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Abstract

The storage limitations of visual working memory have been the
subject of intense research interest for several decades, but few stud-
ies have systematically investigated the dependence of these limita-
tions on memory load that exceeds our retention abilities. Under this
real-world scenario, performance typically declines beyond a critical
load among low-performing subjects, a phenomenon known as working
memory overload. We used a fronto-parietal cortical model to test the
hypothesis that high-performing subjects select a manageable number
of items for storage, thereby avoiding overload. The model accounts
for behavioural and electrophysiological data from high-performing
subjects in a parameter regime where competitive encoding in its pre-
frontal network selects items for storage, inter-areal projections sus-
tain their representations after stimulus offset, and weak dynamics
in its parietal network limit their mutual interference. Violation of
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these principles accounts for these data among low-performing sub-
jects, implying that poor visual working memory performance reflects
poor control over fronto-parietal circuitry, and making testable pre-
dictions for experiments.

1 Introduction

The transient retention and manipulation of information is central to cog-
nition and is known as working memory. The modular nature of working
memory has long been recognized [see Baddeley (2012)], with visual working
memory (WM) receiving considerable attention for several decades. Much of
this research has focused on the storage limitations of WM, which have been
described in terms of the number of stored items and the precision of reports
about them [see Luck and Vogel (2013); Ma, Husain, and Bays (2014)]. A
large body of work provides evidence for a severe limit on the number of
items humans can store in WM, typically three of four memoranda among
healthy young adults [see Vogel and Awh (2008); Luck and Vogel (2013)].
This number is often referred to as WM capacity [though see Brady, Konkle,
and Alvarez (2011) for a broader definition of this term] and is a reliable
predictor of cognitive ability more generally [see Unsworth, Fukuda, Awh,
and Vogel (2014)]. Thus, understanding its neural basis is widely regarded
as a fundamental goal of cognitive neuroscience.

In the laboratory, the storage limitations of WM are estimated by varying
the number of items for retention over a memory delay (WM load), but little
emphasis has been given to the dependence of storage limitations on load
that exceeds our retention abilities. This real-world scenario has long been
of concern to instructional designers (Sweller, 1988; Merrienboër & Sweller,
2005), who consider the avoidance of ‘overload’ a fundamental principle of
effective design. Consistent with this concern, recent WM studies have shown
a decrease in WM capacity beyond a critical load (Chee & Chuah, 2007;
Xu, 2007; Cusack, Lehmann, Veldsman, & Mitchell, 2009; Linke, Vicente-
Grabovetsky, Mitchell, & Cusack, 2011; Matsuyoshi, Osaka, & Osaka, 2014;
Fukuda, Woodman, & Vogel, 2015), referred to as WM overload (Matsuyoshi
et al., 2014). To the best of our knowledge, overload has not been reported
in terms of WM precision and we limit our focus to the available data. For
a thorough treatment of the mechanistic relationship between WM capacity
and precision, see Standage and Paré (2018).
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It is widely believed that WM storage is supported by ‘attractor states’
in neocortex, where regenerative excitation sustains neural firing after stim-
ulus offset, kept in check by feedback inhibition [see X.-J. Wang (2001)]. In
models of this kind, overload is a consequence of the competition imposed
by inhibition (Edin et al., 2009), but not all subjects show overload [e.g.
Fukuda, Woodman, and Vogel (2015)] and among those who do, overload is
not typically as pronounced as in these models [e.g. Wei, Wang, and Wang
(2012); Section 3.1 here]. The occurrence of overload in attractor models,
however, assumes that all items in a stimulus array are encoded for storage.
Thus, a viable strategy for managing overload is to limit the number of en-
coded items (Cusack et al., 2009). We hypothesize that this selection process
is implemented by strong competitive dynamics during stimulus encoding.

To test our hypothesis, we simulated a multiple-item WM task with bio-
physical models of posterior parietal cortex (PPC) and lateral prefrontal
cortex (PFC), both of which are extensively correlated with WM [see Curtis
(2006); Funahashi (2013)]. PPC is hypothesized to be the hub of distributed
WM storage (Palva, Monto, Kulashekhar, & Palva, 2010; Christophel, Hebart,
& Haynes, 2012; Salazar, Dotson, Bressler, & Gray, 2012) and is well char-
acterized by neural data from visual tasks [see Goldberg, Bisley, Powell, and
Gottlieb (2006); Serences and Yantis (2006)], so we first sought to determine
whether competitive encoding in a local-circuit PPC model could alleviate
overload in a manner consistent with behavioural data from high-performing
WM subjects, and with neural data from visual tasks. We reasoned that
any inconsistencies between the model and these data would point to the
limitations of single-circuit attractor models of WM storage, to the compu-
tational requirements of distributed storage, and by extension, to the role of
PPC in distributed storage. Next, we did the same thing with a hierarchical
model of PPC and PFC, reasoning that the values of biophysical parame-
ters required to account for the data would identify specific mechanisms and
principles for the implementation of distributed storage. If so, then violation
of these principles should account for behavioural data from low-performing
subjects. Thus, we evaluated our hierarchical model for its ability to account
for capacity and overload among subject groups distinguished according to
these measures. Finally, we sought to make predictions to test our hypothesis
experimentally, approximating electroencephalogram (EEG) recordings over
PPC and PFC. We reasoned that if this approximation could account for the
different EEG profiles of high- and low-performing subject groups during the
storage of memoranda (Fukuda, Woodman, & Vogel, 2015), then its profile
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during stimulus encoding would be a testable prediction for our hypothesis.

2 Methods

Our local-circuit PPC model (the PPC-only model, Figure 1A) is a network
of simulated pyramidal neurons and inhibitory interneurons, connected by
AMPA, NMDA and GABA receptor conductance synapses (AMPAR, NM-
DAR and GABAR). Our hierarchical model (the PPC-PFC model, Figure
1D) is comprised of two such networks, bidirectionally connected. In both
models, intrinsic synaptic connectivity within and between classes of neuron
was structured according to in vitro data, as was the connectivity between
networks in the PPC-PFC model. Our chosen parameters and their values
are justified in Section 2.6. Note that the synaptic resolution of the models
allowed us to approximate EEG signals over PPC and PFC (Results section
3.2.5).

We ran simulations of a visuospatial WM task with both models, where
the number of items for retention ranged from 1 to 8. On each trial of the
task, a stimulus interval was preceded by a pre-trial interval and followed by
a delay of 1s. In both models, the items were provided to the PPC network
during the stimulus interval and their accurate retention (or otherwise) was
determined from its activity at the end of the delay (Sections 2.4 and 2.5).

2.1 The network model

Each local circuit is a fully connected network of leaky integrate-and-fire neu-
rons (Tuckwell, 1988), comprised of Np = 400 simulated pyramidal neurons
and N i = 100 fast-spiking inhibitory interneurons. Each model neuron is
described by

C{p,i}
m

dV

dt
= −g

{p,i}
L (V − E

{p,i}
L )− I, (1)

where Cm is the membrane capacitance of the neuron, gL is the leakage
conductance, V is the membrane potential, EL is the equilibrium potential,
and I is the total input current. When V reaches a threshold ϑv, it is reset
to Vres, after which it is unresponsive to its input for an absolute refractory
period of τref . Here and below, superscripts p and i refer to pyramidal
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neurons and interneurons respectively, indicating that parameter values are
assigned separately to each class of neuron.

The total input current at each neuron is given by

I = Isel + Irec + Ihier + Iback, (2)

where Isel is stimulus-selective synaptic current (set to 0 for all neurons in
the PFC network and for interneurons in the PPC network), Irec is recurrent
(intrinsic) synaptic current, Ihier is hierarchical (inter-areal) synaptic current
projected to PPC from PFC and vice versa (set to 0 in single-circuit simula-
tions) and Iback is background current. Of these currents, Isel, Irec and Ihier

are comprised of synaptic currents, and Iback is comprised of synaptic current
and injected current. Synaptic currents driven by pyramidal neuron spiking
are mediated by simulated AMPA receptor (AMPAR) and/or NMDA recep-
tor (NMDAR) conductances, and synaptic currents driven by interneuron
spiking are mediated by simulated GABA receptor (GABAR) conductances.
For AMPAR and GABAR currents, synaptic activation (the proportion of

Figure 1 (preceding page): (A) Schematic of the PPC-only model. Solid
circles depict pyramidal neurons (green) and inhibitory interneurons (red),
arranged periodically by their connectivity structures. The 4-to-1 ratio of
pyramidal neurons to interneurons preserves their population sizes in the
model. Arced and straight arrows depict synaptic connectivity within and
between classes of neuron respectively. Thin Gaussian curves depict the
structure of this connectivity (within, solid; between, dotted). The Gaussian
curve on the left depicts the RF of a pyramidal neuron. Red, open green
and wide green arrows depict GABAR, AMPAR-only, and AMPAR-NMDAR
synapses respectively. (B) Synaptic currents onto a pyramidal neuron (solid)
and an interneuron (dotted) during the delay interval of the 1-item mem-
ory task. Red, light green and dark green curves show GABAR, AMPAR
and NMDAR currents respectively. (C) Membrane potential of a pyramidal
neuron and an interneuron during the pre-trial interval. (D) Schematic of
the PPC-PFC model. The PPC network is identical to the PPC-only model.
The PFC network differs only in the strength of GABAR conductance onto
pyramidal neurons. Open and thin arrows depict topographically aligned
feed-forward and feedback projections, mediated by AMPARs and NMDARs
respectively. See Section 2 for description of the model.
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open channels) is defined by

dga
AMPA

dt
= −

ga
AMPA

τ
{p,i}
AMPA

+ δ(t− tf)

dga
GABA

dt
= −

ga
GABA

τ
{p,i}
GABA

+ δ(t− tf),

(3)

where τAMPA and τGABA are the time constants of AMPAR and GABAR
deactivation respectively, δ is the Dirac delta function, tf is the time of
firing of a pre-synaptic neuron and superscript a indicates that synapses
are activated by different sources of spiking activity (selective, recurrent,
hierarchical and background). NMDAR activation has a slower rise and
decay and is described by

dgaNMDA

dt
= −

gaNMDA

τ
{p,i}
NMDA

+ αNMDA · ωNMDA(1− gaNMDA), (4)

where τNMDA is the time constant of receptor deactivation and αNMDA con-
trols the saturation of NMDAR channels at high pre-synaptic spike frequen-
cies. The slower opening of NMDAR channels is captured by

dωNMDA

dt
= −

ωNMDA

τω
+ δ(t− tf ), (5)

where τω and η determine the rate of channel opening and the voltage-
dependence of NMDARs respectively.

