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Abstract

A common approach to simulating chemical reaction systems is to formulate the problem as a
set of ordinary differential equation and solve them using standard numerical procedures. Such
a formulation works well when the number of molecules involved in the simulation is large and
assumes a deterministic formulation for the underling chemical kinetics. However for systems such
as gene regulatory networks where the number of molecules of a specific species can be of the order
of 10s of molecules, the deterministic approach fails to capture important dynamical features. At
low molecular numbers stochastic events dominate the dynamics. As a result much research has
been devoted to developing numerical algorithms for computing the stochastic trajectories. One of
the most common approaches is based on Gillespie’s stochastic simulation algorithm, for example
the direct method. Due to its simplicity the direct method has been implemented many times in
software. However, unusually, there does not appear to be a C based reusable software library.
This article describes the development of such a library. All source code is licensed under the
liberal Apache 2.0 open source license and is available at Github: https://github.com/sys-bio/
libStochastic
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1 Introduction

A common approach to simulating chemical reaction systems is to formulate the problem as a
set of ordinary differential equation and solve them using standard numerical procedures. Such
a formulation works well when the number of molecules involved in the simulation is large and
assumes a deterministic formulation for the underling chemical kinetics. However for systems such
as gene regulatory networks where the number of molecules of a specific species can be of the order
of 10s of molecules, the deterministic approach fails to capture important dynamical features. At
low molecular numbers stochastic events dominate the dynamics. As a result much research has
been devoted to developing numerical algorithms for computing the stochastic trajectories. One of
the most common approaches is based on Gillespie’s stochastic simulation algorithm, for example
the direct method. Due to its simplicity the direct method has been implemented many times in
software. However, unusually, there does not appear to be a C based reusable software library.
This article describes the development of such a library.

2 Algorithm

The Gillespie direct method algorithm itself has been described many times in the literature. A
good source of information on this is the paper by McCollum et al. [5] who describe a variety of
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approaches, including comparing the relative performance of each. The table below summaries the
direct method algorithm (modified from McCollum):

n = number of species in the model
Initialize vector S of species amounts
Initialize vector R of rate constants

currentTime = 0.0
while currentTime < endTime do
begin
totalPropensity = 0.0
for i =0 ton
begin
propensity[i] = calculatePropensities (S, R)
totalPropensity = totalPropensity + propensity[i]
end
dt = -1n (rand())/totalPropensity
selector = totalPropensity * rand()
for i =1ton
selector = selector - propensity[i]
if selector <= 0 then
begin
selectedReaction = i
break
end
end
// Update Reactants and Products of selected reaction
for all reactants of selectedReaction do
reactants[selectedReaction] = reactants[selectedReaction] - reactantStoichiometry
for all products of selectedReaction do
products[selectedReaction] = products[selectedReaction] + productStoichiometry

output_Results()
currentTime = currentTime + dt
end

The algorithm first computes all the propensity functions (reaction rates). It then draws two
uniformly distributed random numbers. It uses one of the random numbers to select which reaction
will ‘fire” and the second random number to determine when it will ‘fire’ in the future as a At. The
reactants and products for the selected reaction are updated, taking into account the corresponding
stoichiometries. The process is then repeated.

A formal as well as an intuitive understanding of the direct method can be found in the enzyme
kinetics text book by Sauro [7].

3 Currently Available Software

There is a range of software available for computing stochastic trajectories. However none of
the current software can be easily reused. For the purpose of this article, reusable software is
considered open source software (using a non-restrictive license) packaged into a platform and
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language independent software library. By platform independent we mean that the source code
must not include any platform or operating system specific code. For example any external libraries
should be readily available on all platforms and any file operations should be made through platform
independent means. By language independent we mean that the library can be used from any other
programming language and not just the language that the library is written in. This eliminates,
for example computer languages such as Java or C+#.

A reusable library would allow stochastic simulations to be carried out in a variety of other ap-
plications, including scripting languages such as Python or Julia or other programming languages
such as C++, Object Pascal, Go, Rust etc.

