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Abstract 

Background: A fundamental issue in evolutionary systems biology is understanding the 

relationship between the topological architecture of a biological network, such as a metabolic 

network, and the evolution of the network.  The rate at which an element in a metabolic network 

accumulates genetic variation via new mutations depends on both the size of the mutational 

target it presents and its robustness to mutational perturbation.  Quantifying the relationship 

between topological properties of network elements and the mutability of those elements will 

facilitate understanding the variation in and evolution of networks at the level of populations and 

higher taxa.     

 

Results: We report an investigation into the relationship between topological properties of 29 

metabolites in the C. elegans metabolic network and the sensitivity of those metabolites to the 

cumulative effects of spontaneous mutation.  We find a positive correlation between network 

connectedness of a metabolite, as quantified by its core number, and sensitivity to mutation, as 

quantified by the mutational heritability.  We further find a small but significant negative 

correlation between the shortest path length between a pair of metabolites and the mutational 

correlation between those metabolites. 

 

Conclusions: The positive association between the connectedness of a metabolite and its 

mutational heritability is consistent with well-connected metabolites presenting a larger 

mutational target than sparsely-connected ones, and is inconsistent with well-connectedness 

conferring mutational robustness, at least in toto.  The weakness of the correlation between 

shortest path length and the mutational correlation between pairs of metabolites suggests that 

network locality is an important but not overwhelming factor governing mutational pleiotropy.  

These findings provide necessary background against which the effects of other evolutionary 

forces, most importantly natural selection, can be interpreted. 
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Introduction: 

The set of chemical reactions that constitute organismal metabolism is often represented 

as a network of interacting components, in which individual metabolites are the nodes in the 

network and the chemical reactions of metabolism are the edges [1].  Representation of a 

complex biological process such as metabolism as a network is conceptually powerful because 

it offers a convenient and familiar way of visualizing the system, as well as a well-developed 

mathematical framework for analysis.   

 If the representation of a biological system as a network is to be useful as more than a 

metaphor, it must have predictive power [2].  Metabolic networks have been investigated in the 

context of evolution, toward a variety of ends.  Many studies have compared empirical metabolic 

networks to various random networks, with the goal of inferring adaptive features of global 

network architecture (e.g., [1, 3-7].  Other studies have addressed the relationship between 

network-level properties of individual elements of the network (e.g., node degree, 

connectedness) and evolutionary properties such as rates of protein evolution [8, 9] and within-

species polymorphism [10].      

 One fundamental evolutionary process that remains essentially unexplored in the 

context of metabolic networks is mutation.  Importantly, mutation is intimately - but not 

inextricably - associated with natural selection.  On average, mutations are deleterious, and 

deleterious mutations disrupt the proper function of an organism.  A properly functioning 

organism must maintain metabolic homeostasis, so it stands to reason that deleterious 

mutations must perturb the metabolic network in some way.   

To see how mutation and selection are intertwined, consider a hypothetical example.  A 

generic property of empirical networks, including metabolic networks, is that they are scale-free 

[1], which results in a network architecture with a few highly-connected nodes (hubs) and many 

weakly-connected nodes.  If hubs, or reactions connected to hubs ("hub phenotypes") are, on 

average, more important to the function of the organism than non-hub phenotypes, purifying 
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selection will be stronger on mutations that affect hubs, so all else equal, there will be less 

standing genetic variation for hub phenotypes than for non-hub phenotypes.   

 However, it also stands to reason that the more highly-connected a node is, the greater 

the number of potential ways to affect the node, and its associated reactions.  Again, all else 

equal, the more genes that are associated with a network element, the larger the mutational 

target, and the greater the genetic variation associated with that element.  Thus, it may well be 

that mutation produces more genetic variation for hub phenotypes than for non-hub phenotypes. 

Clearly, understanding the evolution of biological networks requires an assessment of 

the effects of mutation independent from natural selection.  Neither mutation nor selection can 

ever be turned off completely, but mutations with selective effects s less than approximately the 

reciprocal of the genetic effective population size Ne will be essentially invisible to natural 

selection [11].  A mutation accumulation (MA) experiment is an experiment designed to 

minimize the efficacy of selection by minimizing the genetic effective population size, Ne, 

thereby allowing all but the most strongly deleterious mutations to evolve as if they are invisible 

to selection [12].  

Here we report results from a long-term MA experiment in the nematode Caenorhabditis 

elegans, in which replicate populations (MA lines) derived from a genetically homogeneous 

common ancestor (G0) were allowed to evolve under minimally effective selection (Ne≈1) for 

approximately 250 generations.  We previously reported estimates from these MA lines of two 

key quantitative genetic parameters by which the cumulative effects of mutation can be 

quantified: the per-generation change in the trait mean (the mutational bias, ΔM) and the per-

generation increase in genetic variation (the mutational variance, VM) for the standing pools of 

29 metabolites [13]; Supplementary Table S1.  In this report, we interpret those results, and new 

estimates of mutational correlations (rM), in the context of the topology of the C. elegans 

metabolic network.   

          

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511


6 
 

Results and Discussion 

Representation of the Metabolic Network – The metabolic network of C. elegans was estimated 

in two ways: (i) by the method of Ma and Zeng [14; MZ],and (ii) by the method of Yilmaz and 

Walhout [15; YW].  Details of the network construction are given in section I of the Methods; 

data are presented in Supplementary Appendix A1.  In most cases, MZ and YW give identical 

results with respect to network topology; in the few cases in which there is a discrepancy (~1%; 

Supplementary Table S2), we use the MZ network.  The resulting network is a directed graph 

including 646 metabolites, with 1203 reactions connecting nearly all metabolites (Figure 1).   

Properties of networks can be quantified in many ways.  The motivation for this study is 

exploratory data analysis, but we did not begin as agnostics – we suspected that highly-

connected metabolites might be more susceptible to the cumulative effects of mutation than less 

connected metabolites, because they would seem to present a larger mutational target.  On the 

other hand, it is also possible that well-connected metabolites are more robust to mutational 

perturbation than sparsely-connected metabolites.  An analogous scenario is Kacser and Burns' 

[16] theory of dominance, in which metabolic pathways with many enzymatic steps are more 

robust to mutational perturbation than pathways with fewer steps.  The relationship between 

network connectedness and robustness will depend on the functional (mathematical) 

relationship between the probability of perturbing a connection (i.e., the mutational target) and 

the functional (biochemical) consequences of the perturbation (e.g., a decrease in metabolite 

flux).  Ultimately, the relationship between network architecture and mutational sensitivity is an 

empirical question. 