Recurrent synaptic current to each neuron j is defined by

Irecj = IrecAMPA,j + IrecNMDA,j + IrecGABA,j

IrecAMPA,j =
∑

k 1/γ
{ppc,pfc}
g ·G

{p,i}
AMPA · grecAMPA,k(Vj − VE) ·W

rec|pp,ip
j,k

IrecNMDA,j =
∑

k 1/γ
{ppc,pfc}
g ·G

{p,i}
NMDA · grecNMDA,k(Vj − VE) ·W

rec|pp,ip
j,k · ηj

IrecGABA,j =
∑

k 1/γ
{ppc,pfc}
g ·G

{p,i}
GABA · grecGABA,k(Vj − VI) ·W

rec|pi,ii
j,k ,

(6)
where γ{ppc,pfc}

g is a scale factor controlling the relative strength of extrin-
sic and intrinsic synaptic conductance (subscripts ppc and pfc indicate that
its value is assigned separately to each network, see Section 2.6); GAMPA,
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GNMDA and GGABA are the respective strengths of AMPAR, NMDAR and
GABAR conductance; VE is the reversal potential for AMPARs and NM-
DARs, and VI is the reversal potential for GABARs; grecAMPA,k, g

rec
NMDA,k and

grecGABA,k are the activation of AMPAR, NMDAR and GABAR receptors re-

spectively by pre-synaptic neurons k; and matrices W rec|pp,ip and W rec|pi,ii

scale conductance strength or weight according to the connectivity struc-
ture of the network. This structure depends on the class of neuron receiving
and projecting spiking activity, where superscripts pp, ip, pi and ii denote
connections to pyramidal neurons from pyramidal neurons, to interneurons
from pyramidal neurons, to pyramidal neurons from interneurons, and to
interneurons from interneurons respectively. For each of these structures
s ∈ {pp, ip, pi, ii}, W rec|s is a Gaussian function of the distance between

periodically-arranged neurons, where the weight W
rec|s
j,k to neuron j from

neuron k is given by

W
rec|s
j,k = e

−d2/2σ2

rec|s · (1− ζrec|s) + ζrec|s. (7)

The distance between neurons is defined by d = min(|j−k|∆x, 2π−|j−k|∆x)
for W rec|pp and W rec|ii, and by d = min(|j− z|∆x, 2π−|j− z|∆x) for W rec|ip

and W rec|pi, where z = Np/N i · k for W rec|ip and z = N i/Np · k for W rec|pi.
∆x = 2π/N{p,i} is a scale factor and σrec|s determines the spatial extent of
connectivity. Parameter ζrec|s allows the inclusion of a baseline weight, with
the function normalized to a maximum of 1 (0 ≤ ζrec|s < 1).

2.2 Background activity

For each neuron, in vivo cortical background activity is simulated by current
Iback, defined by

Iback = Iback,syn + Iback,inj, (8)

where Iback,syn is driven by synaptic bombardment and Iback,inj is noisy
current injection. The former is generated by AMPAR synaptic activation,
where independent, homogeneous Poisson spike trains are provided to all
neurons at rate µback. I

back,syn is therefore defined by

Iback,syn = γ{ppc,pfc}
g · γext

g ·G
{p,i}
AMPA · gbackAMPA(V − VE), (9)

where γext
g is a scale factor and gbackAMPA is given in Equation 3.
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For Iback,inj, we used the point-conductance model by (Destexhe, Rudolph,
Fellous, & Sejnowski, 2001):

Iback,inj = ge(t)(V − VE) + gi(t)(V − VI). (10)

The time-dependent excitatory and inhibitory conductances ge(t) and gi(t)
are updated at each timestep ∆t according to

ge(t +∆t) = g0e + [ge(t)− g0e] · e
−∆t/τe + AeΥ (11)

and

gi(t+∆t) = g0i + [gi(t)− g0i] · e
−∆t/τi + AiΥ (12)

respectively, where g0e and g0i are average conductances, τe and τi are time
constants, and Υ is normally distributed random noise with 0 mean and unit
standard deviation. Amplitude coefficients Ae and Ai are defined by

Ae =

√

Deτe
2

[

1− exp
(

−2∆t

τe

)]

(13)

and

Ai =

√

Diτi
2

[

1− exp
(

−2∆t

τi

)]

(14)

respectively, where De = 2σ2
e/τe and Di = 2σ2

i /τi are noise ‘diffusion’ coeffi-
cients. See (Destexhe et al., 2001) for the derivation of these equations.

2.3 The PPC-PFC model

In the hierarchical model, inter-areal projections mediate synaptic currents
Ihier ∈ {Iff , Ifb}, where superscript ff (fb) refers to feedforward (feedback)
currents onto neurons in the PFC (PPC) network from neurons in the PPC
(PFC) network. Only pyramidal neurons make inter-areal projections, where
feedforward projections are mediated by AMPARs (onto pyramidal neurons
only) and feedback projections are mediated by NMDARs (onto pyramidal
neurons and interneurons). Feed-forward currents at each pyramidal neuron
j in the PFC network are defined by

Iffj =
∑

k

γext
g ·Gp

AMPA · gffAMPA,k(Vj − VE) ·W
ff
j,k (15)
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where γff
g is a scale factor, gffAMPA,k is the activation of AMPAR recep-

tors by pre-synaptic pyramidal neurons k in the PPC network, and matrix
W ff

j,k = exp(−d2/2σ2
ff ) scales conductance strength according to the struc-

ture of FF connectivity. Constant d is given above for recurrent synaptic
structure W rec|pp, where the two networks are topographically aligned, i.e.
the lateral distance between neuron j in the PFC network and neuron k in
the PPC network is the same as that between neurons j and k within either
network.

Feedback currents at each neuron j in the PPC network are defined by

Ifbj =
∑

k

γfb
g ·G

{p,i}
NMDA · gfbNMDA,k(Vj − VE) ·W

fb|pp,ip
j,k (16)

where γfb
g is a scale factor, gfbNMDA,k is the activation of NMDAR receptors

by pre-synaptic pyramidal neurons k in PFC, and matrices W fb|pp,ip scale
conductance strength according to the structure of FB connectivity. Each

of these structures s ∈ {pp, ip} is defined by W
fb|s
j,k = e

−d2/2σ2

fb|s , where d

is defined for W fb|pp and W fb|ip in the same way as for W rec|pp and W rec|ip

respectively above.

2.4 Simulated working memory task

We simulated the stimulus array by providing independent, homogeneous
Poisson spike trains to all pyramidal neurons j in the PPC network, where
spike rates were drawn from a normal distribution with mean µsel corre-
sponding to the centre of a Gaussian response field (RF) defined by W rf

j,k =
exp(−d2/2σ2

rf). Constant d is given above for recurrent synaptic structure

W rec|pp, σrf determines the width of the RF and subscript k indexes the
neuron at the RF centre. Spike response adaptation by upstream visually
responsive neurons was modelled by a step-and-decay function

µsel(t) =

{

(µinit − µinit/µdiv) e
−(t−tvrd)/τµ + µinit/µdiv for t > tvrd

0 for t ≤ tvrd
(17)

where µinit determines the initial spike rate, µdiv determines the asymptotic
rate, τµ determines the rate of upstream response adaptation, and tvrd is a
visual response delay. These selective spike trains were provided for 300ms,
following the 300ms pre-trial interval and followed by a 1000ms delay (e.g.
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Figure 2A). The stimuli were mediated by AMPARs only, so for all pyramidal
neurons j in the PPC network,

Iselj = γppc
g · γext

g ·Gp
AMPA · gselAMPA,j(Vj − VE) ·W

rf
j,k. (18)

All simulations were run with the standard implementation of Euler’s
forward method, where the timestep was ∆t = 0.25ms.

