec|ii = 1/3, where the former corresponds to a half-width of
∼ 0.5mm [cf. Kisvárday et al. (1993); Krimer and Goldman-Rakic (2001);
Krimer et al. (2005)] and the latter refers to the 1/3 proportion of LBCs.
This approach to determining inhibitory connectivity parameters is depicted
in Figure 1B. We set σrec|pp = 0.2 because this value supported the simul-
taneous representation of 5 simulated visual stimuli, corresponding to the
upper limit on human WM capacity, i.e. 4 ± 1 items (Luck & Vogel, 1997;
Cowan, 2001). Finally, we set σrec|ii = σrec|pi because LBCs make extensive
contacts onto one another over the full range of their axonal ramifications
(Kisvárday et al., 1993). Note that we do not attribute biological significance
to the spatial periodicity of the network. Rather, this arrangement allows
the implementation of W rec|pp,ip,pi,ii with all-to-all connectivity without bi-
ases due to asymmetric lateral interactions between neurons, and further
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captures the topographic mapping of spatially periodic stimuli in many vi-
sual [e.g. Thomas and Paré (2007)] and WM [e.g. Funahashi, Bruce, and
Goldman-Rakic (1989); Matsuyoshi et al. (2014)] tasks. In Results section
‘Feedback inhibition underlies slot-like capacity and resource-like coding’, we
eliminated broad inhibition by setting ζrec|pi and ζrec|ii to 0, and we increased
the strength of local feedback inhibition by setting Gp

GABA and Gi
GABA to

3.5nS and 1.75nS respectively.
In setting parameter values for background activity in each network, we

initially omitted background synaptic input Iback,syn and followed the data
by Fellous, Rudolph, Destexhe, and Sejnowski (2003) to produce Iback,inj,
where g0e = 5nS and g0i = 25nS, τe = 2.5ms, τi = 10ms, σe = 5nS and
σi = 12.5nS. Because the average inhibitory background conductance g0i is
five times the average excitatory background conductance g0e [see Destexhe
(2010)], our simulated pyramidal neurons did not respond adequately to se-
lective stimuli under these parameter values. We therefore reduced the aver-
age conductances by a factor of two, setting g0e = 2.5nS, retaining the ratio
of inhibitory to excitatory conductance strength g0i = 5 · g0e = 12.5nS, and
simulating the ‘other half’ of upstream cortical background activity by pro-
viding independent, homogeneous Poisson spike trains to all neurons in the
network. As such, we assumed that each neuron forms ∼ 10, 000 synapses
with upstream cortical neurons (Douglas, Markram, & Martin, 2004), and
that by dividing g0e and g0i by two, we were effectively omitting ∼ 5, 000
background inputs. We therefore approximated 5000 upstream cortical neu-
rons firing at 1Hz each by setting the rate of background Poisson spike trains
to µback = 500Hz and setting the extrinsic synaptic scale factor to λ = 10,
trading temporal summation for spatial summation (Prescott & De Koninck,
2003; Standage et al., 2013). As noted above, background spike trains were
provided to all pyramidal neurons and interneurons in each network, medi-
ated by AMPARs on the assumption that spike trains converging on PPC
(an association cortical area) are predominantly ascending. Evidence for
AMPAR-mediated ascending activity is provided by Self, Kooijmans, Supèr,
Lamme, and Roelfsema (2012). This approach simultaneously released the
network model from the overly-strong background inhibitory currents and
implemented an established, biologically plausible form of gain modulation
[balanced background inputs (Chance, Abbott, & Reyes, 2002)], rendering
the PPC network responsive to simulated visual stimuli. Note that our pa-
rameter values for background current injection (g0e, g0i, τe, τi, σe and σi)
were based on recordings from pyramidal neurons (Fellous et al., 2003), but
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since we are unaware of any data to guide these parameters for inhibitory
interneurons, we assigned them the same values for all neurons. The effect of
this background activity on the membrane potential of a pyramidal neuron
and an interneuron is shown in Figure 1E.

For the target stimuli, the width of RFs was determined by σrf = σpp/2.
This narrow width captures the less-extensive dendritic branching in corti-
cal (input) layer 4 compared to layers 2/3 and 5 (see above for justification
of lateral connectivity in the model). The initial spike rate at the RF cen-
tre was µinit = 10, 000/γgHz, which (for γg = 1) can be equated with e.g.

100 upstream, visually-responsive neurons firing at 100Hz each, given our
use of homogeneous, independent Poisson spike trains. Note, however, that
the synaptic scale factor λ = 10 probably renders this spike rate unreal-
istically high, since it implies e.g. 1000 upstream neurons firing at 100Hz.
Nonetheless, the high initial spike rate ensured a rapid-onset, high-rate visual
response in the network for all processing regimes furnished by control pa-
rameter γg, as observed experimentally [e.g. Paré and Wurtz (1997); Thomas
and Paré (2007); Churchland, Kiani, and Shadlen (2008)]. Upstream, visual
response adaptation was simulated by µdiv = 10 and τµ = 50ms. The former
is somewhat extreme, but allowed the rate of the initial population response
in PPC to exceed the steady state response on the visual task for all values
of γg [e.g. Paré and Wurtz (1997); Churchland et al. (2008)]. Our use of
γg as a denominator in determining µinit (Equation 17) supported stronger
selective inputs when the network had stronger recurrent processing (smaller
γg), allowing the rapid-onset, high-rate visual response described above. For
larger γg, the network more readily gives way to its inputs, so a weaker in-
put is sufficient to elicit a similar response. The visual response delay was
tvrd = 50ms (Thomas & Paré, 2007).