The direct method has been implemented in most software languages including unexpected ap-
plications such as Excel. An examination of the literature and repositories such as Github or
sourceforge reveals many implementations. Some implementations are embedded in large applica-
tions and therefore cannot be easily removed for reuse. Some are written in languages that are
difficult to embed in other languages, for example, C#, Java, Python, Matlab or Julia. There is at
least one library, StockKit [6], that is written in C++ however the code is licensed under the strict
GPL license which makes the software almost impossible to distribute with non-GPL code. Stock-
Kit however supports a great variety of other approaches for example tau-leaping, and automatic
parallelism.

In this article a new library called libStochastic is described that is written in standard C (C99) https:
//en.wikipedia.org/wiki/C99.

4 libStochastic Library

libStochastic is a new library written in standard C (C99). The library implements the direct
method and supports a liberal open source license (Apache 2.0) and a simple C based API. The
use of C allows the library to be used by virtually any other computer language. As an example, a
simple Python interface is described later in the article but the library could equally be interfaced
to other systems such as R, Julia Java, Object Pascal etc. SWIG (http://www.swig.org/) can be
used to wrap the library into over twenty-three other languages.

The libStochastic library consists of nine files. Most of these contain code to support simple data
structures such as dynamic arrays and matrices. One file, gl _Stochastic contains the implemen-
tation of the direct method. The direct method requires access to a random number generator. It
is possible to use the standard random number generator supplied with the C runtime libraries.
However the more robust Mersenne-Twister [4] is provided instead. This is an implementation
of MT19937 [3], meaning it has a period of 219?37 — 1. The version included with the library is
one developed by Christian Stigen Larsen http://csl.name. The original code can be found at
https://github.com/cslarsen/mersenne-twister.

Using the Library

The core library implements the standard direct method for generating stochastic trajectories. The
library supports the reaction types shown in Table 1. At present the library does not support
arbitrary rate laws though this could be added at a later date.

To initialize a simulation run an instance of the direct method algorithm must first be created.
This is accomplished using the method gl _createStochastic(). The method returns a handle
of type gl_STOCHASTIC_0BJ that should be used in all subsequent calls. Once a simulation has
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Zero Order —

First Order T —>

Second Order 2x; —
Bimolecular 1+ x9 —>
Trimolecular =1 + 29 + 23 —>

Table 1: Allowed reaction types. Note that any number of products are permitted in a given
reaction.

been completed, the memory associated with the handle should be released using the method:
gl _freeStochastic(). For example:

gl_STOCHASTIC_OBJ gl = gl_createStochastic();
// ...Specify model, run simulation and collect data...
gl_freeStochastic (gl);

Three simulation methods are provided, gl_execute, gl executeOnGrid and gl _moveOneStep.
gl_execute will generate a single trajectory given a start and end time. The last point generated
will be the penultimate point before reaching the specified end time. The method returns a matrix
that contains the simulation data. The first column of the matrix will always be time, the remaining
columns represent the amounts of the floating species.

For example: m = gl_execute (gl, 0, 5.0)

Due to the nature of the algorithm, the times that are reported in the first column of the matrix
are irregular. Often however it is desirable to generate simulation data on a regular grid. For this
purpose the library supplies the alternative method, gl _executeOnGrid. This method takes an
additional argument which represents the number of points, The time distance between a point is
computed using dt = (timeEnd — timeStart)/(numberO f Points — 1). For example if timeEnd
and timeStart are set to 0 and 5 respectively and the number of points set to 6, then output will
be generated at points, 0, 1, 2, 4, and 5. Generating simulation runs at fixed intervals can be
useful when the average of many runs is needed or when fewer data points are required.

For finer control, the library also supplies gl moveOneStep. A call to this routine will execute a
single time step. The method returns the new time. This call can be useful for developing more
specialized data collection. For example if rate constants or amounts need to be changed mid flight
due to an external signal. Two methods, gl_setAmount and gl _getAmount are provided to set or
get the amounts of a specific species in the model. Likewise, gl_setRateConstant can be used to
set the value of a rate constant in a specific reaction.