2.5 Determining working memory performance

We ran 100 trials with 1 − 8 stimuli (henceforth the n-item memory task;
1 ≤ n ≤ 8). To determine WM performance on each trial, spike density
functions (SDFs) were calculated for all pyramidal neurons in the network
by convolving their spike trains with a rise-and-decay function

(1− e−t/τf ) · e−t/τd

τ2
d

τr+τd

(19)

where t is the time following stimulus onset and τr = 1ms and τd = 20ms are
the time constants of rise and decay respectively (Thompson, Hanes, Bichot,
& Schall, 1996; Standage & Paré, 2011). On each n-item trial, we calcu-
lated the mean of the SDFs over the last 300ms of the delay, obtaining the
average activity over the network, and then partitioned the network into n
equal regions. The location of each item was centred within each region. We
then fit the mean activity in each region with a Gaussian function with four
parameters: the height of the peak, the position of the peak, the standard
deviation (controlling width), and the height that is approached asymptoti-
cally from the peak. An item was considered accurately stored if the fitted
Gaussian satisfied three criteria: the height parameter h exceeded 30Hz, the
difference between h and the fitted asymptote on both sides of the peak ex-
ceeded h/2Hz, and the position parameter was within ∆c = 10 degrees of
the centre of the RF for that item. For the first criterion, we chose 30Hz
because in electrophysiological experiments with macaque monkeys (John-
ston et al, SfN abstracts, 2009), memory trials were discarded if the recorded
PPC neuron did not fire at least 10 spikes during the last 300ms of the delay
(10/0.3s ≈ 30Hz). The second criterion dictates that items are only consid-
ered accurately stored if the population response is discriminable. The third
criterion ensures that the memory of the location of the item is close to the
actual location.
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2.6 Parameter values

In setting parameter values in the two models, our aim was to justify every
value by anatomical and physiological data, thus constraining our choices as
much as possible, and then to use control parameters to explore the models’
performance on simulated WM tasks. In the PPC-only model, our control
parameter was γppc

g (Equations 6, 9 and 18), governing the relative strengths
of extrinsic and intrinsic synaptic conductance and therefore the strength of
recurrent processing (see Section 3.1). Parameter values for the PPC-only
network are provided in Table 1 and justified by Standage and Paré (2018).

In the PPC-PFC model, the PPC network was identical to the PPC-
only model. The PFC network was identical to the PPC network, ex-
cept that GABAR conductance onto pyramidal neurons was twice as strong
(Gp

GABA = 3nS), facilitating strong competition during stimulus encoding.
We limited the number of parameters in the PPC-PFC model by making
three simplifying assumptions. Firstly, we assumed that only pyramidal neu-
rons make inter-areal projections [see Jones (1984); White (1989); Tomioka
and Rockland (2007)] and we therefore omitted inter-areal projections from
inhibitory interneurons. Secondly, based on evidence that feedforward and
feedback excitation are predominantly mediated by AMPARs and NMDARs
respectively (Self, Kooijmans, Supèr, Lamme, & Roelfsema, 2012), we omit-
ted feedforward NMDARs and feedback AMPARs altogether. Thirdly, feed-
forward and feedback projections were each assumed to be topographically
organized, based on evidence that the proportion of feedforward supragran-
ular projections and feedback infragranular projections increase with hierar-
chical distance between cortical areas. Since supragranular and infragranu-
lar projections are believed to be topographic and diffuse respectively, and
since PPC and lateral prefrontal cortex are separated by a single hierarchi-
cal layer [see Goldman-Rakic (1988)], we assumed that the proportion of
topographic supragranular projections and diffuse infragranular projections
between these areas is approximately equal in both directions. See Markov
and Kennedy (2013) for a more thorough description of these macrocircuit
principles. Given the diffuse activity already simulated by background cur-
rent Iback (Equations 9 and 10), we ignored the effect of infragranular feed-
forward and feedback projections between the PPC and PFC networks, and
simulated topographic supragranular connectivity only. The width of feed-
forward RFs (PFC network) was the same as for stimulus-selective RFs in the
PPC network (σff = σrf ; Equations 15 and 18), based on evidence that dif-
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Table 1: Parameters of the PPC-only model
Parameter Pyr. neurons Interneurons Description
Cm 0.5nF 0.2nF Membrane capacitance
gL 25nS 20nS Leakage conductance
EL −70mV −70mV Leakage equilibrium potential
ϑv −50mV −50mV Spike threshold
Vres −60mV −60mV Reset potential
τref 2ms 1ms Absolute refractory period
VE 0mV 0mV Reversal potential for AMPARs and NMDARs
VI −70mV −70mV Reversal potential for GABARs
τω 2ms 2ms Time constant of channel opening for NMDARs
αNMDA 0.5kHz 0.5kHz Saturation of NMDAR channels
Mg 1mM 1mM Extracellular magnesium concentration
GAMPA 0.2nS 0.4nS Conductance strength of AMPARs
GNMDA 4nS 2nS Conductance strength of NMDARs
GGABA 1.5nS 0.75nS Conductance strength of GABARs
τAMPA 4ms 2ms Time constant of deactivation of AMPARs
τNMDA 100ms 50ms Time constant of deactivation of NMDARs
τGABA 10ms 10ms Time constant of deactivation of GABARs
σrec|pp,ip 0.2 0.2 Width of connectivity from pyr. neurons
σrec|pi,ii 0.4 0.4 Width of connectivity from interneurons
ζrec|pp,ip 0 0 Unstructured connectivity from pyr. neurons
ζrec|pi,ii 1/3 1/3 Unstructured connectivity from interneurons
g0e 2.5nS 2.5nS Average exc. background conductance
g0i 12.5nS 12.5nS Average inh. background conductance
τe 2.5ms 2.5ms Time constant of exc. background conductance
τi 10ms 10ms Time constant of inh. background conductance
σe 5nS 5nS Standard deviation of exc. diffusion coefficient
σi 12.5nS 12.5nS Standard deviation of inh. diffusion coefficient
σrf 0.1 Width of response fields
µinit 10, 000/γgHz Initial (aggregate) spike rate to RF centre
µdiv 10 Divisor for upstream response adaptation
τµ 50ms Time constant of upstream response adaptation
tvrd 50ms Visual response delay

Parameter values for the PPC-only model are justified by Standage and
Paré (2018). Synaptic connectivity parameters (pp, ip, pi, ii) are indexed to

a receiving neuron from a transmitting neuron. In the PPC-PFC model,
PPC was identical to the PPC-only model. PFC was identical to PPC,
except that Gp

GABA was twice as strong (see text). Inter-aerial parameter
values are provided and justified in Section 2.6.
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ferences in dendritic branching are minimal between hierarchically adjacent
cortical areas (Elston, 2002). Feedback RFs (PPC) were wider than feedfor-
ward RFs (σfb = 1.5 ·σff , Equations 16 and 15) because dendritic branching
in supragranular layers is more extensive than in (feedforward input) layer
4. For simplicity, we omitted FF projections onto PFC interneurons, having
omitted stimulus-selective inputs to PPC interneurons [a common approach
with local-circuit models of this class, e.g. Compte, Brunel, Goldman-Rakic,
and Wang (2000); Wei et al. (2012); Standage and Paré (2018)]. Control
parameters for the PPC-PFC model are described in Section 3.2.

3 Results

3.1 Competitive encoding in the PPC-only model al-

leviates overload, but conflicts with experimental

data

In the PPC-only model, we used control parameter γppc
g (Equations 6, 9 and

18 in Methods) to modulate network dynamics, scaling the strength of all
extrinsic synapses inversely with that of all intrinsic synapses. By apply-
ing this scale factor to excitatory and inhibitory synapses onto pyramidal
neurons and interneurons, we were able to maintain excitatory/inhibitory
balance, controlling retention ability by recurrent excitation and competitive
interactions by lateral inhibition. We determined the floor and ceiling on
γppc
g by stipulating that the model must perform the 1-item memory task

with 90% accuracy. To this end, we ran 100 trials of the task for a range
of values of γppc

g (increments of 0.05), finding that our criterion was satisfied
for 0.25 ≤ γppc

g ≤ 0.75. Figure 2 shows example trials of the 1-item task for
the highest and lowest values of this parameter. Because lower values sup-
port stronger recurrent dynamics (intrinsic synaptic conductance values are
divided by γppc

g , Equation 6), it is intuitive to define parameter γppc
rec = 1/γppc

g ,
so that higher values support stronger recurrent dynamics. We use the latter
term in the description of our results below.

We ran 100 trials for each value of γppc
rec in each load condition of the

multiple-item memory task (2 ≤ n ≤ 8, where n is the number of items). See
Figure 4 for example trials of the 8-item task. For each load condition, we
calculated the mean number of items accurately encoded during the stimulus
interval, referred to as the effective load E(n), and the mean number of items
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Table 2: Summary of terminology
Term Description
PPC Posterior parietal cortex
PFC Lateral prefrontal cortex
PPC The PPC network in the PPC-only model and the PPC-PFC model
PFC The PFC network in the PPC-PFC model
γppc
g Control param. for PPC, scaling syn. conductance (Eq. 6, 9 and 18)

γpfc
g Control param. for PFC, scaling syn. conductance (Eq. 6, 9 and 18)

γfb
g Control param. scaling conductance at feedback synapses to PPC from PFC (Eq. 16)

PPC modulation Modulation of recurrent dynamics in PPC by γppc
rec = 1/γppc

g

PFC modulation Modulation of recurrent dynamics in PPC by γppc
rec = 1/γppc

g

Inter-aerial modulation Modulation of feedback connectivity by γfb
g

2-parameter modulation Simultaneously varying two control parameters, while holding the third one fixed
3-parameter modulation Simultaneously varying all three control parameters
Memory load n Number of WM items on a given trial, a.k.a the load condition
Capacity K(n) Mean number of items accurately retained over the memory delay for load n

Peak capacity k̂ Maximum value of K(n) over all n
Effective load E(n) Mean number of items accurately encoded during the stimulus interval for load n
E ′ Minimum ratio of effective load to actual load over all n, i.e. E ′ = min[E(n)/n]
WM overload Θ Θ = 1−K[max(n)]/max[K(n)]

Summary of terminology defined in the text, including control parameters
for the PPC-only model and the PPC-PFC model.

accurately retained over the memory delay, referred to as capacity K(n). We
refer to the maximum value of K(n) as peak capacity k̂ and we define WM
overload as Θ = 1−K[max[(n)]/max[K(n)], i.e. overload refers to a decrease
in capacity on the 8-item task, relative to peak capacity. For convenience,
these and other terms are defined in Table 2.

