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Abstract 63 

Background: A fundamental issue in evolutionary systems biology is understanding the 64 

relationship between the topological architecture of a biological network, such as a metabolic 65 

network, and the evolution of the network.  The rate at which an element in a metabolic network 66 

accumulates genetic variation via new mutations depends on both the size of the mutational 67 

target it presents and its robustness to mutational perturbation.  Quantifying the relationship 68 

between topological properties of network elements and the mutability of those elements will 69 

facilitate understanding the variation in and evolution of networks at the level of populations and 70 

higher taxa.     71 

 72 

Results: We report an investigation into the relationship between two topological properties of 73 

29 metabolites in the C. elegans metabolic network and the sensitivity of those metabolites to 74 

the cumulative effects of spontaneous mutation.  The relationship between several measures of 75 

network centrality and sensitivity to mutation is weak, but point estimates of the correlation 76 

between network centrality and mutational variance are positive, with only one exception.  There 77 

is a marginally significant correlation between core number and mutational heritability.  There is 78 

a small but significant negative correlation between the shortest path length between a pair of 79 

metabolites and the mutational correlation between those metabolites. 80 

 81 

Conclusions: Positive association between the centrality of a metabolite and its mutational 82 

heritability is consistent with centrally-positioned metabolites presenting a larger mutational 83 

target than peripheral ones, and is inconsistent with centrality conferring mutational robustness, 84 

at least in toto.  The weakness of the correlation between shortest path length and the 85 

mutational correlation between pairs of metabolites suggests that network locality is an 86 

important but not overwhelming factor governing mutational pleiotropy.  These findings provide 87 
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necessary background against which the effects of other evolutionary forces, most importantly 88 

natural selection, can be interpreted. 89 

  90 
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Introduction: 91 

The set of chemical reactions that constitute organismal metabolism is often represented 92 

as a network of interacting components, in which individual metabolites are the nodes in the 93 

network and the chemical reactions of metabolism are the edges linking the nodes [1].  94 

Representation of a complex biological process such as metabolism as a network is 95 

conceptually powerful because it offers a convenient and familiar way of visualizing the system, 96 

as well as a well-developed mathematical framework for analysis.   97 

 If the representation of a biological system as a network is to be useful as more than a 98 

metaphor, it must have predictive power [2].  Metabolic networks have been investigated in the 99 

context of evolution, toward a variety of ends.  Many studies have compared empirical metabolic 100 

networks to various random networks, with the goal of inferring adaptive features of network 101 

architecture (e.g., [1, 3-7].  Other studies have addressed the relationship between network-102 

level properties of individual elements of the network (e.g., node degree, centrality) and 103 

properties such as rates of protein evolution [8, 9] and within-species polymorphism [10].      104 

 One fundamental evolutionary process that remains essentially unexplored with respect 105 

to metabolic networks is mutation.  Mutation is the ultimate source of genetic variation, and as 106 

such provides the raw material for evolution: the greater the input of genetic variation by 107 

mutation, the greater the capacity for evolution.  However, in a well-adapted population, most 108 

mutations are at least slightly deleterious.  At equilibrium, the standing genetic variation in a 109 

population represents a balance between the input of new mutations that increase genetic 110 

variation and reduce fitness, and natural selection, which removes deleterious variants and 111 

thereby increases fitness.  Because genetic variation is jointly governed by mutation and 112 

selection, understanding the evolution of any biological entity, such as a metabolic network, 113 

requires an independent accounting of the effects of mutation and selection.   114 

 The cumulative effects of spontaneous mutations can be assessed in the near absence 115 

of natural selection by means of a mutation accumulation (MA) experiment (Figure 1).  Selection 116 
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becomes ineffective relative to random genetic drift in small populations, and mutations with 117 

effects on fitness smaller than about the reciprocal of the population size (technically, the 118 

genetic effective population size, Ne) will be essentially invisible to natural selection [11].  An MA 119 

experiment minimizes the efficacy of selection by minimizing Ne, thereby allowing all but the 120 

most strongly deleterious mutations to evolve as if they are invisible to selection [12].  121 