Two other methods that are useful when using the execute methods. These are gl _reset and
gl_setInitialAmount. When the method gl_addSpecies is called during model construction, one
of the arguments is the initial amount of the species which is stored is a specific initalAmounts
array. The actual amounts that are changed during the simulation are stored in a separate runtime
array. When gl_execute or gl_executeOnGrid is called the simulation starts from the current
state of the model as stored in the runtime array. In order to start a subsequent simulation using
the initial conditions, the gl _reset method can be called which loads the runtime array with the
contents of the initial amounts array. The advantage of this approach is that repeated calls to
gl _execute or gl _executeOnGrid will continue the simulation where the previous call left off. At
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Add a Zero Order Reaction gl_addZeroOroderReaction
Add a First Order Reaction gl addFirstOrderReaction
Add a Second Order Reaction gl _addSecondOrderReaction
Add a UniUni Reaction gl_addUniUniReaction

Add a Bimolecular Reaction gl_addBimolecularReaction
Add a Trimolecular Reaction gl addTrimolecularReaction
Add a product gl_addProduct

Table 2: List of methods used to add reactions to a model

any time a simulation needs to be called again using the original initial amounts, gl reset can be
called. Finally, gl _setInitialAmount allows one to change the initial amounts.

Specifying a Model A variety of methods are provided to specify a model. The library does not
support modeling standards such as SBML directly but this could be easily added by way of the
Python interface. To specify a model the first operation to do is add the species in the model. To
illustrate how a model is built consider the following reaction model:

xo -> x1; 0.1
x1 -> x2; 0.6
x2 -> x1; 0.3
X2 ->; 0.15

In this model we assume that the amount of z, is fixed and does not change during the simulation.
This is to illustrate the use of fixed boundary species. The two middle reactions form a cycle and
the last reaction is used to illustrate a first order reaction that drains into unspecified sink. The
numbers on the right-hand side are the rate constants (sometimes called the reaction hazards). The
model contains three species which can be added to the model using the method gl_addSpecies:

gl_STOCHASTIC_OBJ gl = gl_createStochastic();

xo = gl_addSpecies (gl, ’xo’, false);
x1 = gl_addSpecies (gl, ’x1’, true);
x2 = gl_addSpecies (gl, ’x2’, true);

The third argument indicates whether the species has a fixed level or is variable (floating). Note that
C99 supports the words, true and false, unlike ANSI C. Of importance is that that gl_addSpecies
returns a integer index that can be used to refer to the species when adding reactions to the model.
It is therefore useful to be able to store these values are we generate them.

Once the variables have been added to the model the reactions can be included. There are six
methods for adding reactions. These are listed in Table 2

The gl_addproduct method should be used to add products to a reaction and their corresponding
stoichiometry. Any number of products can be added to a reaction. For example it can be used to
specify reactions such as x1 — x3, 1 — X2 + 3, £1 — 222 + 10z + 323, or even a reaction
such as x1 — x1 which effectively models a fixed species.

If products are unspecified, then reactions of the type © — can be described i.e where the reaction
drains into an anonymous sink.
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Two short-cut methods (addUniUniReaction and addBioMolecularReaction) are provided if it
is known that the reaction only produces a single product with a stoichiometry of one. These
reactions include x1 — xo, 227 — 22 and 1 + z9 — 3.

The method gl _addUniUniReaction will add a reaction of the form x; — x5, for example:
gl_addUniReaction (g, x1, x2, 0.5)

The method gl_addBiUniReaction will add either 227 — x5 or 1 + x2 — =3, depending on the
arguments, for example:

gl_addBiUniReaction (x1, x2, x3, 0.4) Adds x1 + x2 -> x3
gl_addBiUniReaction (x1, x1, x2, 0.4) Adds 2 x1 -> x2

Returning to the example described earlier, the reactions can now be specified. Note that in the
method calls, the species indexes returned from gl_addSpecies are used. All the reaction methods
other than gl_addProduct return a reaction index. This index should be used when adding products
to the reaction. The last reaction added does not include a gl_addPRoduct call because this reaction
is of the form zo —.

gl _REACTION *rxa;

rxa = gl_addFirstOrderReaction (gl, xo, 0.1);
gl_addProduct (rxa, x1, 1);

rxa = gl_addFirstOrderReaction (gl, x1, 0.6);
gl_addProduct (rxa, x2, 1);

rxa = gl_addFirstOrderReaction (gl, x2, 0.3);
gl_addProduct (rxa, x1, 1);

gl_addFirstOrderReaction (gl, x2, 0.15);

Note: In all cases, incorrectly specifying the species or reaction index will result in an error condi-
tion. In general methods will return a -1 in the event of such an error.