Our results with the PPC-only model distinguished between two subsets
of our control parameter. For γppc

rec < 2.5, peak capacity increased with the
strength of recurrent dynamics (Figure 5A), almost all stimuli were encoded
(Figure 5B), and overload was catastrophic for all values of the parameter
[K(8) was close to 0, Figure 5C]. For γppc

rec > 2.5, peak capacity, effective
load and overload all decreased with stronger recurrent dynamics. Thus,
γppc
rec = 2.5 separated two qualitatively different regimes, both of which sup-

ported the control of peak capacity by γppc
rec , but only one of which supported

the control of effective load and overload. Consequently, we limit further
consideration of the PPC-only model to γppc

rec ≥ 2.5, where stronger recur-
rent dynamics imposed more intense competition during stimulus encoding,
limiting effective load and thereby reducing overload. In this regime, peak
capacity was 2 or 3 items for all but the strongest recurrent dynamics, con-
sistent with that of human and monkey subjects [e.g. Luck and Vogel (1997);
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Figure 2: A single trial of the 1-item memory task with the PPC-only model
for the lowest and highest values of control parameter γppc

rec = 1/γppc
g , fur-

nishing weak (A, γppc
rec = 1.33) and strong (B, γppc

rec = 4) recurrent dynamics
respectively. In raster plots, pyramidal neurons and interneurons are indexed
from 1 − 400 and 401 − 500 respectively. Each right-side panel shows the
mean rate of the item-encoding pyramidal population. Thick horizontal bars
show the timing of the stimulus.

Heyselaar, Johnston, and Paré (2011)], but the alleviation of overload came
at the expense of peak capacity (significant positive correlation between these
measures, Figure 5D). The available data show the opposite trend: overload
is typically more pronounced among lower-capacity subjects (Linke et al.,
2011; Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel, 2015), on lower-
capacity tasks (Xu, 2007) and in lower-capacity conditions of the same task
(Chee & Chuah, 2007). These data are summarised in Figure 3. Furthermore,
recurrent dynamics strong enough to eliminate overload altogether furnished
a peak capacity of k̂ ≈ 1 item, unrealistically low for healthy adult subjects 1.
Thus, the PPC-only model provides proof of concept for competitive encod-
ing, but is qualitatively inconsistent with prominent trends in behavioural

1The effective load for the strongest recurrent dynamics in the PPC-only model (highest
value of γppc

rec
, darkest red curves in Figure 5) is less than capacity in some load conditions,

i.e. E(n) < K(n) (Figure 5A and B). This seeming anomaly reflects the later onset of
stimulus-selective activity with such strong recurrent dynamics, where the rate of item-
encoding activity (calculated over the full stimulus interval) is too low to satisfy our criteria
for encoded items. This effect can be seen in Figure 2, where the onset of item-encoding
activity occurs later with higher γppc

rec
.
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data (Figure 3). Furthermore, spiking activity in the model conflicts with
neural data from PPC, which typically show a response to all items in a
stimulus array, prior to the selection of task-relevant items [e.g. Thomas and
Paré (2007)]. This discrepancy is implicit in Figure 5B and explicit in Figure
4A-C, where the effective load on the 8-item task is three, two and one items
respectively. We therefore turned to the PPC-PFC model, investigating its
ability to account for these and other data.

3.2 The PPC-PFC model alleviates overload in a man-

ner consistent with neural and behavioural data

We used three control parameters with the PPC-PFC model. Once again,
we controlled recurrent dynamics in the PPC network (henceforth PPC)
with parameter γppc

rec . We controlled recurrent dynamics in the PFC network
(henceforth PFC) in the same way with parameter γpfc

rec = 1/γpfc
g (Equations

6, 9 and 18) and we controlled the strength of feedback projections to PPC
from PFC with parameter γfb

g (Equation 16). These control parameters and
related terms are defined in Table 2. We began by assigning values to these
parameters that explicitly capture the computational principles identified
above: weak recurrent dynamics in PPC, allowing the initial encoding of all
items, and strong recurrent dynamics in PFC, supporting strong competition
during stimulus encoding. Under this approach, persistent mnemonic activity
was supported by strong feedback connectivity to PPC from PFC. An
example of the 8-item memory task is shown in Figure 6, where our chosen
parameter values are provided in the figure caption. The model had a peak
capacity of k̂ ≈ 3 items, overcame overload almost entirely (Θ ≈ 0.075) and
allowed the initial encoding of all items in PPC (Figure 7). To emphasize
the effectiveness of the proposed mechanism, we compared these results to
the best possible performance by the PPC-only model, selecting the highest
capacity for each load condition across all values of γppc

rec . As shown in Figure
7A, the PPC-only model cannot reduce overload without a cost to peak
capacity, even if we assume perfect load-dependent modulation of network
dynamics by our control parameter.
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Figure 3: A summary of behavioural data showing WM overload. (A-B) Peak
capacity (A) and overload (B) shown by six studies of multiple-item WM.
More pronounced overload occurs with lower-capacity performance (across
subjects, tasks and conditions of the same task; see text), such that peak
capacity and overload show a strong negative correlation (C). (C) Overload
over peak capacity (Pearson correlation coefficient r = 0.889, p = 2.084e−5).

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


0 300 1300

N
e

u
ro

n
 in

d
e

x

1

400

500

0 300 1300M
e

a
n

 s
p

ik
e

 r
a

te
 (

H
z)

0

100

0 300 1300

N
e

u
ro

n
 in

d
e

x

1

400

500

0 300 1300M
e

a
n

 s
p

ik
e

 r
a

te
 (

H
z)

0

100

Time (ms)
0 300 1300

N
e

u
ro

n
 in

d
e

x

1

400

500

Time (ms)
0 300 1300M

e
a

n
 s

p
ik

e
 r

a
te

 (
H

z)

0

100

A

B

C

Figure 4: A single trial of the 8-item memory task with the PPC-only model
for each of three values of control parameter γppc

rec = 1/γppc
g , on which the

network accurately retained three (A, γppc
rec = 2.86), two (B, γppc

rec = 3.33) and
one (C, γppc

rec = 4) item(s). Raster plots (left) and mean spike rates (right)
are described in Figure 2. Here, colours show the correspondence between
item-encoding populations in the left and right panels. Competition during
the stimulus interval reduces the load to 3 (A), 2 (B) and 1 (C) item(s) by
the onset of the memory delay.

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


Load n
1 2 3 4 5 6 7 8

C
a

p
a

ci
ty

 
K

(n
)

0

0.5

1

1.5

2

2.5

3

3.5

Load n
1 2 3 4 5 6 7 8

E
ff

e
ct

iv
e

 lo
a

d
 

E
(n

)

0

2

4

6

8

rec

ppc
1 2 3 4O

v
e

rl
o

a
d

 
1

 -
 K

(8
)/

m
a

x
[K

(n
)]

0

0.2

0.4

0.6

0.8

1

Peak capacity max[K(n)]

O
v

e
rl

o
a

d

0

0.2

0.4

0.6

0.8

1

γ

4.0

1.3

rec

ppc
γ

A B

C D

0 2 4

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


3.2.1 Simulated cognitive control by modulation of PPC dynam-

ics, PFC dynamics and inter-aerial connectivity

Having determined that hierarchical recruitment of competition alleviates
overload in the PPC-PFC model, we sought to determine whether less over-
load would be seen under parameters supporting higher peak capacity, per
the available data (Figure 3) (Chee & Chuah, 2007; Cusack et al., 2009; Mat-
suyoshi et al., 2014; Fukuda, Woodman, & Vogel, 2015). To this end, we ran
a block of trials (100 trials for memory loads 1 : 8) for a range of values of
each control parameter, calculating peak capacity k̂ and overload Θ for each
combination of values (each configuration). We then determined the correla-
tion (Pearson’s r) between peak capacity and overload rk̂,Θ with monotonic
changes to our parameter values, simulating cognitive control by modulation
of PPC dynamics (varying γppc

rec , henceforth PPC modulation), PFC dynamics
(varying γpfc

rec , henceforth PFC modulation) and the functional connectivity
between PPC and PFC (varying γfb

g , henceforth inter-aerial modulation).
Overall, we ran blocks for 500 configurations, spanning 10 values of γppc

rec

(0.67 : 0.1 : 1.67), five values of γpfc
rec (2.5 : 0.05 : 5) and ten values of γfb

g

(1 : 1 : 10). This range of values was sufficiently broad and fine-grained for

Figure 5 (preceding page): Competitive encoding alleviates overload in the
PPC-only model, but at a cost to peak capacity (see text). (A) Capacity
K(n) in each load condition (number of items n) for each value of control
parameter γppc

rec = 1/γppc
g . Error bars show standard error. Colour coding

interpolates between weakest (dark blue) and strongest (dark red) recurrent
dynamics (see legend in panel B). Peak capacity is highest for γppc

g = 2.5 and
K(8) is close to 0 for γppc

rec below this value [K(8) < 0.15]. Thus, there is no
advantage to γppc

rec < 2.5. (B) The mean number of items encoded during the
stimulus interval for each value of γppc

rec , referred to as the effective load E(n).
For γppc

rec < 2.5, E(n) > 0.9 ·n in all load conditions. For γppc
rec > 2.5, encoding

is increasingly competitive (bottom four curves). (C) WM overload for each
value of γppc

rec , calculated as the relative change from peak capacity to K(8)
(see text). For γppc

rec > 2.5, overload is greatly reduced. (D) Overload over
peak capacity. For γppc

rec ≤ 2.5, the linear fit (solid line) shows a significant
positive correlation between these measures (r = 0.955, p = 0.045). The
dashed line depicts two qualitatively different regimes in the model, separated
by γppc

rec = 2.5.
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Figure 6: A single trial of the 8-item memory task with the PPC-PFC model,
on which three items were accurately retained. Raster plots (right), mean
spike rates (left) and corresponding colour schemes are described in Figures
2 and 4. Here, spiking activity is shown in the PPC network (PPC, bottom)
and the PFC network (PFC, top). Weak recurrent dynamics in PPC (γppc

rec =
0.67) support the initial encoding of all items in the network, but the effective
load is reduced by competitive encoding in PFC (γpfc

rec = 4). Persistent
activity is supported by inter-areal projections (γfb

g = 3).