Our primary interest is in the relationship between the centrality of a metabolite in the 122 

network and the sensitivity of that metabolite to mutation.  Roughly speaking, the centrality of a 123 

node in a network quantifies some measure of the importance of the node in the network [13].  124 

A generic property of empirical networks, including metabolic networks, is that they are 125 

(approximately) scale-free; scale-free networks are characterized by a topology with a few "hub" 126 

nodes (high centrality) and many peripheral nodes (low centrality; [1]).  Scale-free networks are 127 

more robust to random perturbation than are randomly-connected networks [14].   128 

Mutation is an important source of perturbation to biological systems, and much effort 129 

has gone into theoretical and empirical characterization of the conditions under which 130 

mutational robustness will evolve [15-17].  Mutational robustness can be assessed in two basic 131 

ways: top-down, in which a known element of the system is mutated and the downstream 132 

effects of the mutation quantified, or bottom-up, in which mutations are introduced at random, 133 

either spontaneously or by mutagenesis, and the downstream effects quantified.  Top-down 134 

experiments are straightforward to interpret: the greater the effects of the mutation (e.g., on a 135 

phenotype of interest), the less robust the system.  However, the scope of inference is limited to 136 

the types of mutations introduced by the investigator (which in practice are almost always gene 137 

knockouts), and provide limited insight into natural variation in mutational robustness.          138 

Bottom-up approaches, in which mutations are allowed to accumulate at random, 139 

provide insight into the evolution of a system as it actually exists in nature: all else equal, a 140 

system, or element of a system ("trait"), that is robust to the effects of mutation will accumulate 141 

less genetic variance under MA conditions than one that is not robust (Figure 1b; [18]).  142 
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However, the inference is not straightforward, because all else may not be equal: different 143 

systems or traits may present different mutational targets (roughly speaking, the number of sites 144 

in the genome that potentially affect a trait; [19]).          145 

Ultimately, disentangling the evolutionary relationship between network architecture, 146 

mutational robustness, and mutational target is an empirical enterprise, specific to the system of 147 

interest.  As a first step, it is necessary to establish the relationship between network 148 

architecture (e.g., topology) and the rate of accumulation of genetic variance under MA 149 

conditions.  If a general relationship emerges, targeted top-down experiments can then be 150 

employed to dissect the relationship in more mechanistic detail.   151 

In addition to the relationship between metabolite centrality and mutational variance, we 152 

are also interested in the relationship between network topology and the mutational correlation 153 

(rM) between pairs of metabolites (Figure 1c).  In principle, mutational correlations reflect 154 

pleiotropic relationships between genes underlying pairs of traits (but see below for caveats; 155 

[20]).  Genetic networks are often modular [21], consisting of groups of genes (modules) within 156 

which pleiotropy is strong and between which pleiotropy is weak [22].  Genetic modularity 157 

implies that mutational correlations will be negatively correlated with the length of the shortest 158 

path between network elements.  However, it is possible that the network of gene interactions 159 

underlying metabolic regulation is not tightly correlated with the metabolic network itself, e.g., if 160 

trans acting regulation predominates.  161 

Here we report results from a long-term MA experiment in the nematode Caenorhabditis 162 

elegans, in which replicate MA lines derived from a genetically homogeneous common ancestor 163 