Data Handling

The gl _execute and gl_executeOnGrid methods return the results in the form of a custom matrix.
Three methods are provided to access the data in the matrix and include gl _getMatrixValue,
gl _getMatrixRows and gl _getMatrixCols. The last two methods retrieve the number of rows and
columns in the matrix respectively. This information combined with gl_getMatrixValue can be
used to access all the data in the matrix. Once the data has been extracted, the memory used by
the matrix should be released by calling gl_freeMatrix.

Interfacing to Python

To use the library it is necessary to call the library from a host application. Because the library
exposes a pure C API, the library can be called from almost any other programming language
including of course another C or C++ application. However it is becoming increasingly common to
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use a scripting language such as Python to use external libraries. The advantage is that performance
critical parts of the application can be written in a compiled language such as C whereas the more
often tedious data handling and display can be handled by more easy to use languages such as
Python. Many scripting language now support an extensive set of libraries as well as comprehensive
plotting capabilities. The added advantage of using Python is that it is extremely easy to learn
and is an ideal vehicle for novice users to gain access to more sophisticated algorithms.

There are a variety of approaches to linking a C library to Python, the three common approaches
include ctypes, SWIG and the use of specific Python embedding code in the library. The later
is of no interest because it requires Python specific changes to the C library which would render
the library Python only. The two other methods are the use of ctypes and SWIG. SWIG is a
general purpose tool that allows a library with a C compatible API (or C++) to be automatically
‘wrapped’ and made available to a wide range of other languages including Python. For long
term development SWIG is an excellent solution but it requires some experience to use including
a compilation stage. In this article ctypes will be used because it doesn’t require any compilation
and if necessary it can be used directly from the Python console. The main drawback of ctypes is
that one has to be careful when specifying the types as it is possible to crash the Python runtime.

Handling External Events

It is sometimes the case that during a simulation an external event occurs at a specific time.
For example a parameter or species amount is changed. Events can be implemented by stitching
together multiple simulations. For example, assume that a reaction parameter k1 must be doubled
at a specific time, say at 25 time units and then the simulation continued. This can be accomplished
with the following calls to the library:

// C Code:

// set up model
ki1 = 2.5

// When creating the reaction, save the reaction index
// so that later on we can change the rate constant
reactionlndex = .....

// Run first part of the simulation

// Args: library handle, time start, time end, number of points
ml = gl_executeToGrid (gl, 0, 25, 51)

gl_setRateConstant (gl, reactionIndex, 2%k2)

// Run the second half of the simulation

m2 = gl_executeToGrid (gl, 25, 50, 51)

Note the time start argument in the second simulation call has been adjusted to 25.

The current Python bindings were developed as a quick way to test the library and as a result
lack some important error checking. A more long term solution would be to create formal SWIG
libraries for a number of languages, include Python, R, Scilab and Octave.
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5 Testing

Evans et al. [1] developed a stochastic simulation test suite that include 39 test models in all.
Some of these are focused on testing SBML compliance but a number of the tests focus on the
stochastic algorithm itself. The problem with testing stochastic simulators is that each simulation
run is unique. It is not possible therefore to just compare a single run an the expected outcome.
Instead it is necessary to compare the distribution of outcomes after running a large number of
simulations and averaging across all trajectories. The Evans test suite includes the expected means
and standard deviations for each of the test models which allows us to compare the expected
outcomes to the simulation run. The Evans tests also provide a means to make a statistical
assessment of how well the expected outcomes match the simulated data. The authors recommend
that at least 10,000 trajectories are evaluated for each test. All tests should be carried out using
the executeOnGrid call so that individual trajectories can be readily matched up across each
time point. To conserved memory, the tests implement a running average and standard deviation.
There are standard methods for computing running statistical measures and are designed to avoid
numerical instability. Calculating a cumulative mean is straight forward and is given by:

Tpt1 +n Mean ;
n—+1

Mean ;11 =

where z; is the " data point and n the number points so far processed.