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


Load 
1 2 3 4 5 6 7 8

C
a

p
a

ci
ty

0

1

2

3

Load 
1 2 3 4 5 6 7 8

E
ff

e
ct

iv
e

 lo
a

d

0

2

4

6

8A B
PPC

PFC

Figure 7: Competitive encoding in PFC alleviates overload in the PPC-PFC
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rec = 4 and

γfb
g = 5.
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Figure 8: Correlation between peak capacity and overload in the PPC-PFC
model under PPC modulation (varying γppc

rec , A), PFC modulation (varying
γpfc
rec , B) and modulation of PPC-PFC connectivity (inter-areal modulation,

varying γfb
g , C-D). Each heat map shows the Pearson correlation coefficient

rk̂,Θ for every combination of the other two parameters. Correlations were

calculated over the full range of γfb
g (C) and the largest continuous subset of

values showing a reduction in overload (D, see text). White dots in panels A
and D show configurations with a significant negative correlation (p < 0.05),
where peak capacity and overload are consistent with behavioural data from
WM tasks, and effective encoding in PPC is consistent with neural data
from visual tasks (see text, Section 3.2.1).

monotonic trends in rk̂,Θ to saturate and for non-monotonic trends to clearly
reverse direction (see below).

We first considered our control parameters in isolation from one another,
calculating rk̂,Θ over all values of a given parameter for every combination of
the remaining two parameters. PPC modulation yielded a strong negative
correlation over a broad region of the γpfc

rec x γfb
g parameter space (rk̂,Θ < −0.5

for 14 out of 50 combinations of γpfc
rec and γfb

g ), where moderate to strong
recurrent dynamics in PFC coincided with moderate to strong feedback
projections to PPC (Figure 8A). Thus, a negative correlation was seen when
competitive encoding was strong enough to select a manageable number of
items and feedback projections were strong enough to sustain their neural
representations over the delay. Notably, peak capacity increased and overload
decreased as recurrent dynamics in PPC were weakened (lower γppc

rec , Figure
9A-C), suggesting that if PFC selects memoranda and inter-areal projections
sustain their representations after stimulus-offset, then the best thing for
PPC to do is give way to its inputs, thereby limiting competition during the
delay.

PFC modulation yielded positive correlations over the full γppc
rec x γfb

g pa-
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rameter space (Figure 8B). This result was predictable, since limiting the

Figure 9 (preceding page): Examples of PPC modulation (first row), PFC
modulation (second row) and inter-areal modulation (third to fifth rows)
under a single configuration of the remaining two parameters. First, second
and third columns show capacity as a function of load, overload as a function
of control parameter (given by legend, inset) and overload as a function
of peak capacity respectively. (A-C) PPC modulation with γpfc

rec = 4 and
γfb
g = 5. Weaker PPC dynamics increase peak capacity (A) and reduce

overload (B), producing a negative correlation between these measures (r =
−0.935, p = 1.000e − 4, C). The line in panel C shows the best linear fit
(least squares). (D-F) PFC modulation with γppc

rec = 0.67 and γfb
g = 10.

Stronger PFC dynamics reduce overload (E) at the expense of peak capacity
(D), producing a positive correlation between these measures (r = 0.916,
p = 0.029, F), as in the PPC-only model. (G-H) Inter-areal modulation with
γppc
rec = 1.00 and γpfc

rec = 2.86. Stronger feedback projections to PPC from PFC
increase capacity (G) and decrease overload (H) over a continuous subset of
γfb
g (1 ≤ γfb

g ≤ 3), producing a negative correlation (r = −0.998, p = 0.045,
short-dashed line in I). Stronger feedback projections increase capacity and
overload, producing a positive correlation over another continuous subset
(r = 0.961, p = 1.000e − 4, long-dashed line in I). The solid line in panel I
shows the linear fit to the full range of γfb

g . The horizontal dotted line shows
Θ = 0.1, chosen as the threshold for alleviating overload (see text). (J-
L) Inter-areal modulation with γppc

rec = 0.83 and γpfc
rec = 4. Stronger feedback

projections increase capacity (J) and decrease overload (K) over a continuous
subset of γfb

g (1 ≤ γfb
g ≤ 4), producing a negative correlation (r = −0.969,

p = 0.031, short-dashed line in L) but the magnitude of overload to be
overcome is negligible (Θ < 0.07 for all four values fit by the short-dashed
line in L). Stronger feedback projections increase capacity and overload over
another continuous subset, producing a positive correlation (r = 0.948, p =
0.001, long-dashed line in L). (M-O) Inter-areal modulation with γppc

rec = 1.67
and γpfc

rec = 2.5. Stronger feedback projections increase capacity (M) and
decrease overload (N) over a continuous subset of γfb

g (1 ≤ γfb
g ≤ 4), before

overload reverses direction with further increases in γfb
g . Overload is greatly

reduced in magnitude, but never reaches a value consistent with high-capacity
subjects and conditions (Θ > 0.17 for all γfb

g ).
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number of items available for storage limits peak capacity. In other words,
γpfc
rec embodies a trade-off between peak capacity and overload, as seen in the

PPC-only model (Figure 5). Stronger competitive encoding therefore had a
monotonic effect on overload (e.g. Figure 9F).

Inter-areal modulation yielded a strong negative correlation (rk̂,Θ < −0.5

for 6 out of 50 combinations of γppc
rec and γfb

g ) in the corner of the γppc
rec x γpfc

rec

parameter space where stronger recurrent dynamics in PPC coincide with
weaker recurrent dynamics PFC (Figure 8C). Thus, a negative correlation
was seen when PFC was insufficiently selective and PPC was too competi-
tive to be overcome by weak (inter-areal) feedback projections. Stronger feed-
back projections therefore increased peak capacity and decreased overload by
providing more support to the subset of items selected by PFC. Notably,
increasing the strength of PPC-PFC connectivity rarely had a monotonic
effect on overload, so we calculated the correlation between peak capacity
and overload for a continuous subset of γfb

g , where this subset ranged from
γfb
g = 1 to the value of γfb

g producing the least overload for a given combi-
nation of γppc

rec and γpfc
rec (requiring at least three values, Figure 9I). A strong

negative correlation (rk̂,Θ < −0.5) occurred for 18 out of 50 combinations of

γppc
rec and γpfc

rec , most of which resulted from a broadening of the parameter
region identified above (strong and weak recurrent dynamics in PPC and
PFC respectively; compare panels C and D in Figure 8). The rest were spu-
rious, where the magnitude of overload to be overcome was negligible (e.g.
overload was always below Θ = 0.1 for the negative correlation in Figure
9J-L) or where overload was considerably reduced, but remained high (e.g.
overload did not drop below Θ = 0.1 in Figure 9M-O).

3.2.2 PPC modulation and inter-aerial modulation alleviate mod-

erate overload and satisfy quantitative constraints

Next, we sought to determine whether peak capacity and the reduction in
overload were quantitatively consistent with behavioural data in the parame-
ter regions showing a significant negative correlation (p < 0.05), and whether
PPC was consistent with neural data. As shown in Figure 3, peak capacity
should exceed around three items [see Cowan (2001); Luck and Vogel (2013)]
and overload should be reduced to close to zero (Chee & Chuah, 2007; Linke
et al., 2011; Fukuda, Woodman, & Vogel, 2015). Additionally, PPC should
initially encode all stimuli (Thomas & Paré, 2007). For the last of these
requirements, we defined E ′ as the minimum ratio of the effective load to
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the actual load over all load conditions, that is, E ′ = min[E(n)/n] (in prac-
tice, E ′ = E(8)/8 under all configurations). Allowing a tolerance of 10%,
we therefore searched for parameter regions in which k̂ > 2.7, min(Θ) < 0.1
and E ′ > 0.9. We included the additional constraint that the magnitude of
overload to be overcome [max(Θ)] must be greater than 0.1. Under PPC
modulation, these criteria were satisfied by five contiguous locations in the
parameter region showing a negative correlation (white dots in Figure 8A).
Under inter-aerial modulation, they were not satisfied in any parameter re-
gion, but they were satisfied in one location of the γppc

recxγ
pfc
rec parameter space

when we searched the continuous subsets of γfb
g described above (white dot

in Figure 8D). These results were unchanged when we lowered our criterion
for peak capacity to 2, again with a tolerance of 10% (k̂ > 1.8). Thus, in
isolation, PPC modulation and inter-areal modulation were both able to in-
crease capacity and reduce overload in a manner consistent with neural and
behavioural data from multiple-item visual and WM tasks, where weaker
PPC dynamics and stronger feedback projections supported better task per-
formance. PPC modulation was the more robust mechanism, as functional
connectivity was only able to account for these data under a single combina-
tion of the other two parameters.