We did not have a strong prior hypothesis about which specific network parameters 

would prove most informative in terms of a relationship with ΔM and/or VM.  Therefore, we 

assessed the relationship between mutational properties and several measures of network 

connectedness: betweenness, closeness, and degree centrality, in- and out-degree, and core 

number (depicted in Supplementary Figure S1).  These parameters are highly correlated.  
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Definitions of the parameters are given in Table 1; correlations between the parameters are 

included in Table 2.  For each of the six parameters, we calculated Spearman's correlation ρ 

between mutational statistics and the network parameter associated with the metabolite.  The 

strict experiment-wide 5% significance level for these correlations is approximately P<0.002 

(α=0.05/[6 network parameters x 4 mutational parameters]). 

Mutational Parameters – Details of the MA experiment are reported in Baer et al. [17] and 

outlined in section II of the Methods.  The experimental protocol by which metabolite 

concentrations were measured is reported in [13] and outlined in section III of the Methods; data 

are archived in Dryad at http://dx.doi.org/10.5061/dryad.2dn09/1.  For each of the 29 

metabolites, the cumulative effects of mutation are summarized by the mutational bias (ΔM), 

and the mutational variance (VM).  For a trait z, ΔMz=µGαz, where µG is the genomic mutation rate 

and αz is the average effect of a mutation on the trait; VM=µG𝛼𝛼𝑧𝑧2 [18, p. 329].  Details of the 

estimation of mutational parameters are given in section IV of the Methods.   

Comparisons of variation among traits or groups require that the variance be measured 

on a common scale.  VM is commonly scaled either relative to the trait mean, in which case VM is 

the squared coefficient of variation and is often designated IM, or relative to the residual 

variance, VE; VM/VE is the mutational heritability, ℎ𝑀𝑀2 .  IM and ℎ𝑀𝑀2  have different statistical 

properties and evolutionary interpretations [19], so we report both.  IM and IE are standardized 

relative to the mean of the MA lines.    

The relationship between network connectedness and sensitivity to mutation - Our results 

suggest that more highly connected metabolites are more susceptible to mutation (Table 2), 

although the statistical justification for that conclusion is marginal.  Core number, defined as the 

largest value of a k-core that contains the node of interest, (a k-core is the is the largest 

subgraph that contains nodes of degree k), is positively correlated with ℎ𝑀𝑀2  (ρ=0.48, P<0.008) 

and less strongly positively correlated with IM (ρ=0.30, P>0.11).  The 29 metabolites in our data 

set have core number of either one or two (the maximum core number of any metabolite in the 
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network is two).  Mean ℎ𝑀𝑀2  of metabolites of core number = 2 is approximately 2.5X greater than 

that of metabolites of core number = 1 (0.002 vs. 0.0008).  To put that result in context, the 

average ℎ𝑀𝑀2  for a wide variety of traits in a wide variety of organisms is on the order of 0.001 

[19].       

We think it is not a coincidence that the signal of mutational vulnerability emerges most 

strongly for core number, in contrast to the other measures of network connectedness, and for 

ℎ𝑀𝑀2  rather than IM as a measure of mutational variation.  Core number is a categorical variable, 

whereas the other measures of network connectedness are continuous variables.  In terms of 

the effect on power, quantifying connectedness in terms of core number is analogous to 

categorizing a set of size measurements into "small" and "large": power is increased, at the cost 

of losing the ability to discriminate between more subtle differences. 

The raw mutational variance, VM, appears in the numerator of both ℎ𝑀𝑀2  and IM; the 

difference lies in the denominator, which is the residual variance VE for ℎ𝑀𝑀2  and the square of the 

trait mean for IM.  For some replicates of some metabolites, estimated metabolite concentrations 

were atypically low and near zero; IM is more sensitive to low outliers than is ℎ𝑀𝑀2 .  However, the 

correlation between IM and the trait mean is small (r = -0.11) and not significantly different from 

zero.  Alternatively, it is possible that VM does not vary consistently with metabolite 

connectedness, but that metabolites with low connectedness (core number = 1) are more 

susceptible to random microenvironmental variation ("noise") than are metabolites with high 

connectedness (core number = 2), in which case VE would be greater for lowly-connected 

metabolites and ℎ𝑀𝑀2  would be lower.  Unfortunately, the variance is correlated with the trait 

mean, so the least biased way to address that question is by comparing the residual squared 

coefficients of variation, IE.  There is no hint of correlation between core number and IE 

(ρ=0.025, P>0.89; Table 2), and IE is uncorrelated with the trait mean (r = -0.12, P>0.54), so the 
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association between ℎ𝑀𝑀2  and core number cannot obviously be attributed to differential 

sensitivity to random noise.  

The relationship between mutational correlation (rM) and shortest path length - The cumulative 

effects of mutations on a pair of traits i and j may covary for two, nonexclusive reasons [20].  

More interestingly, individual mutations may have consistently pleiotropic effects, such that 

mutations that affect trait i also affect trait j in a consistent way.  Less interestingly, but 

unavoidably, individual MA lines will have accumulated different numbers of mutations, and if 

mutations have consistently directional effects, as would be expected for traits correlated with 

fitness, lines with more mutations will have more extreme trait values than lines with fewer 

mutations, even in the absence of consistent pleiotropy.  Estes et al. [20] simulated the 

sampling process in C. elegans MA lines with mutational properties derived from empirical 

estimates from a variety of traits and concluded that sampling is not likely to lead to large 

absolute mutational correlations in the absence of consistent pleiotropy (|rM| ≤ 0.25).  