2.6.1 Parameter values for the PPC-PFC model

As noted above, the PPC network was identical in the PPC-only and PPC-
PFC models. The PFC network was identical to the PPC network, ex-
cept that GABAR conductance onto pyramidal neurons was twice as strong
(Gp

GABA = 3nS), facilitating strong competition during stimulus encoding.
We limited the number of parameters in the PPC-PFC model by making
three simplifying assumptions. Firstly, we assumed that only pyramidal neu-
rons make inter-aerial projections [see Jones (1984); White (1989); Tomioka
and Rockland (2007)] and we therefore omitted inter-aerial projections from
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inhibitory interneurons. Secondly, based on evidence that feedforward and
feedback excitation are predominantly mediated by AMPARs and NMDARs
respectively (Self et al., 2012), we omitted feedforward NMDARs and feed-
back AMPARs altogether. Thirdly, feedforward and feedback projections
were each assumed to be topographically organized, based on evidence that
the proportion of feedforward supragranular projections and feedback infra-
granular projections increase with hierarchical distance between cortical ar-
eas. Since supragranular and infragranular projections are believed to be to-
pographic and diffuse respectively, and since PPC and lateral prefrontal cor-
tex are separated by a single hierarchical layer [see Goldman-Rakic (1988)],
we assumed that the proportion of topographic supragranular projections
and diffuse infragranular projections between these areas is approximately
equal in both directions. See Markov and Kennedy (2013) for a more thor-
ough description of these macrocircuit principles. Given the diffuse activity
already simulated by background current Iback (Equations 9 and 10), we
ignored the effect of infragranular feedforward and feedback projections be-
tween the PPC and PFC networks, and simulated topographic supragranular
connectivity only. The width of feedforward RFs (PFC) was the same as for
stimulus-selective RFs in the PPC network (σff = σrf , Equations 15 and
18), based on evidence that differences in dendritic branching are minimal
between hierarchically adjacent cortical areas (Elston, 2002). Feedback RFs
(PPC) were wider than feedforward RFs (σfb = 1.5·σff , Equations 16 and 15)
because dendritic branching in supragranular layers is more extensive than
in (feedforward input) layer 4. For simplicity, we omitted FF projections
onto PFC interneurons, having omitted stimulus-selective inputs to PPC in-
terneurons [a common approach with local-circuit models of this class, e.g.
Compte et al. (2000); Wei et al. (2012)].

3 Results

3.1 Simulations with the PPC-only model

In the PPC-only model, we used control parameter γppc
g (Equations 6, 9 and

18 in Methods) to modulate network dynamics, scaling the strength of all
extrinsic synapses inversely with that of all intrinsic synapses. By apply-
ing this scale factor to excitatory and inhibitory synapses onto pyramidal
neurons and interneurons, we were able to maintain excitatory/inhibitory
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Figure 2: A single trial of the 1-item memory task with the PPC-only model
for the lowest and highest values of control parameter γppc

rec = (1/γppc
g , fur-

nishing weak (A, γppc
rec = 1.33) and strong (B, γppc

rec = 4) recurrent dynamics
respectively. In raster plots, pyramidal neurons and interneurons are indexed
from 1 − 400 and 401 − 500 respectively. Each right-side panel shows the
mean rate of the item-encoding pyramidal population. Thick horizontal bars
show the timing of the stimulus.

balance, controlling retention ability by recurrent excitation and competitive
interactions by lateral inhibition. We determined the floor and ceiling on
γppc
g by stipulating that the model must perform the 1-item memory task

with 90% accuracy. To this end, we ran 100 trials of the task for a range
of values of γppc

g (increments of 0.05), finding that our criterion was satisfied
for 0.25 ≤ γppc

g ≤ 0.75. Figure 2 shows example trials of the 1-item task for
the highest and lowest values of this parameter. Because lower values sup-
port stronger recurrent dynamics (intrinsic synaptic conductance values are
divided by γppc

g , Equation 6), it is intuitive to define parameter γppc
rec = 1/γppc

g ,
so that higher values support stronger recurrent dynamics. We use the latter
term in the description of our results below.

We ran 100 trials for each value of γppc
rec in each load condition of the

multiple-item memory task (2 ≤ n ≤ 8, where n is the number of items). See
Figure 3 for example trials of the 8-item task. For each load condition, we
calculated the mean number of items accurately encoded during the stimulus
interval, referred to as the effective load E(n), and the mean number of items
accurately retained over the memory delay, referred to as capacity K(n). We
refer to the maximum value of K(n) as peak capacity k̂ and we define WM
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overload as Θ = 1 − K(8)/max[K(n)], i.e. overload refers to a decrease in
capacity on the 8-item task, relative to peak capacity.

Our results with the PPC-only model distinguished between two subsets
of our control parameter. For γppc

rec < 2.5, peak capacity increased with the
strength of recurrent dynamics (Figure 4A), almost all stimuli were encoded
(Figure 4B), and overload was catastrophic [K(8) was close to 0, Figure 4C].
For γppc

rec > 2.5, peak capacity, effective load and overload all decreased with
stronger recurrent dynamics. Thus, γppc

rec = 2.5 separated two qualitatively
different regimes, one in which weaker recurrent dynamics offered no advan-
tages (lower capacity and catastrophic overload) and one in which stronger
recurrent dynamics imposed more intense competition during stimulus en-
coding, limiting effective load and thereby reducing overload. Consequently,
we limit further consideration of the PPC-only model to γppc

rec ≥ 2.5. In this
regime, peak capacity was 2 or 3 items for all but the strongest recurrent
dynamics, consistent with that of human and monkey subjects [e.g. Luck
and Vogel (1997); Heyselaar, Johnston, and Paré (2011)], but the allevia-
tion of overload came at the expense of peak capacity (significant positive
correlation, Figure 4D). The available data show the opposite trend: over-
load is typically more pronounced among lower-capacity subjects (Linke et
al., 2011; Matsuyoshi et al., 2014; Fukuda et al., 2015), on lower-capacity
tasks (Xu, 2007) and in lower-capacity conditions of the same task (Chee &
Chuah, 2007). Furthermore, recurrent dynamics strong enough to eliminate
overload altogether furnished a peak capacity of k̂ ≈ 1 item, unrealistically
low for healthy adult subjects 1. Thus, the PPC-only model provides proof
of concept for competitive encoding, but is qualitatively inconsistent with
prominent trends in behavioural data. Furthermore, spiking activity in the
model conflicts with neural data from PPC, which typically show a response
to all items in a stimulus array, prior to the selection of task-relevant items
[e.g. Thomas and Paré (2007)]. This discrepancy is implicit in Figure 4B
and explicit in Figure 3A-C, where the effective load on the 8-item task is
three, two and one items respectively. We therefore turned to the PPC-PFC