3.2.3 Control of distributed network dynamics accounts for group

differences in studies showing pronounced overload

Finally, we considered our control parameters in combination with one an-
other, aiming to provide a better quantitative account of the magnitude of
overload shown by low-capacity subjects, and in low-capacity tasks and con-
ditions (henceforth low-capacity performance). Under PPC modulation and
inter-areal modulation, the most extreme cases of overload in the parameter
regions satisfying our criteria were Θ ≈ 0.2 (Figure 9A-C and G-I, and Figure
10). As shown in Figure10 (PPC modulation and inter-aerial modulation),
this degree of overload is consistent with some data [e.g. Cusack et al. (2009);
Linke et al. (2011)], but overload has approached 50% of peak capacity in
several studies [e.g. Chee and Chuah (2007); Xu (2007); Fukuda, Woodman,
and Vogel (2015)] and has even approached 100% among elderly, low-capacity
subjects in extreme load conditions (Matsuyoshi et al., 2014). We therefore
investigated whether simultaneous variation of our control parameters could
alleviate the more extreme cases of overload that occur with low-capacity
performance, resulting in peak capacity consistent with high-capacity per-
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formance in the same studies. High-capacity performance is explained by
the computational principles identified above: strong recurrent dynamics in
PFC, supporting competitive encoding; strong feedback projections to PPC
from PFC, supporting persistent activity; and weak recurrent dynamics in
PPC, limiting competition during the memory delay. These principles not
only capture a tangible strategy for WM storage on multiple-item tasks (se-
lection of a subset of items for storage), but offer a specific set of mechanisms
for their implementation in fronto-parietal circuitry. Thus, we reasoned that
low-capacity performance would be explained by non-compliance with these
principles, investigating the PPC-PFC model under the lowest value of γpfc

rec ,
the lowest value of γfb

g and the highest value of γppc
rec (the low-capacity config-

uration). In other words, the low-capacity configuration violated the above
principles by instantiating the weakest recurrent dynamics in PFC, the weak-
est feedback projections to PPC and the strongest recurrent dynamics in
PPC.

The low-capacity configuration had a peak capacity of k̂ ≈ 2 items, over-
load of Θ > 0.5 and allowed all items to be encoded by PPC (Figure 11A-C,
grey). For a range of parameter values, increasing the strength of competition
in PFC (increasing γpfc

rec ), increasing the strength of feedback projections to
PPC (increasing γfb

g ) and decreasing the strength of competition in PPC
(decreasing γppc

rec ) produced very similar results to those shown in Figure 7
(high-capacity configurations), raising peak capacity to k̂ ≈ 3 items, reduc-
ing overload to close to Θ = 0 and allowing the encoding of all items in PPC.
These results are strikingly similar to peak capacity and overload among low-
and high-capacity subjects [cf. Fukuda, Woodman, and Vogel (2015)] and
task conditions [cf. Chee and Chuah (2007)] (Figure 10). We do not propose
a specific trajectory through the parameter space from one extreme to the
other, but rather, we emphasize that multiple trajectories show robustness
of the computational principles identified by our simulations.

Surprisingly, under the high-capacity configurations satisfying the criteria
described in Section 3.2.2 (k̂ > 2.7, min(Θ) < 0.1 and E ′ > 0.9), modulation
of all three parameters (henceforth 3-parameter modulation) produced an
effective load in PFC that was greater than or equal to the effective load
under the low-parameter configuration (compare the black and grey dashed
curves in Figure 11B). This result does not support the hypothesis that
poor performance by low-capacity subjects results from a failure to select a
manageable subset of items for storage (poor task strategy) since stimulus
encoding in PFC was at least as selective under the low-capacity config-
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Figure 10: Peak capacity (A) and overload (B) corresponding to low-
capacity (grey) and high-capacity (black) performance by experimental sub-
jects (Data, left) and by the PPC-PFC model under PPC modulation (mid-
dle left), inter-aerial modulation (middle), 2-parameter modulation (middle
right), and 3-parameter modulation (right). Experimental data are repro-
duced from Figure 3. Low-capacity and high-capacity data are horizontally
staggered for clarity. Low and high-capacity configurations under PPC mod-
ulation correspond to γppc

rec = 1.67 (strongest) and γppc
rec = 0.67 (weakest),

shown in Figure 11A-C. Low and high-capacity configurations under inter-
aerial modulation correspond to γfb

g = 1 (weakest) and γfb
g = 3, shown in

Figure 11G-I. Low and high-capacity configurations under 2-parameter and
3-parameter modulation correspond to Figures 11D-F and A-C respectively.
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uration as under the high-capacity configurations. Rather, it supports the
hypothesis that low-capacity and pronounced overload reflect poor control
over fronto-parietal circuitry, i.e. a relative inability to strengthen competi-
tive dynamics in PFC, weaken dynamics in PPC, and enhance the functional
coupling between these regions. We therefore determined whether the simul-
taneous modulation of any two parameters (2-parameter modulation, holding
the third parameter fixed) could satisfy the above criteria, overcome a degree
of overload comparable to that of the low-capacity configuration (Θ ≈ 0.5),
and show a lower effective load in PFC with high capacity than with the
low capacity. If so, such a configuration would support the hypothesis that
low-capacity subjects are encoding too many memoranda and would allow us
to consider predictions under 3-parameter and 2-parameter modulation that
might distinguish between these two hypotheses (poor task strategy vs. poor
cognitive control). To this end, we simultaneously decreased and increased
γppc
rec and γpfc

rec from their highest and lowest values respectively, while holding
γfb
g fixed (at all possible values); simultaneously decreased and increased γppc

rec

and γfb
g from their highest and lowest values respectively, while holding γpfc

rec

fixed; and simultaneously increased γpfc
rec and γfb

g from their lowest values,
while holding γppc

rec fixed. The first two approaches were unable to satisfy our
constraints, but the third approach was able to do so with a moderate in-
crease in the strength of competition in PFC, a small increase in the strength
of feedback projections, and with PPC dynamics fixed at a moderate level
(Figure 11D-F).

3.2.4 Simulated EEG recordings resolve conflicting hypotheses on

working memory performance captured by the PPC-PFC

model

Having determined that 3-parameter and 2-parameter modulation offer com-
peting explanations for the behavioural phenomenon of WM overload, we
sought to distinguish between these explanations by determining their respec-
tive abilities to account for neural data from an experimental task showing
overload. To the best of our knowledge, the only such data currently available
are the EEG recordings over parieto-occipital cortex by Fukuda, Woodman,
and Vogel (2015). Thus, we approximated EEG recordings over PPC and lat-
eral PFC under 3-parameter and 2-parameter modulation. To approximate
the EEG signal, we followed the approach by McCarthy, Brown, and Kopell
(2008), summing all excitatory currents onto pyramidal neurons in each net-
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Figure 11: (A-C) Simultaneously increasing the strength of competition in
PFC, increasing the strength of feedback projections to PPC from PFC,
and decreasing the strength of competition in PPC (3-parameter modula-
tion) raised peak capacity (A) and reduced overload (C) in a manner con-
sistent with neural and behavioural data (see text, Section 3.2.1). Effective
load in PFC (dotted curves in panel B) was higher under the high-capacity
configuration (black, parameter values provided in Figure 7) than the low-
capacity configuration (grey; γppc

rec = 1.67, γpfc
rec = 2.5, γfb

g = 1). 3-parameter
modulation was therefore inconsistent with the hypothesis that low capac-
ity and pronounced overload result from the encoding of too many items in
PFC. (D-F) Simultaneously increasing the strength of competition in PFC,
increasing the strength of feedback projections to PPC, and fixing PPC dy-
namics at a moderate level (2-parameter modulation) similarly raised peak
capacity and reduced overload, but the effective load in PFC was higher
under the low-capacity (grey; γppc

rec = 1.11, γppc
rec = 2.5 and γfb

g = 1) con-
figuration than under the high-capacity (black; γppc

rec = 1.11, γppc
rec = 4 and

γfb
g = 4) configuration (E). 2-parameter modulation was therefore consistent

with the hypothesis that low capacity and pronounced overload result from
the encoding of too many items in PFC.
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work. Thus, we simulated the instantaneous source amplitude of EEG over
PPC by EEGppc =

∑

j I
back,syn
j +

∑

j I
sel
j +

∑

j I
rec
AMPA,j +

∑

j I
rec
NMDA,j +

∑

Ifbj
and over lateral PFC by EEGpfc =

∑

j I
back,syn
j +

∑

j I
rec
AMPA,j+

∑

j I
rec
NMDA,j+

∑

Iffj , where index j refers to pyramidal neurons, currents IrecAMPA,j and

IrecNMDA,j are given by Equation 6, and currents Iback,synj , Iselj , Ifbj and Iffj
are given by Equations 9, 18, 16 and 15 respectively. We summed this
instantaneous signal over the portion of the memory delay used to deter-
mine WM performance (the last 300ms, Section 2.5) to obtain the total
amplitude EEG{ppc,pfc}

s during this time window. Because competitive dy-
namics in PPC and PFC may be modulated by different mechanisms than
the scaling of synaptic conductances used here (γppc

rec and γpfc
rec ) and because

our EEG approximation sums the resulting synaptic currents, we normalized
the EEG approximation by its minimum and maximum values (EEGη =
[EEGs − min(EEGs)]/[max(EEGs) − min(EEGs)]), predicting the qual-
itative form of EEG amplitude as a function of memory load, rather than
absolute amplitude.