 Ideally, we would like to estimate the full mutational (co)variance matrix, M, from the joint 

estimate of the among-line (co)variance matrix. However, with 25 traits, there are (25x26)/2 = 

325 covariances, and with only 43 MA lines, there is insufficient information to jointly estimate 

the restricted maximum likelihood of the full M matrix.  To proceed, we calculated mutational 

correlations from pairwise REML estimates of the among-line (co)variances, i.e., 𝑟𝑟𝑀𝑀 =

𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑋𝑋,𝑌𝑌)
�𝐶𝐶𝑉𝑉𝑉𝑉𝐿𝐿(𝑋𝑋)𝐶𝐶𝑉𝑉𝑉𝑉𝐿𝐿(𝑌𝑌)

 [21, 22].   Pairwise estimates of rM are shown in Supplementary Table S3.  To 

assess the extent to which the pairwise correlations are sensitive to the underlying covariance 

structure, we devised a heuristic bootstrap analysis.  For a random subset of 12 of the 300 pairs 

of traits, we randomly sampled six of the remaining 23 traits without replacement and estimated 

rM between the two focal traits from the joint REML among-line (co)variance matrix.  For each of 

the 12 pairs of focal traits, we repeated the analysis 100 times.   
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There is a technical caveat to the preceding bootstrap analysis.  Resampling statistics 

presume that the variables are exchangeable [23], which metabolites are not.  For that reason, 

we do not present confidence intervals on the resampled correlations, only the distributions.  

However, we believe that the analysis provides a meaningful heuristic by which the sensitivity of 

the pairwise correlations to the underlying covariance structure can be assessed.   

Distributions of resampled correlations are shown in Supplementary Figure S2.  In every 

case the point estimate of rM falls on the mode of the distribution of resampled correlations, and 

in 11 of the 12 cases, the median of the resampled distribution is very close to the point 

estimate of rM.  However, in six of the 12 cases, some fraction of the resampled distribution falls 

outside two standard errors of the point estimate.  The most important point that the resampling 

analysis reveals is this: given that 29 metabolites encompass only a small fraction of the total 

metabolome of C. elegans (<5%), even had we been able to estimate the joint likelihood of the 

full 29x30/2 M-matrix, the true covariance relationships among those 29 metabolites could 

conceivably be quite different from those estimated from the data.         

Correlations are properties of pairs of variables, so we expect a priori that network 

parameters that apply to pairs of elements are more likely to contain information about the 

mutational correlation between a pair of metabolites than will the pairwise average of a 

parameter that applies to individual elements of a network.  The shortest path length is the 

simplest network property that describes the relationship between two nodes, although since the 

metabolic network is directed, the shortest path from element i to element j is not necessarily 

the same as the shortest path from j to i.  For each pair of metabolites i and j, we calculated the 

shortest path length from i to j and from j to i, without repeated walks (Supplementary Table S4).  

We then calculated Spearman's correlation ρ between the mutational correlation rM and the 

shortest path length. 

Statistical assessment of the correlation between mutational correlations (rM) and 

shortest path length presents a problem of nonindependence, for two reasons.  First, all 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511


11 
 

correlations including the same variable are non-independent.  Second, even though the 

mutational correlation between metabolites i and j is the same as the correlation between j and 

i, the shortest path lengths need not be the same, and moreover, the path from i to j may exist 

whereas the path from j to i may not.  To account for non-independence of the data, we devised 

a parametric bootstrap procedure; details are given in section V of the Methods.  Three 

metabolites (L-tryptophan, L-lysine, and Pantothenate) lie outside of the great strong component 

of the network [24] and are omitted from the analysis.     

There is a weak, but significant, negative correlation between rM and the shortest path 

length between the two metabolites (ρ = -0.128, two-tailed P<0.03; Supplementary Figure S2a), 

whereas |rM| is not significantly correlated with shortest path length (ρ = -0.0058, two-tailed 

P>0.45; Supplementary Figure S2b).  The correlation between rM and the shortest path in the 

undirected network is similar to the correlation between rM and the shortest path in the directed 

network (ρ = -0.105, two-tailed P>0.10; Supplementary Figure S2c).     

An intuitive possible cause of the weak negative association between shortest path 

length and mutational correlation would be if a mutation that perturbs a metabolic pathway 

toward the beginning of the pathway has effects that propagate downstream in the same 

pathway, but the effect of the perturbation attenuates.  The attenuation could be due either to 

random noise or to the effects of other inputs into the pathway downstream from the 

perturbation (or both).  The net effect would be a characteristic pathway length past which the 

mutational effects on two metabolites are uncorrelated, leading to an overall negative correlation 

between rM and path length.  The finding that the correlations between rM and the shortest path 

length in the directed and undirected network are very similar reinforces that conclusion.  The 

negative correlation between rM and shortest path length is reminiscent of a finding from 

Arabidopsis, in which sets of metabolites significantly altered by single random gene knockouts 

are closer in the global metabolic network than expected by chance [25].   

Conclusions and Future Directions 
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The proximate goal of this study was to find out if there are topological properties of the C. 

elegans metabolic network – connectedness, shortest path length, etc. – that are correlated with 

a set of statistical descriptions of the cumulative effects of spontaneous mutations (ΔM, VM, rM).  

Ultimately, we hope that a deeper understanding of those mathematical relationships will shed 

light on the mechanistic biology of the organism.  Statistical fragility of the results 

notwithstanding (but not forgotten), we conclude: 

(i) Network connectedness is associated with mutational sensitivity (VM), not mutational 

robustness (1/VM).  The most plausible explanation is that metabolites that are more highly 

connected present a larger mutational target than do metabolites that are less connected.  

However, although 1/VM is a meaningful measure of mutational robustness [26], it does not 

necessarily follow that highly-connected metabolites are therefore more robust to the effects 

individual mutations [27, 28].         

(ii) Pleiotropic effects of mutations affecting the metabolome are predominantly local, as 

evidenced by the significant negative correlation between shortest path length between a pair of 

metabolites and the mutational correlation, rM, between that pair of metabolites.  That result is 

not surprising in hindsight, but the weakness of the correlation suggests that there are other 

important factors that underlie pleiotropy beyond network proximity.    

  To advance understanding of the mutability of the C. elegans metabolic network, three 

things are needed.  First, it will be important to cover a larger fraction of the metabolic network.  