For computing the cumulative variance, the recommended method is to use an algorithm developed
by Welford and popularized in Donald E. Knuth’s book the The Art of Computer Programming,
volume 2: Seminumerical Algorithms, 3rd edn (1998). This is given below:

Tp — Mp—1
My = Mp—1 +

Sp = Sp—1 t+ (xn - mnfl)(mn - mn)

where my = z1 and s; = 0. The sample variance is given by s/(n — 1). One additional advantage
of this approach is that the mean, m is computed at the same time. In practice the mean and
variance is computed at every point along a trajectory by computing across all points at a given
time. These calculations can be be very conveniently and succinctly represented using Python by
employing the numpy library which can carry out arithmetic operations on vectors:

# Python :

import numpy as np

# Set up the empty matrices first, first column is time (which we ignore),

# but the gl_execute methods generates a time column so we need to allocate

# space for it. The remaining columns are the individual species in the model
M = np.zeros(shape=(number0fPoints, numberOfVariables+1))

S = np.zeros(shape=(number0fPoints, numberOfVariables+1))

# Generate the first trajectory

# Mp will be used to represent the previous (k-1) trajectory
Mp = gl.executeOnGrid(0.0, timeEnd, numberOfPoints)

# Generate many trajectories

for i in range (sizeOfEnsemble):
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# simulate again with same initial conditions
gl.reset()
data = gl.executeOnGrid(0.0, timeEnd, numberOfPoints)

# Divide by i+2 because i starts at zero
# and we’ve already had one processed
np.copyto (M, Mp + (data - Mp)/(i+2))
np.copyto (S, S + (data - Mp)*(data - M))
# Make the current data the previous
np.copyto (Mp, M)

# Finally compute the variance

variance = variance/(sizeOfEnsemble-1)

The full Python code is available on Github https://github.com/sys-bio/libStochastic. It
may not be the most elegant code but it works. As suggested before, not all the Evans’ tests
are applicable. For example 001-02 and 001-08 and others are SBML dependent tests, that is
they ensure that the SBML model is being interpreted correctly. Since we don’t read the models
from SBML, such tests are not applicable. Another set of tests which don’t currently use are due
to limitation of 1ibStochastic and relate to use of arbitrary propensity functions which are not
currently supported. These include tests such as 001-013 and 001-014 as well as others. Related
to this is test 001-019 which requires an assignment rule which would include arbitrary math.
Again 1ibStochastic does not currently support evaluating arbitrary math. The final limitation
is that 1ibStochastic does not support volumes other than unity. This eliminates test 001-018.
This leaves fourteen tests out of a total of thirty-nine. Of the fourteen, 1ibStoachastic passes
every test.

Memory Leak/Corruption Tests

Tests for memory leaks were carried out using Microsoft’s CRT debug heap manager by setting
the _CrtSetDbgFlag. This will identify memory leaks, heap corruption, and buffer overrun errors.
One leak and one potential heap corruption bug was identified using this method. Both bugs were
eliminated in the final release.

6 Examples

In this section four examples are shown that illustrate the use of the library. All runs were carried
out via the Python bindings and matplotlib was used to plot the data.

Equilibration Model

The equilibration model is simply:
Tl < T2

The python code for this model is give below:

# Python:

from stBindings import *
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import pylab

gl = Stochastic ()
x1 = gl.addSpecies (°X1’, 80, True)
x2 = gl.addSpecies (’X2’, 0, True)

rxal = gl.addFirstOrderReaction (x1, 0.1)
gl.addProduct (rxal, x2, 1)

rxa2 = gl.addFirstOrderReaction (x2, 0.3)
gl.addProduct (rxa2, x1, 1)

m = gl.execute (0, 100)

pylab.plot (m[:,0], m[:,1], color=’r’)
pylab.plot (m[:,0], m[:,2], color=’b’)
pylab.savefig (’equilibration.pdf’)

gl.free()

The script saves the plot to a pdf file which makes it easy to import to other applications (for
example LaTeX). Other formats such as png can also be saved. Figure 1 shows the resulting plot.
pylab is imported to provide access to matplotlib.