EEGη was qualitatively distinct during the delay interval under 3-parameter
and 2-parameter modulation. Under 3-parameter modulation, EEGη was
bi-linear over memory load for both networks under low- and high-capacity
configurations, where the ‘second line’ of the bi-linear curve had a negative
slope under the low-capacity configuration and was approximately horizon-
tal under the high-capacity configuration (Figure 12A). These curves are
strikingly similar to the EEG amplitude shown by Fukuda, Woodman, and
Vogel (2015) for low- and high-capacity subjects (their Figure 4C). Under 2-
parameter modulation, EEGη was tri-linear for both networks (Figure 12B)
and therefore did not account for the available EEG data. As such, these
findings are strongly supportive of the principles of 3-parameter modulation
and its corresponding hypothesis that low-capacity subjects are indeed select-
ing a manageable subset of items for storage, but that they have poor control
over their fronto-parietal circuitry (corresponding to 3-parameter modulation
here).

To test the robustness of these results and to facilitate a more direct
comparison with the EEG data by Fukuda, Woodman, and Vogel (2015), we
calculated EEGη over longer windows at the end of the memory delay. These
authors used a 150ms stimulus interval and a 1s delay interval on their task,
averaging the signals from parieto-occipital channels over the last 850ms of
the delay. We therefore calculated EEGη over a series of increasingly long
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Figure 12: Normalized EEG approximation (EEGη, see text) for the PPC
(solid) and PFC (dotted) networks under the low-capacity (grey) and high-
capacity (black) configurations over the last 300ms of the memory delay (used
to determine WM performance in the model). (A) Under 3-parameter modu-
lation, EEGη was bilinear for both networks under the low- and high-capacity
conditions, where the slope of the ‘second line’ was negative under the low-
capacity configuration [cf. Fukuda et al (2015)]. (B) Under 2-parameter
modulation (PPC dynamics fixed at a moderate level, see text), EEGη for
both networks was again bi-linear under the high-capacity configuration, but
was tri-linear under the low-capacity configuration.
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time windows (steps of 50ms), ranging from the last 300ms to the last 850ms
of the memory delay. Our results were qualitatively robust for time windows
of up to ∼ 750ms (not shown).

3.2.5 An EEG signature for hierarchical recruitment of competi-

tion during stimulus encoding

Having shown that hierarchical recruitment of competition during stimulus
encoding accounts for behavioural (Figures 3 and 11) and neural (Figure 12)
data from multiple-item WM tasks on which memory load exceeds subjects’
retention abilities, we sought to identify a measurable signature of this hy-
pothesis. We therefore calculated EEGη during the stimulus interval under
3-parameter modulation, having ruled out 2-parameter modulation from fur-
ther consideration, due to its inconsistency with delay-interval EEG activity
(previous section). During the stimulus interval, EEGη showed greater con-
cavity (concave down) as a function of memory load for PFC than PPC
(Figure 13) under the low- and high-capacity configurations alike. In this
regard, concavity serves an index of the timing of selective encoding, i.e.

greater concavity reveals earlier selection of memoranda. Thus the PPC-
PFC model makes a specific, testable prediction for our hypothesis: EEG
amplitude will show greater concavity over memory load when recorded over
lateral PFC than when recorded over PPC during the stimulus interval of
multiple-item WM tasks.

4 Discussion

The storage limitations of WM have been the subject of intense research in-
terest for several decades [see Luck and Vogel (2013)], but although several
studies have reported a reduction in WM capacity with high memory load
[e.g. Xu (2007); Chee and Chuah (2007)], WM overload has only been the
focus of a handful of behavioural experiments (Cusack et al., 2009; Linke
et al., 2011; Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel, 2015).
We investigated the neural basis of overload with the PPC and PPC-PFC
models, finding that overload could be reduced in both models by strong
competitive dynamics during the stimulus interval of simulated WM tasks.
The PPC-only model, however, showed a positive correlation between peak
capacity and overload (Figure 5), in opposition to available data (Figure 3).
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Figure 13: Predictions by the PPC-PFC model for normalized EEG am-
plitude (EEGη, see text) over PPC (solid) and lateral PFC (dotted) for
low-capacity (grey) and high-capacity (black) WM performance during the
stimulus interval. Under 3-parameter modulation, hierarchical recruitment of
competition during stimulus encoding predicts greater concavity over PFC,
indicating earlier selection of memoranda than in PPC. The dashed unity
line highlights concavity of the curves.
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The PPC-PFC model accounted for these data in a parameter regime where
selective encoding was supported by strong competitive dynamics in PFC,
persistent activity was supported by inter-areal projections, and weak dy-
namics in PPC limited competition during the memory delay (Figure 7). As
such, the model implemented hierarchical recruitment of competition during
stimulus encoding and identified a set of computational principles for WM
storage in distributed circuitry. Under these principles, all WM items were
encoded by PPC (Figure 7B), consistent with single-cell electrophysiologi-
cal recordings from PPC (Thomas & Paré, 2007); simulated EEG amplitude
was bi-linear over memory load during the delay period (Figure 12A, black
curves), consistent with EEG recordings over parieto-occipital cortex (Vogel
& Machizawa, 2004; Fukuda, Woodman, & Vogel, 2015); and peak capac-
ity was around three items, consistent with behavioural data from numerous
WM tasks (Figure 7B) [see Cowan (2001); Luck and Vogel (2013)]. When we
violated the identified principles (increased competition in PPC, decreased
strength of feedback projections and decreased competition in PFC), peak
capacity was reduced to just over two items (Figure 11A), overload was
greater than 50% of peak capacity (Figure 11C) and the ‘second line’ of
the bi-linearity of simulated EEG amplitude showed a negative slope (Figure
12A, grey curves). These results are strikingly consistent with behavioural
and EEG data from low-capacity subjects in the study by Fukuda, Woodman,
and Vogel (2015). To our surprise, the model implemented selective encoding
in this low-capacity regime (Figure 11B). Thus, while it captured a strategy
for WM storage under high load and offered a set of neural mechanisms for
its implementation in hierarchical circuitry, it predicted that low-capacity
subjects are indeed attempting this strategy and that their performance re-
flects poor control of fronto-parietal processing. Our hypothesis is testable
by the prediction that EEG amplitude over memory load will show greater
concavity over lateral PFC than over PPC during the stimulus interval of
WM tasks (Figure 13), providing a neural signature of early selection.

4.1 Limitations of our models

Our models have limitations, of course. While there is growing support for
the hypotheses that PPC is the hub of distributed WM storage (Palva et al.,
2010; Christophel et al., 2012; Salazar et al., 2012) and that fronto-parietal
interactions play a central role in multiple-item storage (Edin et al., 2009;
Palva et al., 2010), other brain regions play important roles in WM [see
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Sreenivasan, Curtis, and D’Esposito (2014); D’Esposito and Postle (2015)].
Thus, we do not claim that the PPC-PFC model and the computational prin-
ciples it identifies should explain WM overload under all possible conditions.
For example, the negative correlation between peak capacity and overload
that guided our investigations (Figure 3) is common (Chee & Chuah, 2007;
Xu, 2007; Cusack et al., 2009; Linke et al., 2011; Matsuyoshi et al., 2014;
Fukuda, Woodman, & Vogel, 2015), but not ubiquitous. These two measures
have been shown to increase together with the duration of stimulus encoding
[see Figure 4 by Cusack et al. (2009)], as well as during childhood develop-
ment [from 6−7 year-old children to college students in the study by Cowan,
Morey, AuBuchon, Zwilling, and Gilchrist (2010)].

Another limitation of our models is that they only consider the spatial
location of memoranda, ignoring other features and their conjunctions. In
effect, our simulations assume that everything encoded by PPC satisfies a
set of rules for selection, e.g. red squares or blue circles. This approach is
common among neural models of WM storage [e.g. Compte et al. (2000);
Tanaka (2002); Macoveanu, Klingberg, and Tegnér (2006); Edin et al. (2009);
Wei et al. (2012); Standage and Paré (2018)] and is reasonable for studies
addressing capacity. While the PPC-PFC model takes an important step
toward the understanding of WM storage in distributed circuitry, an under-
standing of feature-bound memoranda will likely require hierarchical models
with converging feature maps [e.g. Swan and Wyble (2014)]. See Raffone
and Wolters (2001) for a binding mechanism for sequentially presented mem-
oranda [related models are described by Lisman and Idiart (1995); Jensen
and Lisman (1996)]. Additionally, the target stimuli in our simulations were
equidistant from one another, which was not the case under most conditions
of the experiments providing the data to which we compare model perfor-
mance (Chee & Chuah, 2007; Xu, 2007; Cusack et al., 2009; Linke et al.,
2011; Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel, 2015). We used
equidistant targets in order to keep our simulations as simple as possible (and
our results as interpretable as possible), bearing in mind that the PPC-PFC
model is comprised of bidirectionally-coupled dynamic systems. To the best
of our knowledge, ours is the first study to systematically investigate the
neural basis of WM overload and we have focused on its generalities across
different experimental approaches. Future studies should investigate overload
under the specific conditions of individual experiments, including the spatial
clustering of stimuli. For commentary of the effects of spatial clustering on
WM performance, see Standage and Paré (2018).
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Finally, our focus on WM overload inherently limits our study to the
investigation of capacity, but we do not suggest that capacity provides the
only limitation on WM storage. There is ample evidence that the precision
of memoranda is load-dependent [e.g. Zhang and Luck (2008); Bays, Cata-
lao, and Husain (2009); van den Berg, Shin, Chou, George, and Ma (2012);
Schneegans and Bays (2016)]. Historically, capacity and precision have been
presented as evidence for conflicting hypotheses on the nature of WM storage
[see Luck and Vogel (2013); Ma et al. (2014)], but neural modelling studies
have begun to focus on their relationship and its neural basis (Wei et al.,
2012; Roggeman, Klingberg, Feenstra, Compte, & Almeida, 2013; Okimura,
Tanaka, Maeda, Kato, & Mimura, 2015; Standage & Paré, 2018). We are
unaware of studies showing anything resembling overload in relation to preci-
sion (e.g. unchanging precision up to a critical load, followed by a decrease),
but future experiments should investigate the dependence of precision on
supra-capacity memory load.