1The effective load for the strongest recurrent dynamics in the PPC-only model (highest
value of γppc

rec
, darkest red curves in Figure 4) is less than capacity in some load conditions,

i.e. E(n) < K(n) (Figure 4A and B). This seeming anomaly reflects the later onset of
stimulus-selective activity with such strong recurrent dynamics, where the rate of item-
encoding activity (calculated over the full stimulus interval) is too low to satisfy our criteria
for encoded items. This effect can be seen in Figure 2, where the onset of item-encoding
activity occurs later with higher γppc

rec
.
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Figure 3: A single trial of the 8-item memory task with the PPC-only model
for each of three values of control parameter γppc

g , on which the network
accurately retained three (A, γppc

g = 0.35), two (B, γppc
g = 0.3) and one (C,

γppc
g = 0.25) item(s). Raster plots (left) and mean spike rates (right) are

described in Figure 2. Here, colours show the correspondence between item-
encoding populations in the left and right panels. Competition during the
stimulus interval reduces the load to 3 (A), 2 (B) and 1 (C) item(s) by the
onset of the memory delay.

model, investigating its ability to account for these and other data.

3.2 Hierarchical simulations with the PPC-PFC model

We used three control parameters with the PPC-PFC model. Once again,
we controlled recurrent dynamics in the PPC network (henceforth PPC)
with parameter γppc

rec . We controlled recurrent dynamics in the PFC network
(henceforth PFC) in the same way with parameter γpfc

rec = 1/γpfc
g (Equa-

tions 6, 9 and 18) and we controlled the strength of feedback projections to
PPC from PFC with parameter γfb

g (Equation 16). We began by assigning
values to these parameters that explicitly capture the computational princi-
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ples identified above: weak recurrent dynamics in PPC, allowing the initial
encoding of all items, and strong recurrent dynamics in PFC, supporting
strong competition during stimulus encoding. Under this approach, persis-
tent mnemonic activity was supported by strong feedback connectivity to
PPC from PFC. An example of the 8-item memory task is shown in Fig-
ure 5, where our chosen parameter values are provided in the figure caption.
The model had a peak capacity of k̂ ≈ 3 items, overcame overload almost
entirely (Θ ≈ 0.075) and allowed the initial encoding of all items in PPC
(Figure 6). To emphasize the effectiveness of the proposed mechanism, we
compared these results to the best possible performance by the PPC-only
model, selecting the highest capacity for each load condition across all values
of γppc

rec . As shown in Figure 6A, the PPC-only model cannot reduce overload
without a cost to peak capacity, even if we assume perfect load-dependent
modulation of network dynamics by our control parameter from trial to trial.

3.2.1 Simulated cognitive control with the PPC-PFC model

Having determined that hierarchical recruitment of competition alleviates
overload in the PPC-PFC model, we sought to determine whether less over-

Figure 4 (preceding page): Competitive encoding alleviates overload in the
PPC-only model, but at a cost to peak capacity (see text). (A) Capacity
K(n) in each load condition (number of items n) for each value of control
parameter γppc

rec = 1/γppc
g . Error bars show standard error. Colour coding

interpolates between weakest (dark blue) and strongest (dark red) recurrent
dynamics (see legend in panel B). Peak capacity is highest for γppc

g = 2.5 and
K(8) is close to 0 for γppc

rec below this value [K(8) < 0.15]. Thus, there is
no advantage to γppc

rec < 2.5. (B) The mean number of items encoded during
the stimulus interval for each value of γppc

rec , referred to as the effective load
E(n). For γppc

rec < 2.5, E(n) > 0.9 · n in all load conditions. For γppc
rec above

this value, encoding is increasingly competitive (bottom four curves). (C)
WM overload for each value of γppc

rec , calculated as the relative change from
peak capacity to K(8) (see text). For γppc

rec > 2.5, overload is greatly reduced.
(D) Overload over peak capacity. For γppc

rec ≤ 2.5, the linear fit (solid line)
shows a significant positive correlation between these measures (r > 0.95,
P < 0.05). The dashed line depicts two qualitatively different regimes in the
model, separated by γppc

rec = 2.5.
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Figure 5: A single trial of the 8-item memory task with the PPC-PFC model,
on which three items were accurately retained. Raster plots (right), mean
spike rates (left) and corresponding colour schemes are described in Figures
2 and 3. Here, spiking activity is shown in the PPC network (PPC, bottom)
and the PFC network (PFC, top). Weak recurrent dynamics in PPC (γppc

rec =
0.67) support the initial encoding of all items in the network, but the effective
load is reduced by competitive encoding in PFC (γpfc

rec = 4). Persistent
activity is supported by inter-aerial projections (γfb

g = 3).
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solid and dashed curves correspond to PPC and PFC respectively. Error
bars show standard error. Control parameters are γppc

rec = 0.67, γpfc
rec = 4 and

γfb
g = 5.
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load would be seen under parameters supporting higher peak capacity, per
the available data (Chee & Chuah, 2007; Cusack et al., 2009; Matsuyoshi et
al., 2014; Fukuda et al., 2015). To this end, we ran a block of trials (100
trials for memory loads 1 : 8) for a range of values of each control parameter,
calculating peak capacity k̂ and overload Θ for each combination of values
(each configuration). We then determined the correlation between peak ca-
pacity and overload rk̂,Θ with monotonic changes to our parameter values,
simulating cognitive control by modulation of PPC dynamics (varying γppc

rec ),
PFC dynamics (varying γpfc

rec ) and the functional connectivity between PPC
and PFC (varying γfb

g ). Overall, we ran blocks for 500 configurations, span-
ning 10 values of γppc

rec (0.67 : 0.1 : 1.67), five values of γpfc
rec (2.5 : 0.05 : 5) and

ten values of γfb
g (1 : 1 : 10). This range of values was sufficiently broad and

fine-grained for monotonic trends in rk̂,Θ to saturate and for non-monotonic
trends to clearly reverse direction (see below).