80 A

70 A

60

50 1

40 1

30 A

20 A

10

0 20 40 60 80 100

Figure 1: Equilibration example showing a single trajectory set.

The second example is a model of three consecutive but irreversible reactions: 1 — xo — 3 —
x4. This time a ensemble of 60 models is generated and plotted simultaneously. A transparency of
20 percent is applied to each plot. In addition a z title is added to the plot (Figure 2).

# Python:

10
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from stBindings import *
import pylab

gl = Stochastic ()

x1 = gl.addSpecies (’X1’, 50, True)
x2 = gl.addSpecies (’X2’, 0, True)
x3 = gl.addSpecies (’X3’, 0, True)
x4 = gl.addSpecies (’X4’, 0, True)

rxal = gl.addFirstOrderReaction (x1, 0.1)
gl.addProduct (rxal, x2, 1)

rxa2 = gl.addFirstOrderReaction (x2, 0.3)
gl.addProduct (rxa2, x3, 1)

rxa3 = gl.addFirstOrderReaction (x3, 0.2)
gl.addProduct (rxa3, x4, 1)

for i in range (60):
gl.reset ()
m = gl.execute (0, 70)
pylab.plot (m[:,0], m[:,1], color=’r’, alpha=0.2)
pylab.plot (m[:,0], m[:,2], color=’b’, alpha=0.2)
pylab.plot (m[:,0], m[:,4], color=’c’, alpha=0.2)

pylab.xlabel (’Time’)
pylab.savefig (’ThreeReactions.pdf’)

gl.free()
In the third example, the previous model is modified so that the source species, 1 and sink species
x4 are fixed boundary species. In this situation the system with approach a steady state, albeit

with fluctuations around the steady state, see Figure 3.

from stBindings import *
import pylab

gl = Stochastic ()

x1 = gl.addSpecies (°X1’, 80, False)
x2 = gl.addSpecies (’X2’, 0, True)
x3 = gl.addSpecies (°X3’, 0, True)
x4 = gl.addSpecies (’X4’, 0, False)

rxal = gl.addFirstOrderReaction (x1, 0.1)
gl.addProduct (rxal, x2, 1)
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Figure 2: Three consecutive irreversible reactions where 60 independent plots are superimposed on
each other.

rxa2 = gl.addFirstOrderReaction (x2, 0.65)
gl.addProduct (rxa2, x3, 1)

rxa3 = gl.addFirstOrderReaction (x3, 0.2)
gl.addProduct (rxa3, x4, 1)

pylab.figure(figsize=(8,5))
pylab.x1im((0, 70))
for i in range (60):
gl.reset()
m = gl.execute (0, 70)
pylab.plot (m[:,0], m[:,1], color=’r’, alpha=0.2)
pylab.plot (m[:,0], m[:,2], color=’b’, alpha=0.2)

pylab.xlabel (’Time’)
pylab.savefig (’ThreeReactionsSteadyState.pdf’)

gl.free()
In the last example the method executeOnGrid is used to simulate an event at a given time point.

In this case the rate constant for the first reaction is doubled when time = 50.

from stBindings import *
import pylab
import numpy as np

gl = Stochastic ()
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Time

Figure 3: Three consecutive irreversible reactions where the source and sink are fixed boundary
species, allowing the system to reach a state state. Due to the stochastic nature of the model
the system fluctuates around the steady state. The plot shows 60 superimposed and independent
trajectories.

x1 = gl.addSpecies (’X1’, 250, False)
x2 = gl.addSpecies (’X2’, 0, True)
x3 = gl.addSpecies (’X3’, 0, True)
x4 = gl.addSpecies (’°X4’, 0, False)

rxal = gl.addFirstOrderReaction (x1, 0.1)
gl.addProduct (rxal, x2, 1)

rxa2 = gl.addFirstOrderReaction (x2, 0.65)
gl.addProduct (rxa2, x3, 1)

rxa3 = gl.addFirstOrderReaction (x3, 0.2)
gl.addProduct (rxa3, x4, 1)

gl.setSeedUsingTime ()

pylab.figure(figsize=(8,5))
pylab.x1im((0, 200))

ml = gl.executeOnGrid (0, 100, 100)

gl.setRateConstant (rxal, 0.2)
m2 = gl.executeOnGrid (100, 200, 100)
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m3 = np.vstack ((ml, m2))

pylab.plot (m3[:,0], m3[:,1], color=’r’, alpha=1)
pylab.plot (m3[:,0], m3[:,2], color="b’, alpha=1)

pylab.xlabel (’Time’)
pylab.savefig (’EventExample.pdf’)

gl.free()