4.2 Persistent activity and distributed working mem-

ory storage

While our simulations support the hypothesis that inter-aerial projections
between PPC and PFC support persistent mnemonic activity, we do not sug-
gest that persistent activity is the only mechanism by which target stimuli
may be stored over a delay interval, nor that target stimuli provide the only
task-relevant information stored by persistent activity. There is a growing
body of evidence for ‘state-based’ hypotheses of WM storage, which posit
that the same neural populations represent WM targets before and after
stimulus offset, and that attention determines their state of activation after
offset. This general principle is supported by the ‘synaptic theory of work-
ing memory’, according to which, a non-selective signal refreshes synaptic
traces among stimulus-encoding neural populations, reactivating these pop-
ulations following a memory delay (Mongillo, Barak, & Tsodyks, 2008). In
this model, the non-selective signal plays the role of attention and short term
synaptic facilitation allows synaptic traces to persist for around 1s. Whether
the timescales of short term facilitation and depression in sensory cortices
are compatible with this mechanism is debatable, but the model provides a
compelling proof of concept for the implementation of state-based WM stor-
age. There is also a growing body of evidence for the encoding of various
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kinds of task-relevant information by persistent activity, such as task rules
and the categories of memoranda [see Sreenivasan et al. (2014)]. It seems un-
likely that any one mechanism should account for all aspects of a construct as
broad and nuanced as WM, and our hypothesis that hierarchical recruitment
of competition during stimulus encoding ameliorates overload is by no means
a hypothesis against other mechanistic explanations of other data. Quite the
opposite, it offers a compatible selection mechanism to more traditional no-
tions of top-down attentional signals to lower cortices [see D’Esposito and
Postle (2015)].

Along a similar vein, the computational principles of our hierarchical
model are not necessarily limited to PPC and PFC, and may be applicable
to any bidirectionally-coupled regions in the cortical hierarchy. While our cri-
teria for the selection of parameter configurations in Section 3.2.1 included
the encoding of all target stimuli by PPC (with a tolerance of 10%) and
therefore favoured weaker, less competitive dynamics in PPC than PFC,
it is plausible that recurrent dynamics increase in strength with hierarchi-
cal ascendancy more generally. This possibility is consistent with systematic
variation in pyramidal cell morphology with hierarchical ascendancy, such
as increased spine density and dendritic branching (Elston, 2002). In this
regard, our prediction that EEG amplitude over PPC during stimulus en-
coding will show greater concavity as a function of memory load than over
PFC may serve as a more general signature for hierarchical recruitment of
competition. Nonetheless, it is important to reiterate that neural data from
PPC provided a strong constraint on the parameter values of the PPC-PFC
model and that the extensive body of data pointing to fronto-parietal involve-
ment in WM storage [see Eriksson, Vogel, Lansner, Bergstrom, and Nyberg
(2003); Constantinidis and Klingberg (2016); Christophel, Klink, Spitzer,
Roelfsema, and Haynes (2017)] provides good reason to ground the model in
fronto-parietal areas. It is also worth noting that spike rates in PFC were
much lower lower than in PPC in the model (Figure 6), consistent with the
relative spike rates of these cortical areas in vivo [e.g. Swaminathan and
Freedman (2012); Murray et al. (2014)]. We do not claim that PFC spike
rates are low because inhibition is stronger in PFC than in other cortical
areas (e.g. PPC) but nonetheless, we emphasize that the PPC-PFC model
is not only consistent with behavioural (Figure 10) and EEG (12) data from
studies showing WM overload, but also with single-cell recordings from PPC
[e.g. Funahashi, Bruce, and Goldman-Rakic (1989); Takeda and Funahashi
(2002); M. Wang et al. (2011)] and PFC [e.g. Gnadt and Andersen (1988);

40

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/181370doi: bioRxiv preprint 

https://doi.org/10.1101/181370


Paré and Wurtz (1997)] in non-human primate studies.

4.3 Beyond local-circuit attractor models

Local-circuit attractor models (such as the PPC-only model) have been in-
valuable to our understanding of the neural basis of persistent activity on
single-item tasks (X.-J. Wang, 1999; Compte et al., 2000) and capacity lim-
itations on multiple-item tasks with memory loads similar to (or less than)
capacity (Tanaka, 2002; Macoveanu et al., 2006; Edin et al., 2009). Assum-
ing that all items are encoded for storage, these models necessarily produce
overload when the number of memoranda sufficiently exceeds capacity, due to
the competition between simulated neural populations [see Edin et al. (2009)
for analysis]. This finding reveals a limitation of local-circuit models of WM
storage, since not all experimental tasks, conditions and subjects show over-
load [e.g. Xu (2007); Chee and Chuah (2007); Cusack et al. (2009); Fukuda,
Woodman, and Vogel (2015)]. The same can be said of hierarchical models
in which a top-down control signal modulates the recurrent dynamics of a
downstream network (Edin et al., 2009; Roggeman et al., 2013), since persis-
tent activity is supported by attractor dynamics in the network receiving the
control signal (Edin et al., 2009). The PPC-PFC model builds on this work,
taking a step toward an understanding of the roles played by local circuits in
distributed WM storage. An important next step is to simulate inter-areal
cortical pathways in more detail, since these pathways systematically differ
according to layer, hierarchical distance and (presumably) function. The
structural and mechanistic differences between the PPC-PFC model and the
model by Edin et al. (2009) are instructive in this regard. Our model empha-
sizes the role of topographic inter-areal pathways, which run bidirectionally
in supra-granular layers between hierarchically adjacent cortical areas (such
as PPC and PFC), but which are increasingly dominated by feed-forward
(ascending) projections with greater hierarchical distance. In the model by
(Edin et al., 2009) [and Roggeman et al. (2013)], the top-down control signal
is spatially non-selective (diffuse), an established form of gain modulation in
local-circuit models of this class (Salinas & Abbott, 1996; Furman & Wang,
2008; Standage, You, Wang, & Dorris, 2013). Diffuse pathways run bidi-
rectionally in infra-granular layers between adjacent cortical areas, but are
increasingly dominated by feedback (descending) projections with greater hi-
erarchical distance, i.e. the opposite arrangement to topographic pathways
[see Markov and Kennedy (2013)]. Thus, our different approaches capture
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fundamentally different mechanisms for control of WM storage: bottom-up
recruitment by (and of) topographic pathways and top-down control by dif-
fuse pathways respectively. It seems likely that both mechanisms are involved
in WM storage. Future work should test the predictions of our respective
models, aiming to identify the roles of different cortical areas and their func-
tional interactions in support of WM.

Our EEG approximations with the PPC-PFC model also point to an
exciting direction for future research. In the present work, the summation
of excitatory currents onto simulated pyramidal neurons (McCarthy et al.,
2008) allowed us to approximate the instantaneous EEG source amplitude
over PPC and PFC, but we did not use this methodology to investigate
the possible role of oscillations in WM storage. In attractor models with
synaptic resolution, oscillations can be controlled by the ratio of the time
constants of excitatory and inhibitory synaptic receptors (Brunel & Wang,
2003) and therefore by the relative strengths of AMPARs and NMDARs [e.g.
Compte et al. (2000); Buehlmann and Deco (2008)], since the time constants
of these receptors are shorter and longer respectively than the time con-
stant of GABARs (Table 1). In the interest of simplicity, we purposefully
avoided oscillations in the PPC-PFC model, but bidirectionally-coupled at-
tractor networks have been used to investigate inter-aerial transmission of
information in earlier studies [e.g. Buehlmann and Deco (2010)], suggesting
that our hierarchical model and simulation paradigm are ideal for investi-
gating the mechanisms by which synchronized (Palva et al., 2010) and de-
synchronized (Fukuda, Mance, & Vogel, 2015; Fukuda, Kang, & Woodman,
2016) oscillations may contribute to WM storage, and the relationships be-
tween these EEG data and oscillations in local field potentials during WM
tasks (Lundqvist et al., 2016; Lundqvist, Herman, Warden, Brincat, & Miller,
2018).

5 Conclusions

The real-world phenomenon of WM overload has long been of concern to
educators (Sweller, 1988), who have identified the need for a stronger sci-
entific foundation for pedagogic strategies aiming to prevent its occurrence
in the classroom (Schnotz & Kurschner, 2007; de Jong, 2010). Nonetheless,
despite intense research interest in the storage limitations of WM more gen-
erally [see Luck and Vogel (2013)], only a handful of studies have specifically
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investigated overload (Cusack et al., 2009; Linke et al., 2011; Matsuyoshi et
al., 2014; Fukuda, Woodman, & Vogel, 2015) and to the best of our knowl-
edge, no previous study has investigated its mechanistic basis. Our findings
point to cognitive control as the source of differential WM performance across
subject groups, rather than capacity per se. This finding is consistent with
recent experimental work emphasizing strategic ability as the source of high
performance on WM tasks and on tests of cognitive ability more generally
(Cusack et al., 2009; Linke et al., 2011). Given the strong correlation be-
tween capacity and scores on intelligence tests [see Unsworth et al. (2014)],
we believe this message is a positive one, though our findings do not suggest
that capacity can necessarily be improved by simple strategic adjustments
(Section 3.2.3). Rather, they suggest that individuals with better control of
distributed cortical processing are better positioned to implement effective
strategies. Significant research investment will be required to identify ways
to improve this control. Our predictions for experimental testing (Section
3.2.5) are a step in this direction.
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