We first considered our control parameters in isolation from one another,
calculating rk̂,Θ over all values of a given parameter for every combination of
the remaining two parameters. PPC modulation yielded a strong negative
correlation over a broad region of the γpfc

rec x γfb
g parameter space (r < −0.5

for 14 out of 50 combinations of γpfc
rec and γfb

g ), where moderate to strong
recurrent dynamics in PFC coincided with moderate to strong feedback
projections to PPC (Figure 7A). Thus, a negative correlation was seen when
competitive encoding was strong enough to select a manageable number of
items and feedback projections were strong enough to sustain their neural
representations over the delay. Notably, peak capacity increased and overload
decreased as recurrent dynamics in PPC were weakened (lower γppc

rec , Figure
8A-C), suggesting that if PFC selects memoranda and inter-aerial projections
sustain them, then the best thing for PPC to do is give way to its inputs,
thereby limiting competition during the delay.

PFC modulation yielded positive correlations over the full γppc
rec x γfb

g pa-
rameter space (Figure 7B). This result was predictable, since limiting the
number of items available for storage limits peak capacity. In other words,
γpfc
rec embodies a trade-off between peak capacity and overload, as seen in the

PPC-only model (Figure 4). Stronger competitive encoding therefore had a
monotonic effect on correlations (e.g. Figure 8F).

Modulation of the connectivity between PPC and PFC (varying γfb
g ,

inter-aerial modulation) yielded a strong negative correlation (r < −0.5 for 6
out of 50 combinations of γppc

rec and γfb
g ) in the corner of the γppc

rec x γpfc
rec param-

eter space where stronger recurrent dynamics in PPC coincide with weaker
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Figure 7: Correlation between peak capacity and overload in the PPC-PFC
model under PPC modulation (varying γppc

rec , A), PFC modulation (varying
γpfc
rec , B) and modulation of PPC-PFC connectivity (inter-aerial modulation,

varying γfb
g , C-D). Each heat map shows the Pearson correlation coefficient

rk̂,Θ for every combination of the other two parameters. Correlations were

calculated over the full range of γfb
g (C) and the largest continuous subset of

values showing a reduction in overload (D, see text). White dots in panels A
and D show configurations with a significant negative correlation (p < 0.05),
where peak capacity and overload are consistent with behavioral data from
WM tasks, and effective encoding in PPC is consistent with neural data
from visual tasks (see text, Section 3.2.1).

recurrent dynamics PFC (Figure 7C). Thus, a negative correlation was seen
when PFC was insufficiently selective and PPC was too competitive to be
overcome by weak (inter-aerial) feedback projections. Stronger feedback pro-
jections therefore increased peak capacity and decreased overload by provid-
ing more support to the subset of items selected by PFC. Notably, increasing
the strength of PPC-PFC connectivity rarely had a monotonic effect on corre-
lations, so we calculated the correlation between peak capacity and overload
for a continuous subset of γfb

g , where this subset ranged from γfb
g = 1 to

the value of γfb
g producing the least overload for a given combination of γppc

rec

and γpfc
rec (requiring at least three values, Figure 8I). A strong negative cor-

relation (r < −0.5) occurred for 18 out of 50 combinations of γppc
rec and γpfc

rec ,
most of which resulted from a broadening of the parameter region identified
above (strong and weak recurrent dynamics in PPC and PFC respectively;
compare panels C and D in Figure 7). The rest were spurious, where the
magnitude of overload to be overcome was negligible (e.g. overload was al-
ways below Θ = 0.1 for the negative correlation in Figure 8J-L) or where
overload was considerably reduced, but remained high (e.g. overload never
crosses Θ = 0.1 in Figure 8M-O).
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Next, we sought to determine whether peak capacity and the reduction

Figure 8 (preceding page): Examples of PPC modulation (first row), PFC
modulation (second row) and inter-aerial modulation (third to fifth rows)
under a single configuration of the remaining two parameters. First, second
and third columns show capacity as a function of load, overload as a function
of control parameter (given by legend, inset) and overload as a function
of peak capacity respectively. (A-C) PPC modulation with γpfc

rec = 4 and
γfb
g = 5. Weaker PPC dynamics increase peak capacity (A) and reduce

overload (B), producing a negative correlation between these measures (r <
−0.93, p = 0.0001, C). The line in panel C shows the best linear fit (least
squares). (D-F) PFC modulation with γppc

rec = 0.67 and γfb
g = 10. Stronger

PFC dynamics reduce overload (E) at the expense of peak capacity (D),
producing a positive correlation between these measures (r > 0.91, p < 0.03,
F), as in the PPC-only model. (G-H) Inter-aerial modulation with γppc

rec =
1.00 and γpfc

rec = 2.86. Stronger feedback projections to PPC from PFC
increase capacity (G) and decrease overload (H) over a continuous subset of
γfb
g (1 ≤ γfb

g ≤ 3), producing a negative correlation (r < −0.99, p < 0.05,
short-dashed line in I). Stronger feedback projections increase capacity and
overload, producing a positive correlation over another continuous subset
(r > 0.96, p = 0.0001, long-dashed line in I). The solid line in panel I
shows the linear fit to the full range of γfb

g . The horizontal dotted line shows
Θ = 0.1, chosen as the threshold for alleviating overload (see text). (J-L)
Inter-aerial modulation with γppc

rec = 0.83 and γpfc
rec = 4. Stronger feedback

projections increase capacity (J) and decrease overload (K) over a continuous
subset of γfb

g (1 ≤ γfb
g ≤ 4), producing a negative correlation (r < −0.96, p <

0.04, short-dashed line in L) but the magnitude of overload to be overcome
is negligible (Θ < 0.07 for all four values fit by the short-dashed line in L).
Stronger feedback projections increase capacity and overload over another
continuous subset, producing a positive correlation (r > 0.94, p < 0.01,
long-dashed line in L). (M-O) Inter-aerial modulation with γppc

rec = 1.67 and
γpfc
rec = 2.5. Stronger feedback projections increase capacity (M) and decrease

overload (N) over a continuous subset of γfb
g (1 ≤ γfb

g ≤ 4), before overload
reverses direction with further increases in γfb

g . Overload is greatly reduced in
magnitude, but never reaches a value consistent with high-capacity subjects
and conditions (Θ > 0.17 for all γfb