Untargeted mass spectrometry of cultures of C. elegans reveals many thousands of features 

(Art Edison, personal communication); 29 metabolites are only the tip of a large iceberg.  For 

example, our intuition leads us to believe that the mutability of a metabolite will depend more on 

its in-degree (mathematically, the number of edges leading into a node in a directed graph; 

biochemically, the number of reactions in which the metabolite is a product) than its out-degree.  

The point-estimate of the correlation of ℎ𝑀𝑀2  with in-degree is twice that of the correlation of ℎ𝑀𝑀2  

with out-degree (Table 2), although the difference is not statistically significant.    
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Second, to more precisely partition mutational (co)variance into within- and among-line 

components, more MA lines are needed.  If our estimate of an average of 80 mutations per MA 

line is close to the mark, it means that the phenotypic (co)variance observed here is the result of 

about 3500 total mutations, distributed among 43 MA lines.  In this case, the MA lines were a 

preexisting resource, and the sample size was predetermined.  It is encouraging that we were 

able to detect significant mutational variance for 25/29 metabolites (Supplementary Table S1b), 

but only 14% (42/300) of pairwise mutational correlations are significantly different from zero at 

the experiment-wide 5% significance level, roughly corresponding to |rM|>0.5 (Supplementary 

Table S3); 18 of the 42 significant mutational correlations are not significantly different from |rM| 

= 1.  It remains uncertain how sensitive estimates of mutational correlations are to the 

underlying covariance structure of the metabolome.  It also remains to be seen if the mutability 

of specific features of metabolic networks are genotype or species-specific, and the extent to 

which mutability depends on environmental context. 

Third, it will be important to quantify metabolites (static concentrations and fluxes) with 

more precision.  The metabolite data analyzed in this study were collected from large cultures 

(n>10,000 individuals) of approximately age-synchronized worms, and were normalized relative 

to an external quantitation standard [13].  Ideally, one would like to characterize the 

metabolomes of single individuals, assayed at the identical stage of development.  That is not 

yet practical with C. elegans, although it is possible to quantify hundreds of metabolites from a 

sample of 1000 individuals [29], and preliminary studies suggest it will soon be possible to 

reduce the number of individuals to 100 or even ten (M. Witting, personal communication).  

Minimizing the number of individuals in a sample is important for two reasons; (1) the smaller 

the sample, the easier it is to be certain the individuals are closely synchronized with respect to 

developmental stage, and (2) knowing the exact number of individuals in a sample makes 

normalization relative to an external standard more interpretable.  Ideally, data would be 
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normalized relative to both an external standard and an internal standard (e.g., total protein; 

[21]). 

This study provides an initial assessment of the relationship between mutation and 

metabolic network architecture.  To begin to uncover the relationship between metabolic 

architecture and natural selection, the next step is to repeat these analyses with respect to the 

standing genetic variation (VG).  There is some reason to think that highly-connected 

metabolites will be more evolutionarily constrained (i.e., under stronger purifying selection) than 

less connected metabolites [8], in which case the ratio of the mutational variance to the standing 

genetic variance (VM/VG) will increase with increasing connectedness.    

 

Methods and Materials: 

I. Metabolic Network:  

The metabolic network of C. elegans was estimated in two ways: (i) by the static, purely 

graphical method of Ma and Zeng ([14]; updated at http://www.ibiodesign.net/kneva/; we refer to 

this method as MZ), and (ii) by the dynamical, flux-balance analysis (FBA) method of Yilmaz 

and Walhout ([15]; http://wormflux.umassmed.edu/; we refer to this method as YW).  

Subnetworks that do not contain at least one of the 29 metabolites were excluded from 

downstream analyses.  The MZ method uses as its source data the KEGG LIGAND database 

(http://www.genome.jp/kegg/ligand.html), and includes several ad hoc criteria for retaining or 

omitting specific metabolites from the analysis (criteria are listed on p. 272 of [14]).  In most 

cases, MZ and YW give identical results; in the few cases in which there is a discrepancy 

(Supplementary Table S2), we chose to use the MZ network because we used the MZ criteria 

for categorizing currency metabolites (defined below).  

To begin, the 29 metabolites of interest were identified and used as starting sites for the 

network. Next, all forward and reverse reactions stemming from the 29 metabolites were 

incorporated into the subnetwork until all reactions either looped back to the starting point or 
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reached an endpoint. Currency metabolites were removed following the MZ criteria (a currency 

metabolite is roughly defined as a molecule such as water, ATP, NADH, etc., that appears in a 

large fraction of metabolic reactions but is not itself an intermediate in an enzymatic pathway).       

A graphical representation of the network was constructed with the Pajek software 

package (http://mrvar.fdv.uni-lj.si/pajek/) and imported into the networkX Python package [30], 

which was used to generate network statistics.  Proper importation from Pajek to networkX was 

verified by visual inspection. 

II. Mutation Accumulation Lines 

A full description of the construction and propagation of the mutation accumulation (MA) lines is 

given in [17]. Briefly, 100 replicate MA lines were initiated from a nearly-isogenic population of 

N2-strain C. elegans and propagated by single-hermaphrodite descent at four-day (one 

generation) intervals for approximately 250 generations.  The long-term Ne of the MA lines is 

very close to one, which means that mutations with a selective effect less than about 25% are 

effectively neutral [31].  The common ancestor of the MA lines ("G0") was cryopreserved at the 

outset of the experiment; MA lines were cryopreserved upon completion of the MA phase of the 

experiment.  Based on extensive whole-genome sequencing [32; A. Saxena and CFB, in prep], 

we estimate that each MA line carries about 80 mutant alleles in the homozygous state.   

At the time the metabolomics experiments reported in [13] were initiated, approximately 

70 of the 100 MA lines remained extant, of which 43 ultimately provided sufficient material for 

Gas Chromatography/Mass Spectrometry (GC-MS).  Each MA line was initially replicated five-

fold, although not all replicates provided data of sufficient quality to include in subsequent 

analyses; the mean number of replicates included per MA line is 3.9 (range = 2 to 5).  The G0 

ancestor was replicated nine times.  However, the G0 ancestor was not subdivided into 

"pseudolines" [33], which means that inferences about mutational variances and covariances 

are necessarily predicated on the assumption that the among-line (co)variance of the ancestor 
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is zero. Each replicate consisted of age-synchronized young-adult stage worms taken from a 

single 10 cm agar plate.    