The trick to implement an event is to carry out two simulations, the first goes from time 0 time
100 and the second from time 100 to time 200. When the first simulation is done, the rate constant
for the first reaction is double. The second simulation is then started. Once complete, the data
sets from the two simulations are stitched together to form one seamless run using vstack from
the numpy library. A legend is also added to the plot. See Figure 4.

— X
—_ X3
250 A

200 A

150 ~

100 +

50

0 25 50 75 100 125 150 175 200
Time

Figure 4: Three consecutive irreversible reactions where the source and sink species, 1 and x4
are fixed. A a time = 100, the rate constant for the first reaction is doubled and the simulation
continued.

In addition to rate constants it is also possible to change amounts of boundary or floating species
by using the gl_setAmount. The method requires the index of the species when it was originally
created with gl_addSpecies.
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7 Discussion

In this article a new C based portable chemical reaction stochastic simulator library is described.
The library implements the standard direct method as described previously by Gillespie [2]. It
defines an easy to use API that supports both standard trajectory generation using the direct
method as well as generating results on a fixed time grid. This makes it easy to run ensembles
and generate means and standard deviations. In addition it makes it easy to add events, to change
parameters or species amounts to a simulation by stitching together multiple runs with events in
between.

In addition, the moveOneStep method is exposed that allow users much more control over their
simulations.

The software has been specifically written so that it is both platform and language agnostic. C99 is
chosen as the implementation language which ensures that the library can be compiled and used by
any other software host on any of the common operating systems. An example is shown where the
library is called from Python. This binding is used to write the Python code to test the numerical
correctness of the implementation.

The use of C99 in place of the older ANSI C allowed the use of C99 standard bool to represent the
Boolean type. Other than that, the code is standard ANSI C.

There are some features missing which could be added at a later date. The most notable omission is
the ability to set arbitrary math expression for propensities. One could argue that the direct method
can not generate reliable simulation results for arbitrary expression, for example Michaelis-Menten
or Hill equations. However, most modern implementations appear to permit users to specify almost
any propensity expression.

8 Availability

All code and test models are available on Github and licensed under The Apache 2.0 open source
license to allow maximum flexibility. At present the code has only been tested on windows using
Visual Studio 2017 but given that the library uses standard C and doesn’t use any third-party
code other than the Mersenne-Twister, there should be no issues in compiling the code on Linux
or the Mac.The structure of the library is simple, one main file 1ibStochastic.cpp and a number
of supporting files that provide facilities for dynamic structures

9 Appendix

Sample C code that simulates a simple two step pathway that include a fixed source and sink and
a single intermediate species, x.

#include <stdio.h>
#include "gl_Stochastic.h"
void main (int argc, char* argv[]) {

double timeStart = 0.0
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double timeEnd = 50.0;

printf ("Starting Gillespie simulation...\n");
gl_STOCHASTIC_0BJ *gl = gl_createStochastic();

int x = gl_addSpecies (gl, "x", 0, true);

int source = gl_addSpecies (gl, "source", 0, false);

int sink = gl_addSpecies (gl, "sink", 0, false);

int rxa = gl_addZeroOrderReaction (gl, 10.0);
gl_addProduct (gl, rxa, x, 1);

rxa = gl_addFirstOrderReaction (gl, x, 0.1);
gl_addProduct (gl, rxa, sink, 1);

gl _MATRIX *m = gl_execute (gl, timeStart, timeEnd);

for (int i = 0; i < m->nRows; i++) {

for (int j = 0; j < m->nCols; j++) {
printf ("%f ", m->m[i] [j]1);

}

printf("\n");

}

gl_freeMatrix(m);
gl_freeStochastic (gl);

printf ("Finished....");
getchar();

by
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