g ).
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in overload were quantitatively consistent with behavioural data in the pa-
rameter regions showing a significant negative correlation (p < 0.05), and
whether PPC was consistent with neural data. In this regard, peak capacity
should exceed around three items [see Cowan (2001); Luck and Vogel (2013)],
overload should be reduced to close to zero (Chee & Chuah, 2007; Linke et
al., 2011; Fukuda et al., 2015) and PPC should initially encode all stimuli
(Thomas & Paré, 2007). For the last of these requirements, we defined E ′

as the minimum ratio of the effective load to the actual load over all load
conditions, that is, E ′ = min[E(n)/n] (in practice, E ′ = E(8)/8 under all
configurations). Allowing a tolerance of 10%, we therefore searched for pa-
rameter regions in which k̂ > 2.7, min(Θ) < 0.1 and E ′ > 0.9. We included
the additional constraint that the magnitude of overload to be overcome
[max(Θ)] must be greater than 0.1. Under PPC modulation, these criteria
were satisfied by five contiguous locations in the parameter region show-
ing a negative correlation (white dots in Figure 7A). Under modulation of
PPC-PFC connectivity, they were not satisfied in any parameter region, but
they were satisfied in one location of the γppc

recxγ
pfc
rec parameter space when we

searched the continuous subsets of γfb
g described above (white dot in Figure

7D). These results were unchanged when we lowered our criterion for peak ca-
pacity to 2, again with a tolerance of 10% (k̂ > 1.8). Thus, in isolation, PPC
modulation and inter-aerial modulation were both able to increase capac-
ity and reduce overload in a manner consistent with neural and behavioural
data from multiple-item visual and WM tasks, where weaker PPC dynamics
and stronger feedback projections supported better task performance. PPC
modulation was the more robust mechanism, as functional connectivity was
only able to account for these data under a single combination of the other
two parameters.

3.2.2 Hierarchical recruitment of competition during stimulus en-

coding: computational principles for distributed WM stor-

age

Finally, we considered our control parameters in combination with one an-
other, aiming to provide a better quantitative account of the magnitude of
overload shown by low-capacity subjects, and in low-capacity tasks and con-
ditions (henceforth low-capacity performance). Under PPC modulation and
inter-aerial modulation, the most extreme cases of overload in the parameter
regions satisfying our criteria were Θ ≈ 0.2 (Figure 8A-C and G-I). While
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this degree of overload is consistent with some data [e.g. Cusack et al. (2009);
Linke et al. (2011)], overload has approached 50% of peak capacity in sev-
eral studies [e.g. Chee and Chuah (2007); Xu (2007); Fukuda et al. (2015)]
and has even approached 100% among elderly, low-capacity subjects in ex-
treme load conditions (Matsuyoshi et al., 2014). We therefore investigated
whether simultaneous variation of our control parameters could alleviate the
more extreme cases of overload that occur with low-capacity performance,
resulting in peak capacity consistent with high-capacity performance in the
same studies. High-capacity performance is explained by the computational
principles identified above: strong recurrent dynamics in PFC, supporting
competitive encoding; strong feedback projections to PPC from PFC, sup-
porting persistent activity; and weak recurrent dynamics in PPC, limiting
competition during the memory delay. These principles not only capture a
tangible strategy for WM storage on multiple-item tasks (selection of a subset
of items for storage), but offer a specific set of mechanisms for their imple-
mentation in fronto-parietal circuitry. Thus, we reasoned that low-capacity
performance would be explained by non-compliance with these principles,
investigating the PPC-PFC model under the lowest value of γpfc

rec , the lowest
value of γfb

g and the highest value of γppc
rec (the low-capacity configuration).

In other words, the low-capacity configuration had the weakest recurrent dy-
namics in PFC, the weakest feedback projections to PPC and the strongest
recurrent dynamics in PPC.

The low-capacity configuration had a peak capacity of k̂ ≈ 2 items, over-
load of Θ > 0.5 and allowed all items to be encoded by PPC (Figure 9A-C,
black). For a range of parameter values, increasing the strength of competi-
tion in PFC (increasing γpfc

rec ), increasing the strength of feedback projections
to PPC (increasing γfb

g ) and decreasing the strength of competition in PPC
(decreasing γppc

rec ) produced very similar results to those shown in Figure 6
(high-capacity configurations), raising peak capacity to k̂ ∼ 3 items, reducing
overload to close to Θ = 0 and retaining the encoding of all items in PPC.
These results are strikingly similar to peak capacity and overload among low-
and high-capacity subjects [cf. Fukuda et al. (2015)] and task conditions [cf.
Chee and Chuah (2007)]. We do not propose a specific trajectory through the
parameter space from one extreme to the other, but rather, we emphasize
that multiple trajectories show robustness of the computational principles
identified by our simulations.

Surprisingly, under the high-capacity configurations satisfying the crite-
ria described in the previous section (k̂ > 2.7, min(Θ) < 0.1 and E ′ > 0.9),
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modulation of all three parameters (henceforth 3-parameter modulation) pro-
duced an effective load in PFC that was greater than or equal to the effective
load under the low-parameter configuration (Figure 9B), that is, the low-
capacity configuration did actually implement selective encoding in PFC.
This result supports the hypothesis that poor performance by low-capacity
subjects does not reflect poor task strategy, e.g. a failure to select a sub-
set of items for storage, but rather, reflects poor control over fronto-parietal
circuitry. We therefore determined whether the simultaneous modulation
of any two parameters (2-parameter modulation, holding the third param-
eter fixed) could satisfy the above criteria, overcome a degree of overload
comparable to that of the low-capacity configuration (Θ ≈ 0.5), and show
a lower effective load in PFC with high capacity than with the low capac-
ity. If so, it would support the hypothesis that low-capacity subjects are
encoding too many memoranda and would allow us to consider predictions
under 3-parameter and 2-parameter modulation that might distinguish be-
tween these two hypotheses (poor cognitive control vs. poor task strategy).
To this end, we simultaneously decreased and increased γppc

rec and γpfc
rec from

their highest and lowest values respectively, while holding γfb
g fixed (at all

possible values); simultaneously decreased and increased γppc
rec and γfb

g from
their highest and lowest values respectively, while holding γpfc

rec fixed; and
simultaneously increased γpfc

rec and γfb
g from their lowest values, while holding

γppc
rec fixed. The first two approaches were unable to satisfy our constraints,

but the third approach was able to do so with a moderate increase in the
strength of competition in PFC, a small increase in the strength of feedback
projections, and with PPC dynamics fixed at a moderate level (maximum
overload was Θ ≈ 0.4).