III. Metabolomics: 

Details of the extraction and quantification of metabolites are given in [13]. Briefly, samples were 

analyzed using an Agilent 5975c quadrupole mass spectrometer with a 7890 gas 

chromatograph.   Metabolites were identified by comparison of GC-MS features to the Fiehn 

Library [34] using the AMDIS deconvolution software [35], followed by reintegration of peaks 

using the GAVIN Matlab script [36].  Metabolites were quantified and normalized relative to an 

external quantitation standard.  34 metabolites were identified, of which 29 were ultimately 

included in the analyses.  Normalized metabolite data are archived in Dryad 

(http://dx.doi.org/10.5061/dryad.2dn09). 

IV. Quantitative Genetic Analyses: There are three quantitative genetic parameters of interest: 

(i) the per-generation proportional change in the trait mean, referred to as the mutational bias, 

ΔM; (ii) the per-generation increase in the genetic variance, referred to as the mutational 

variance, VM; and (iii) the genetic correlation between the cumulative effects of mutations 

affecting pairs of traits, the mutational correlation, rM.  Details of the calculations of ΔM and VM 

are reported in [13]; we reprise the basic calculations here.   

(i) Mutational bias (ΔM) – The mutational bias is the change in the trait mean due to the 

cumulative effects of all mutations accrued over one generation.  ΔMz=µGαz, where µG is the per-

genome mutation rate and αz is the average effect of a mutation on trait z, and is calculated as 

∆𝑀𝑀𝑧𝑧 = �̅�𝑧𝑀𝑀𝑀𝑀−�̅�𝑧0
𝑡𝑡�̅�𝑧0

, where 𝑧𝑧�̅�𝑀𝑉𝑉 and 𝑧𝑧0̅represent the MA and ancestral (G0) trait means and t is the 

number of generations of MA. 

(ii) Mutational variance (VM) - The mutational variance is the increase in the genetic variance 

due to the cumulative effects of all mutations accrued over one generation.  VM=µG𝛼𝛼𝑧𝑧2 and is 

calculated as 𝑉𝑉𝑀𝑀 = ∆𝑉𝑉𝐿𝐿 = 𝐶𝐶𝐿𝐿,𝑀𝑀𝑀𝑀−𝐶𝐶𝐿𝐿,𝐺𝐺0
2𝑡𝑡

, where 𝑉𝑉𝐿𝐿,𝑀𝑀𝑉𝑉 is the variance among MA lines, 𝑉𝑉𝐿𝐿,𝐺𝐺0 is the 
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among-line variance in the G0 ancestor, and t is the number of generations of MA [18, p. 330].  

In this study, we must assume that VL,G0 = 0. 

  

(iii) Mutational correlation, rM – Pairwise mutational correlations were calculated from the 

among-line components of (co)variance, which were estimated by REML as implemented in the 

in the MIXED procedure of SAS v. 9.4, following Fry [37].  Statistical significance of individual 

correlations was assessed by Z-test, with a global 5% significance criterion of approximately 

P<0.000167.    

V. Analysis of the correlation between mutational correlation (rM) and shortest path length - 

Each off-diagonal element of the 24x24 mutational correlation matrix (rij=rji) was associated with 

a random shortest path length sampled with probability equal to its frequency in the empirical 

distribution of shortest path lengths between all metabolites included in the analysis.  Next, we 

calculated the Spearman's correlation ρ between rM and the shortest path length.  The 

procedure was repeated 10,000 times to generate an empirical distribution of ρ, to which the 

observed ρ can be compared.  This comparison was done for the raw mutational correlation, rM, 

the absolute value, |rM|, and between rM and the shortest path length in the undirected network 

(i.e., the shorter of the two paths between metabolites i and j).   
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Figure Legends 

 

Figure 1. Graphical depiction of the metabolic network including all 29 metabolites.  Pink nodes 

represent included metabolites with core number = 1, red nodes represent included metabolites 

with core number = 2.  Gray nodes represent metabolites with which the included 29 

metabolites directly interact.  Metabolite identification numbers are listed in Supplementary 

Table S1. 
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Figure 1 
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Network Parameter Heuristic Definition Formal Definition 

In Degree (IN°), deg+( 𝑣𝑣) The number of incoming edges to node 𝑣𝑣 in a 

directed graph. 

self-explanatory 

Out Degree (OUT°), deg−( 𝑣𝑣) The number of outgoing edges from node 𝑣𝑣 in a 

directed graph. 

self-explanatory 

Shortest Path Length, 𝑑𝑑(𝑣𝑣,𝑢𝑢) Shortest distance from node 𝑣𝑣 to another node 𝑢𝑢 

with no repeated walks 

self-explanatory 

Betweenness Centrality (BET), 

cB(𝑣𝑣) 

Betweenness centrality of node 𝑣𝑣 is the sum of 

the fraction of all-pairs shortest paths that pass 

through 𝑣𝑣.  The greater cB(𝑣𝑣), the greater the 

fraction of shortest paths that pass through node 

𝑣𝑣.  

𝑐𝑐𝐵𝐵(𝑣𝑣)
(𝑛𝑛−1)(𝑛𝑛−2)

, where 𝑐𝑐𝐵𝐵(𝑣𝑣) = ∑ 𝜎𝜎(𝑠𝑠,𝑡𝑡|𝑣𝑣)
𝜎𝜎(𝑠𝑠,𝑡𝑡)𝑠𝑠,𝑡𝑡∈𝐶𝐶 , V is 

the set of nodes, 𝜎𝜎(𝑠𝑠, 𝑡𝑡) is the number of 

shortest paths from node s to node t, 

𝜎𝜎(𝑠𝑠, 𝑡𝑡|𝑣𝑣) is the number of paths from s to t 

that pass through node 𝑣𝑣, and n is the 

number of nodes in the graph.  The 

denominator (n-1)(n-2) is the normalization 

factor for a directed graph that scales cB(𝑣𝑣) 

between 0 and 1. 
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Network Parameter Heuristic Definition Formal Definition 

Closeness Centrality (CLO), 

C(𝑣𝑣) 

Closeness centrality of node 𝑣𝑣 is the reciprocal of 

the sum of the shortest path lengths to all n-1 

other nodes, normalized by the sum of minimum 

possible distances n-1.  The greater C(𝑣𝑣), the 

closer 𝑣𝑣 is to other nodes. 