3.2.3 Predictions for experimental testing

As detailed above, the PPC-PFC model implements hierarchical recruit-
ment of competition during stimulus encoding, accounting for WM perfor-
mance when memory load exceeds subjects’ retention abilities [compare Fig-
ure 9A-C with Figure 4B in Fukuda et al. (2015)]. To make predictions
to test this hypothesis experimentally, we approximated high-density EEG
recordings over PPC and lateral PFC, simulating low- and high-capacity
performance with the low- and high-capacity parameter configurations iden-
tified above. To approximate the EEG signal, we followed the approach
by McCarthy, Brown, and Kopell (2008), summing all excitatory currents

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2017. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


1 2 3 4 5 6 7 8

C
a

p
a

ci
ty

 

0

1

2

3

1 2 3 4 5 6 7 8

E
!

e
ct

iv
e

 lo
a

d
 

0

2

4

6

8

2 2.5 3 3.5

O
v

e
rl

o
a

d
 (

P
P

C
)

-0.2

0

0.2

0.4

0.6

0.8

Load 
1 2 3 4 5 6 7 8

C
a

p
a

ci
ty

 

0

1

2

3

Load 
1 2 3 4 5 6 7 8

E
!

e
ct

iv
e

 lo
a

d
 

0

2

4

6

8

Peak capacity

O
v

e
rl

o
a

d
 (

P
P

C
)

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

A B C

D E F

PPC

PFC

PPC

PFC

Figure 9: (A-C) Simultaneously increasing the strength of competition in
PFC, increasing the strength of feedback projections to PPC from PFC,
and decreasing the strength of competition in PPC (3-parameter modula-
tion) raised peak capacity (A) and reduced overload (C) in a manner consis-
tent with neural and behavioural data (see text, Section 3.2.1). Effective load
in PFC (lower curves in panel B) was higher under the high-capacity config-
uration (grey, parameter values provided in Figure 6) than the low-capacity
configuration (black; γppc

rec = 1.67, γpfc
rec = 2.5, γfb

g = 1. 3-parameter modu-
lation was therefore inconsistent with the hypothesis that low capacity and
pronounced overload result from the encoding of too many items in PFC. (D-
F) Simultaneously increasing the strength of competition in PFC, increasing
the strength of feedback projections to PPC, and fixing PPC dynamics at
a moderate level (2-parameter modulation) similarly raised peak capacity
and reduced overload, but the effective load in PFC was higher under the
low-capacity configuration than under the high-capacity configuration (E).
2-parameter modulation was therefore consistent with the hypothesis that
low capacity and pronounced overload result from the encoding of too many
items in PFC.
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onto pyramidal neurons in each network. Thus, we simulated the instan-
taneous source amplitude of EEG over PPC by EEGppc =

∑

j I
back,syn
j +

∑

j I
sel
j +

∑

j I
rec
AMPA,j+

∑

j I
rec
NMDA,j+

∑

Ifbj and over lateral PFC by EEGpfc =
∑

j I
back,syn
j +

∑

j I
rec
AMPA,j +

∑

j I
rec
NMDA,j +

∑

Iffj , where index j refers to
pyramidal neurons, currents IrecAMPA,j and IrecNMDA,j are given by Equation

6, and currents Iback,synj , Iselj , Ifbj and Iffj are given by Equations 9, 18,
16 and 15 respectively. We summed this instantaneous signal over the
300ms stimulus interval and the last 300ms of the memory delay to ob-
tain the total amplitude EEG{ppc,pfc}

s in each task epoch. Because competi-
tive dynamics in PPC and PFC may be modulated by different mechanisms
than the scaling of synaptic conductances used here (γppc

rec and γpfc
rec ) and

because our EEG approximation sums the resulting synaptic currents, we
normalized the EEG approximation by its minimum and maximum values
(EEGη = [EEGs −min(EEGs)]/[max(EEGs) −min(EEGs)]), predicting
the qualitative form of EEG amplitude as a function of memory load, rather
than absolute amplitude.

During the stimulus interval, EEGη showed greater concavity (concave
down) as a function of memory load for PFC than PPC (Figure 10A and C)
under the low- and high-capacity configurations alike. In this regard, concav-
ity serves an index of the timing of selective encoding, i.e. greater concavity
reveals earlier selection of memoranda. Notably, this finding was the case for
both 3-parameter and 2-parameter modulation, providing a robust signature
of hierarchical recruitment of competition. Thus the PPC-PFC model makes
a specific, testable prediction for our hypothesis: EEG amplitude will show
greater concavity over memory load when recorded over lateral PFC than
when recorded over PPC during the stimulus interval of multiple-item WM
tasks.

During the delay interval, EEGη was qualitatively indistinguishable for
PPC and PFC under the low- and high-capacity configurations, as expected
(together, the two networks support persistent activity via inter-aerial projec-
tions). EEGη was similarly indistinguishable under the high-capacity config-
urations under 3-parameter and 2-parameter modulation (grey curves, Fig-
ure 10B and D), where simulated EEG amplitude was bi-linear over memory
load. This bi-linearity is strikingly similar to the bi-linear EEG amplitude
over PPC shown by Vogel and Machizawa (2004) for all subjects and by
Fukuda et al. (2015) for low- and high-capacity subject groups.

Finally, EEGη was qualitatively distinct during the delay period under 3-
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parameter and 2-parameter modulation, allowing us to address the question
posed by our results in the previous section: is low-capacity WM perfor-
mance attributable to poor cognitive control or poor task strategy? Under
3-parameter modulation, EEGη was bi-linear over memory load for both
networks under low- and high-capacity configurations, but the ‘second line’
of the bi-linear curve had a negative slope under the low-capacity configura-
tion and was approximately flat under the high-capacity configuration (Fig-
ure 10B). These curves are strikingly similar to the bilinear EEG amplitude
shown by Fukuda et al. (2015) over PPC for low- and high-capacity subjects.
Under 2-parameter modulation, EEGη was tri-linear for both networks (Fig-
ure 10D) and therefore did not account for the available EEG data. As such,
these findings support the hypothesis that low-capacity subjects are indeed
selectively encoding memoranda for storage, but they have poor control over
their fronto-parietal circuitry.

4 Discussion

The storage limitations of WM have been the subject of intense research in-
terest for several decades [see Luck and Vogel (2013)], but although several
studies have reported a reduction in WM capacity with high memory load
[e.g. Xu (2007); Chee and Chuah (2007)], WM overload has only been the
focus of a handful of behavioural experiments (Cusack et al., 2009; Linke et
al., 2011; Matsuyoshi et al., 2014; Fukuda et al., 2015). We investigated the
neural basis of overload with the PPC and PPC-PFC models, finding that
overload could be reduced in both models by strong competitive dynamics
during the stimulus interval of simulated WM tasks. The PPC-only model,
however, showed a positive correlation between peak capacity and overload
(Figure 4), in opposition to available data (Chee & Chuah, 2007; Xu, 2007;
Linke et al., 2011; Matsuyoshi et al., 2014; Fukuda et al., 2015). The PPC-
PFC model accounted for these data in a parameter regime where selective
encoding was supported by strong competitive dynamics in PFC, persistent
activity was supported by inter-aerial projections, and weak dynamics in
PPC limited competition during the memory delay (Figure 6). As such, the
model implemented hierarchical recruitment of competition during stimulus
encoding and identified a set of computational principles for WM storage in
distributed circuitry. Under these principles, all WM items were encoded by
PPC (Figure 6B), consistent with single-cell electrophysiological recordings
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from PPC (Thomas & Paré, 2007); simulated EEG amplitude was bi-linear
over memory load during the delay period (Figure 10B), consistent with
EEG recordings over PPC (Vogel & Machizawa, 2004; Fukuda et al., 2015);
and peak capacity was around three items, consistent with behavioural data
from numerous WM tasks (Figure 6B) [see Cowan (2001); Luck and Vogel
(2013)]. When we violated the identified principles (increased competition in
PPC, decreased strength of feedback projections and decreased competition
in PFC), peak capacity was reduced to just over two items (Figure 9A), over-
load was greater than 50% of peak capacity (Figure 9C) and the ‘second line’
of the bi-linearity of simulated EEG amplitude showed a negative slope (Fig-
ure 10B). These results are strikingly consistent with behavioural and EEG
data from low-capacity subjects in the study by Fukuda et al. (2015). To
our surprise, the model implemented selective encoding in this low-capacity
regime (Figure 9B). Thus, it captured a strategy for WM storage under high
load and offered a set of neural mechanisms for its implementation in hi-
erarchical circuitry, but it predicted that low-capacity subjects are indeed
attempting this strategy and that their performance reflects poor control of
fronto-parietal processing. Our hypothesis is testable by the prediction that
EEG amplitude over memory load will show greater concavity over lateral

Figure 10 (preceding page): Predictions by the PPC-PFC model for nor-
malized EEG amplitude (EEGη, see text) over PPC (solid) and lateral PFC
(dotted) for low-capacity (black) and high-capacity (grey) WM performance.
(A-B) EEGη as a function of memory load during the stimulus interval (A)
and during the last 300ms of the memory delay (B) under 3-parameter modu-
lation. During the stimulus interval (A), hierarchical recruitment of competi-
tion during stimulus encoding predicts greater concavity over PFC, indicating
earlier selection of memoranda than in PPC. The dashed unity line highlights
concavity of the curves. During the memory delay (B), the model predicts
bilinear amplitude over PPC and lateral PFC in low- and high-capacity con-
ditions, where the slope of the ‘second line’ will be negative in low-capacity
conditions [cf. Vogel and Machizawa (2004); Fukuda et al (2015)]. (C-D)
Under 2-parameter modulation (PPC dynamics fixed at a moderate level,
see text), the PPC-PFC model again predicts greater concavity over PFC
during the stimulus interval, and again predicts bi-linear EEG amplitude
over PPC and PFC in high-capacity conditions, but EEGη is tri-linear over
both networks.
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PFC than over PPC during the stimulus interval of WM tasks (Figure 10A),
providing a neural signature of early selection.

Our models have limitations, of course. While there is growing support
for the hypotheses that PPC is the hub of distributed WM circuitry (Palva
et al., 2010; Christophel et al., 2012; Salazar et al., 2012) and that fronto-
parietal interactions play a central role in multiple-item WM storage (Edin
et al., 2009; Palva et al., 2010), other brain regions play important roles in
WM [see Sreenivasan, Curtis, and DEsposito (2014); D’Esposito and Postle
(2015)]. Thus, we do not claim that the PPC-PFC model and the computa-
tional principles it identifies should explain WM overload under all possible
conditions. For example, the negative correlation between peak capacity and
overload that guided our investigations is common (Chee & Chuah, 2007;
Xu, 2007; Cusack et al., 2009; Linke et al., 2011; Matsuyoshi et al., 2014;
Fukuda et al., 2015), but not ubiquitous. These two measures have been
shown to increase together with the duration of stimulus encoding [see Fig-
ure 4 by Cusack et al. (2009)], as well as during childhood development [from
6 − 7 year-old children to college students in the study by Cowan, Morey,
AuBuchon, Zwilling, and Gilchrist (2010)].

Another limitation of our models is that they only consider the spatial
location of memoranda, ignoring other features and their conjunctions. In
effect, our simulations assume that everything encoded by PPC satisfies a set
of rules for selection, e.g. red squares or blue circles. This approach is com-
mon among neural models of WM storage [e.g. Compte et al. (2000); Tanaka
(2002); Macoveanu, Klingberg, and Tegnér (2006); Edin et al. (2009); Wei
et al. (2012)] and is reasonable for studies focused on capacity. While the
PPC-PFC model takes an important step toward the understanding of WM
storage in distributed circuitry, an understanding of feature-bound memo-
randa will likely require hierarchical models with converging feature maps.
See Raffone and Wolters (2001) for a binding mechanism for sequentially
presented memoranda [related models are described by Lisman and Idiart
(1995); Jensen and Lisman (1996)].