𝐶𝐶(𝑣𝑣) = 𝑛𝑛−1
∑ 𝑑𝑑(𝑢𝑢,𝑣𝑣)𝑛𝑛−1
𝑢𝑢=1

, where n is the number of 

nodes and 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the shortest path 

distance between 𝑢𝑢 and 𝑣𝑣. 

Degree Centrality (DEG), CD(𝑣𝑣) Degree centrality of node 𝑣𝑣 is the fraction of 

nodes in the network that node 𝑣𝑣 is connected to. 

𝐶𝐶𝐷𝐷(𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑑𝑑+(𝑣𝑣)+𝑑𝑑𝑑𝑑𝑑𝑑−(𝑣𝑣)
𝑛𝑛−1

, where n is the 

number of nodes in the network. 

Core Number (CORE) A k-core is the largest subgraph that contains 

nodes of at least degree k.  The core number of 

node 𝑣𝑣 is the largest value k of a k-core 

containing node 𝑣𝑣.  

Calculated using the algorithm of Batagelj 

and Zaversnik (2011). 

 

Table 1. Definitions of Network Parameters, following the documentation of NetworkX, v.1.11 (Hagberg et al. 2008).  The 

abbreviations of the network parameters used in Table 2 follow the parameter name in parentheses in bold type.  
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 BTW CLO DEG IN° OUT° CORE ΔM |ΔM| IM IE 𝒉𝒉𝑴𝑴𝟐𝟐  

BTW  0.60 0.84 0.86 0.66 0.79 -0.009 (0.96) -0.055 (0.77) -0.007 (0.97) -0.122 (0.52) 0.128 (0.51) 

CLO   0.54 0.51 0.47 0.54 0.012 (0.94) 0.297 (0.11) 0.119 (0.53) 0.034 (0.86) 0.089 (0.64) 

DEG    0.88 0.92 0.83 0.038 (0.84) -0.078 (0.68) 0.178 (0.35) -0.062 (0.74) 0.218 (0.25) 

IN°     0.65 0.85 0.099 (0.60) 0.043 (0.82) 0.188 (0.32) 0.007 (0.97) 0.277 (0.14) 

OUT°      0.68 0.031 (0.87) -0.200 (0.29) 0.133 (0.49) -0.096 (0.62) 0.139 (0.47) 

CORE       0.245 (0.20) 0.104 (0.59) 0.298 (0.11) 0.025 (0.89) 0.481 (0.008) 

 

Table 2.  Spearman's rank correlation ρ between network parameters (rows/first five columns) and between network parameters and 

mutational parameters (rows/last four columns).  Abbreviations of network parameters are: BTW, betweenness centrality; CLO, 

closeness centrality; DEG, degree centrality; IN°, in-degree, OUT°, out-degree; CORE, core number.  Network parameters are 

defined mathematically and heuristically in Table 1.  Abbreviations of mutational parameters are: ΔM, per-generation change in the 

trait mean; |ΔM|, absolute value of ΔM; IM, squared mutational coefficient of variation; IE, squared residual coefficient of variation; ℎ𝑀𝑀2 , 

mutational heritability.  See text and Supplementary Table S1 for details of mutational parameters.  Uncorrected P-values of 

mutational parameters are given in parentheses. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511


25 
 

Supplementary Figure S1. 

 

 

Supplementary Figure S1.  Schematic depiction of the k-core(s) of a graph.  The k-core of a 

graph is the largest subgraph that contains nodes of degree at least k.  The colored balls 

represent nodes in a network and the black lines represent connecting edges.  Each red ball in 

the darkest gray area has core number k=3; note that each node with k=3 is connected to at 

least three other nodes.  From Batagelj and Zaveršnik (2011).
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Supplementary Figure S2 

 

 

Supplementary Figure S2.  Bootstrap distributions of mutational correlations (rM) calculated from the joint REML estimate of the 

among-line components of covariance from a pair of focal metabolites (listed at the top of each panel) and six other metabolites 

randomly sampled without replacement.  Each distribution is based on 100 resamples from the data.  Red lines show the observed 
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rM, blue lines show the median of the resampled values, yellow lines show + two standard errors of the observed rM.  Details of the 

bootstrap analysis are given in the Methods. 
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Supplementary Figure S3 

 

Supplementary Figure S3. Parametric bootstrap distributions of random correlations ρ between (a) rM and the shortest path length 

in the directed network, (b) |rM| and the shortest path length in the directed network, (c) rM and shortest path length in the undirected 

network (i.e., the shorter of the two path lengths between metabolites i and j in the directed network).  Red lines show the observed 

values of ρ, yellow lines show the 95% confidence interval of the distribution of the correlation between the mutational correlation and 

a random shortest path length drawn from the observed distribution of shortest path lengths.  See Methods for details.  
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x 

Metabolite ID # BTW CLO DEG IN° OUT° CORE 

trans-4-Hydroxy-L-proline  11 0.004482 0.002761 0.004658 2 1 1 

L-3-Amino-isobutanoate 10 0 0 0.001553 1 0 1 

Adenine 20 0.003335 0.032205 0.009317 2 4 2 

Adenosine 28 0.005516 0.032198 0.009317 4 2 2 

L-Alanine 8 0 0 0.001553 1 0 1 

L-Asparagine 16 0.002236 0.052579 0.004658 1 2 1 

L-Aspartate 9 0.055054 0.056756 0.012422 3 5 2 

Citrate 19 0.171567 0.058576 0.012422 4 4 2 

Fumarate 6 0.028317 0.053784 0.007764 3 2 2 

L-Glutamate 14 0.036659 0.048283 0.020186 5 8 2 

Glycine 2 0.02661 0.044377 0.017081 5 6 2 

L-Lysine 21 0 0.004658 0.004658 0 3 1 

(S) – Malate 12 0.029016 0.057446 0.007764 2 3 2 

L-Methionine 7 7.49E-05 0.004969 0.007764 2 3 2 

Nicotinate 3 0.00221 0.046122 0.006211 2 2 2 

Hexadecanoic acid 25 0.066162 0.019529 0.01087 2 5 2 
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Supplementary Table S1(a), above. Network parameters for the 29 metabolites.  Column headings are the abbreviations for the 

network parameters given in Tables 1 and 2.  ID# is the number of the metabolite in the network shown in Figure 1. 

 

Metabolite ID # BTW CLO DEG In° Out° Core 

Pantothenate 23 0 0.001553 0.001553 0 1 1 

L-Phenylalanine 15 0.001137 0.040279 0.009317 1 5 1 

Putrescine 18 0.003362 0.002795 0.003106 1 1 1 

5-Oxoproline 13 0 0.045387 0.001553 0 1 1 

D-Ribose 17 0 0.044346 0.001553 0 1 1 

L-Serine 1 0.034582 0.057313 0.017081 5 6 2 

Succinate  4 0.02215 0.051067 0.01087 4 3 2 

Alpha,alpha-Trehalose 29 0 0.042179 0.001553 0 1 1 

L-Tryptophan 27 0 0.004969 0.004658 0 3 1 

L-Tyrosine 22 0.004518 0.041547 0.012422 3 5 2 

Uracil 5 0.078303 0.044365 0.01087 4 3 2 

Urate 26 0 0.029702 0.003106 1 1 1 

Xanthine 24 0.004393 0.031003 0.01087 3 4 2 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM 𝒉𝒉𝑴𝑴𝟐𝟐  (x 103) 

trans-4-Hydroxy-L-

proline  

 

11 228.6 

(10.4) 

149.4 

(14.5) 

0.14 

(0.02) 

1058.0 

(349.0) 

2.12 

(0.70) 

3577.4 

(1052.3) 

9.45E-05 0.59 

(0.26) 

L-3-Amino-

isobutanoate 

10 20.0 

(3.1) 

14.5 

(0.8) 

-0.11 

(0.06) 

3.58 

(4.32) 

0.007 

(0.009) 

95.0 

(9.86) 

3.43E-05 0.08 

(0.09) 

Adenine 20 11.3 

(1.4) 

13.2 

(0.8) 

0.07 

(0.06) 

15.4 

(4.4) 

0.03 

(0.009) 

28.0 

(4.02) 

0.000178 1.10  

(0.35) 

Adenosine 28 2.1 

(0.7) 

26.0 

(3.4) 

4.39 

(0.62) 

407.7 

(78.2) 

0.82 

(0.16) 

186.5 

(75.9) 

0.001261 4.37 

(1.97) 

L-Alanine 8 5.5 

(1.5) 

6.1 

(0.6) 

0.04 

(0.12) 

5.48 

(3.43) 

0.011 

(0.007) 

30.3 

(5.0) 

0.000278 0.36 

(0.23) 

L-Asparagine 16 3.7 

(1.3) 

1.2 

(0.1) 

-0.27 

(0.14) 

0.11 

(0.15) 

0.0002 

(0.0003) 

2.4 

(0.4) 

0.000135 0.09 

(0.13) 

L-Aspartate 9 37.7 

(2.7) 

19.0 

(1.2) 

-0.20 

(0.03) 

48.2 

(19.2) 

0.096 

(0.038) 

60.2 

(18.2) 

0.00026 1.60 

(0.80) 

Citrate 19 11.4 

(2.2) 

5.7.1 

(0.5) 

-0.16 

(0.08) 

4.56 

(1.54) 

0.009 

(0.003) 

19.8 

(6.8) 

0.000182 0.46 

(0.22) 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM 𝒉𝒉𝑴𝑴𝟐𝟐  (x 103) 

Fumarate 6 33.0 

(2.1) 

25.5 

(1.2) 

-0.09 

(0.03) 

35.1 

(9.2) 

0.070 

(0.018) 

84.1 

(26.1) 

0.000109 0.83 

(0.34) 

L-Glutamate 14 115.2 

(24.5) 

93.2 

(6.3) 

-0.08 

(0.09) 

973.0 

(556.8) 

1.94 

(1.11) 

2703.7 

(556.9) 

0.000214 0.72 

(0.44) 

Glycine 2 47.1 

(5.3) 

52.8 

(4.5) 

0.05 

(0.06) 

606.7 

(411.6) 

1.21 

(0.82) 

939.3 

(323.7) 

0.000393 1.29 

(0.98) 

L-Lysine 21 6.7 

(2.6) 

5.0 

(0.6) 

-0.10 

(0.16) 

4.43 

(3.99) 

0.009 

(0.008) 

38.4 

(7.01) 

0.00032 0.23 

(0.21) 

(S) – Malate 12 44.7 

(4.0) 

71.9 

(4.2) 

0.24 

(0.05) 

397.8 

(135.4) 

0.80 

(0.27) 

1179.7 

(276.2) 

0.000157 0.67 

(0.28) 

L-Methionine 7 47.9 

(4.1) 

32.2 

(1.7) 

-0.13 

(0.04) 

101.2 

(20.5) 

0.202 

(0.041) 

72.4 

(13.4) 

0.000197 2.79 

(0.77) 

Nicotinate 3 4.9 

(0.6) 

33.0 

(3.5) 

2.29 

(0.29) 

473.9 

(88.1) 

0.95 

(0.18) 

120.3 

(21.4) 

0.000863 7.88 

(2.03) 

Hexadecanoic acid 25 238.4 

(22.3) 

265.1 

(15.0) 

-0.03 

(0.04) 

6712.9 

(1579.6) 

13.43 

(3.16) 

9579.1 

(2985.7) 

0.000194 1.40 

(0.55) 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM 𝒉𝒉𝑴𝑴𝟐𝟐  (x 103) 

Pantothenate 23 22.9 

(0.8) 

14.4 

(0.6) 

-0.15 

(0.02) 