Finally, our focus on WM overload inherently limits our study to the
investigation of capacity, but we do not suggest that capacity provides the
only limitation on WM storage. There is ample evidence that the precision
of memoranda is load-dependent [e.g. Zhang and Luck (2008); Bays, Cata-
lao, and Husain (2009); van den Berg, Shin, Chou, George, and Ma (2012)].
Historically, capacity and precision have been presented as evidence for con-
flicting hypotheses on the nature of WM storage [see Luck and Vogel (2013);
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Ma, Husain, and Bays (2014)], but neural modelling studies have begun to
focus on their relationship and its neural basis (Wei et al., 2012; Roggeman,
Klingberg, Feenstra, Compte, & Almeida, 2013; Okimura, Tanaka, Maeda,
Kato, & Mimura, 2015). We are unaware of studies showing anything re-
sembling overload in relation to precision (e.g. unchanging precision up to a
critical load, followed by a decrease), but future experiments should investi-
gate the dependence of precision on supra-capacity memory load.

Local-circuit attractor models (such as the PPC-only model) have been
invaluable to our understanding of the neural basis of persistent activity on
single-item tasks (Wang, 1999; Compte et al., 2000) and capacity limitations
on multiple-item tasks with memory loads similar to (or less than) capacity
(Tanaka, 2002; Macoveanu et al., 2006; Edin et al., 2009). Assuming that
all items are encoded for storage, these models necessarily produce overload
when the number of memoranda sufficiently exceeds capacity, due to the
competition between simulated neural populations [see Edin et al. (2009) for
analysis]. This finding reveals a limitation of local-circuit models of WM stor-
age, since not all experimental tasks, conditions and subjects show overload
[e.g. Xu (2007); Chee and Chuah (2007); Cusack et al. (2009); Fukuda et al.
(2015)]. The same can be said of hierarchical models in which a top-down
control signal modulates the recurrent dynamics of a downstream network
(Roggeman et al., 2013; Almeida, Barbosa, & Compte, 2015), since persis-
tent activity is supported by attractor dynamics in the network receiving the
control signal (Edin et al., 2009). The PPC-PFC model builds on this work,
taking a step toward an understanding of the roles played by local circuits
in distributed WM storage. An important next step is to simulate inter-
aerial cortical pathways in more detail, since these pathways systematically
differ according to layer, hierarchical distance and (presumably) function.
The structural and mechanistic differences between the PPC-PFC model
and the model by Edin et al. (2009) are instructive in this regard. Our
model emphasizes the role of topographic inter-aerial pathways, which run
bidirectionally in supra-granular layers between hierarchically adjacent cor-
tical areas (such as PPC and PFC), but which are increasingly dominated by
feed-forward (ascending) projections with greater hierarchical distance. In
the model by (Edin et al., 2009) [and Roggeman et al. (2013) and Almeida
et al. (2015)], the top-down control signal is spatially non-selective (diffuse),
an established form of gain modulation in local-circuit models of this class
(Salinas & Abbott, 1996; Furman & Wang, 2008; Standage et al., 2013).
Diffuse pathways run bidirectionally in infra-granular layers between adja-
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cent cortical areas, but are increasingly dominated by feedback (descending)
projections with greater hierarchical distance, i.e. the opposite arrangement
to topographic pathways [see Markov and Kennedy (2013)]. Thus, our dif-
ferent approaches capture fundamentally different mechanisms for control of
WM storage: bottom-up recruitment by (and of) topographic pathways and
top-down control by diffuse pathways respectively. It seems likely that both
mechanisms are involved in WM storage. Future work should test the pre-
dictions of our respective models, aiming to identify the roles of different
cortical areas and their functional interactions in support of WM.

The real-world phenomenon of WM overload has long been of concern
to educators (Sweller, 1988), who have identified the need for a stronger sci-
entific foundation for pedagogic strategies aiming to prevent its occurrence
in the classroom (Schnotz & Kurschner, 2007; de Jong, 2010). Nonetheless,
despite intense research interest in the storage limitations of WM more gen-
erally [see Luck and Vogel (2013)], only a handful of studies have specifically
investigated overload (Cusack et al., 2009; Linke et al., 2011; Matsuyoshi et
al., 2014; Fukuda et al., 2015) and to the best of our knowledge, no previous
study has investigated its mechanistic basis. Our findings point to cognitive
control as the source of differential WM performance across subject groups,
rather than capacity per se. This finding is consistent with recent experi-
mental work emphasizing strategic ability as the source of high performance
on WM tasks and on tests of cognitive ability more generally (Cusack et
al., 2009; Linke et al., 2011). Given the strong correlation between capacity
and scores on intelligence tests [see Unsworth et al. (2014)], we believe this
message is a positive one, though our findings do not suggest that capacity
can necessarily be improved by simple strategic adjustments (Section 3.2.2).
Rather, they suggest that individuals with better control of distributed cor-
tical processing are better positioned to implement effective strategies. Sig-
nificant research investment will be required to identify ways to improve this
control. Our predictions for experimental testing (Section 3.2.3) are a step
in this direction.
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Merrienboër, J. J. G., & Sweller, J. (2005). Cognitive load theory and com-

plex learning: recent development and future directions. Educational

Psychology Review , 17 (2), 148–177.
Okimura, T., Tanaka, S., Maeda, T., Kato, M., & Mimura, M. (2015).

Simulation of the capacity and precision of working memory in the hy-

42

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2017. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


podopaminergic state: relevance to schizophrenia. Neuroscience, 295 ,
80–89.

Packer, A. M., & Yuste, R. (2011). Dense, unspecific connectivity of neocor-
tical parvalbumin-positive interneurons: A canonical microcircuit for
inhibition? Journal of Neuroscience, 31 (37), 13260–13271.

Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal
synchrony reveals working memory networks and predicts individual
memory capacity. Proceedings of the National Academy of Sciences of

the United States of America, 107 (16), 7580–7585.
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