12.8 

3.2 

0.026 

(0.006) 

16.0 

(3.17) 

0.000123 1.60 

(0.51) 

L-Phenylalanine 15 87.4 

(7.9) 

94.4 

(6.3) 

0.03 

(0.05) 

678.9 

(263.6) 

1.36 

(0.53) 

3835.0 

(810.3) 

0.000155 0.35 

(0.16) 

Putrescine 18 73.7 

(15.3) 

57.4 

(3.4) 

-0.09 

(0.08) 

70.9 

(70.6) 

0.14 

(0.14) 

1672.3 

(193.2) 

4.15E-05 0.08 

(0.08) 

5-Oxoproline 13 701.6 

(40.0) 

528.2 

(22.2) 

-0.10 

(0.03) 

7275.6 

(3649.0) 

14.56 

(7.30) 

52146.6 

(13671.9) 

5.24E-05 0.28 

(0.16) 

D-Ribose 17 5.6 

(0.8) 

13.3 

(1.5) 

0.51 

(0.11) 

76.3 

(22.8) 

0.15 

(0.05) 

66.3 

(27.2) 

0.000841 2.30 

(1.17) 

L-Serine 1 130.0 

(49.8) 

85.8 

(3.7) 

-0.14 

(0.15) 

373.7 

(117.7) 

0.75 

(0.24) 

1221.7 

(376.9) 

9.87E-05 0.61 

(0.27) 

Succinate  4 7.3 

(0.8) 

91.1 

(9.7) 

4.52 

(0.51) 

3216.6 

(688.3) 

6.43 

(1.38) 

2797.7 

(932.6) 

0.000778 2.30 

(0.91) 

Alpha,alpha-

Trehalose 

29 1772.2 

(147.2) 

2525.4 

(277.6) 

0.19 

(0.07) 

2118803 

(105069) 

4237.6 

(2101.4) 

4355039 

(1656108) 

0.000584 0.97 

(0.61) 
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Supplementary Table S1(b). Mutational statistics of the 29 metabolites, reprised from Supplementary Table S1 of Davies et al. 

(2016).  Column Headings are: ID#, the number of the metabolite in the network shown in Figure 1; Mean (G0), mean metabolite 

pool of the G0 ancestor; Mean (MA), mean metabolite pool of the MA lines; ΔM (%), percent change per-generation in mean trait 

Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM 𝒉𝒉𝑴𝑴𝟐𝟐  (x 103) 

L-Tryptophan 27 107.7 

(14.3) 

92.2 

(2.8) 

-0.06 

(0.05) 

205.7 

(87.3) 

0.411 

(0.174) 

496.9 

(64.0) 

4.93E-05 0.83 

(0.37) 

L-Tyrosine 22 74.7 

(9.3) 

47.9 

(2.9) 

-0.14 

(0.05) 

197.2 

(70.9) 

0.394 

(0.142) 

643.3 

(99.7) 

0.00017 0.61 

(0.24) 

Uracil 5 9.5 

(1.0) 

8.8 

(0.4) 

-0.03 

(0.05) 

4.67 

(1.59) 

0.009 

(0.003) 

8.3 

(1.4) 

0.000123 1.13 

(0.43) 

Urate 26 20.7 

(3.4) 

11.5 

(1.2) 

-0.18 

(0.07) 

45.3 

(20.1) 

0.091 

(0.040) 

45.3 

(4.75) 

0.000654 2.00 

(0.91) 

Xanthine 24 0.4 

(0.3) 

6.7 

(1.0) 

6.64 

(1.09) 

36.5 

(8.04) 

0.073 

(0.016) 

15.5 

(2.8) 

0.001711 4.70 

(1.34) 

Mean   0.73* 

(0.30) 

   1.46 

(0.31) 

  

Median   0.14    0.83   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511


35 
 

value; VL, among-line component of variance, VM, mutational variance; CVM,G0, mutational coefficient of variation standardized by 

the G0 mean; CVM,MA, mutational coefficient of variation standardized by the MA mean; VE, environmental (= within-line) component 

of variance; ℎ𝑀𝑀2 , mutational heritability.   

* - Mean ΔM (%) is the mean absolute value. 
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Reaction Number Reaction 

R01579 D-Glutamine + H2O = D-Glutamate + NH3 

R01887 gamma-Amino-gamma-cyanobutanoate + 2 H2O = DL-Glutamate + NH3 

R04936 Se-Adenosylselenohomocysteine + H2O = Adenosine +Selenohomocysteine 

R00891 L-Serine + Hydrogen sulfide = L-Cysteine + H2O 

R09099 L-Serine + 5,6,7,8-Tetrahydromethanopterin = 5,10-Methylenetetrahydromethanopterin + Glycine + H2O 

R02853 D-O-Phosphoserine + H2O = D-Serine + Orthophosphate 

R00904 3-Aminopropanal + NAD+ + H2O = beta-Alanine + NADH + H+ 

R03542 alpha-Aminopropiononitrile + 2 H2O = Alanine + NH3 

R01324 Citrate = Isocitrate 

R00483 ATP + L-Aspartate + NH3 = AMP + Diphosphate + L-Asparagine 

R01221 Glycine + Tetrahydrofolate + NAD+ = 5,10-Methylenetetrahydrofolate+ NH3 + CO2 + NADH + H+ 

R02078 3,4-Dihydroxy-L-phenylalanine + L-Tyrosine + Oxygen = Dopaquinone+ 3,4-Dihydroxy-L-phenylalanine + 

H2O 

R01706 Hexadecanoyl-[acp] + H2O = Acyl-carrier protein + Hexadecanoicacid 

R04666 3-Ureidoisobutyrate + H2O = 3-Aminoisobutyric acid + CO2 + NH3 

 

Supplementary Table S2. Discrepancies between the metabolic networks constructed using the MZ and YW methods. All reactions 

listed here are in the Ma and Zeng KEGG database (http://www.ibiodesign.net/kneva/) but not in the Wormflux database 

(http://wormflux.umassmed.edu/) and were used in the generation of the metabolic network. There is a total of 1203 reactions in the 

network, these represent about 1% of all reactions.  
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