(G0) were allowed to evolve under minimally effective selection (Ne≈1) for approximately 250 164 

generations (Figure 1a).  We previously reported estimates from these MA lines of two key 165 

quantitative genetic parameters by which the cumulative effects of mutation can be quantified: 166 

the per-generation change in the trait mean (the mutational bias, ΔM) and the per-generation 167 

increase in genetic variation (the mutational variance, VM) for the standing pools of 29 168 
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metabolites [23]; Supplementary Table S1.  In this report, we interpret those results, and new 169 

estimates of mutational correlations (rM), in the context of the topology of the C. elegans 170 

metabolic network.   171 

          172 

Results and Discussion 173 

Representation of the Metabolic Network – The metabolic network of C. elegans was estimated 174 

in two ways: (i) by the method of Ma and Zeng [24; MZ],and (ii) by the method of Yilmaz and 175 

Walhout [25; YW].  Details of the network construction are given in section I of the Methods; 176 

data are presented in Supplementary Appendix A1.  For the set of metabolites included (see 177 

Methods), MZ and YW give nearly identical results.  In the few cases in which there is a 178 

discrepancy (~1%; Supplementary Table S2), we use the MZ network, for reasons we explain in 179 

the Methods.  The resulting network is a directed graph including 646 metabolites, with 1203 180 

reactions connecting nearly all metabolites (Figure 2).   181 

Properties of networks can be quantified in many ways, and different measures of 182 

centrality capture different features of network importance (Table 1).  We did not have a strong 183 

prior hypothesis about which specific measure(s) of centrality would prove most informative in 184 

terms of a relationship with ΔM and/or VM.  Therefore, we assessed the relationship between 185 

mutational properties and several measures of network centrality: betweenness, closeness, and 186 

degree centrality, in- and out-degree, and core number (depicted in Figure 3).  These 187 

parameters are all positively correlated.  Definitions of the parameters are given in Table 1; 188 

correlations between the parameters are included in Table 2.  For each of the six parameters, 189 

we calculated Spearman's correlation ρ between mutational statistics and the network 190 

parameter associated with the metabolite.  The strict experiment-wide 5% significance level for 191 

these correlations is approximately P<0.002 (α=0.05/[6 network parameters x 4 mutational 192 

parameters]). 193 
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Mutational Parameters – Details of the MA experiment are reported in [26] and outlined in 194 

section II of the Methods.  The experimental protocol by which metabolite concentrations were 195 

measured is reported in [23] and outlined in section III of the Methods; data are archived in 196 

Dryad at http://dx.doi.org/10.5061/dryad.2dn09/1.  For each of the 29 metabolites, the 197 

cumulative effects of mutation are summarized by the mutational bias (ΔM), and the mutational 198 

variance (VM).  For a trait z, ΔMz=µGαz, where µG is the genomic mutation rate and αz is the 199 

average effect of a mutation on the trait; VM=µG��
� [27, p. 329].  Details of the estimation of 200 

mutational parameters are given in section IV of the Methods.   201 

Comparisons of variation among traits or groups require that the variance be measured 202 

on a common scale.  VM is commonly scaled either relative to the trait mean, in which case VM is 203 

the squared coefficient of variation and is often designated IM, or relative to the residual 204 

variance, VE; VM/VE is the mutational heritability, ��
� .  IM and ��

�  have different statistical 205 

properties and evolutionary interpretations [28], so we report both.  IM and IE are standardized 206 

relative to the mean of the MA lines.    207 

Network centrality and sensitivity to mutation –  208 

(i) Mutational bias (ΔM).  It is reasonable to expect that metabolite concentrations are under 209 

some degree of stabilizing selection, in which case sufficiently large changes in either direction 210 

are deleterious.  Neither ΔM nor |ΔM| showed a clear association with any measure of network 211 

centrality (Table 1).  Four metabolites (adenosine, nicotinamide, succinic acid, and xanthine) 212 

have atypically large, positive ΔM (Supplementary Table S1), among the largest values of ΔM 213 

ever reported for any trait [23], and those four metabolites all have core number k = 2 (P = 0.03, 214 

exact probability).  However, the large ΔM for those traits is probably an artifact of scaling, 215 

because those four metabolites had very low concentrations (near zero) in the G0 ancestor.       216 

(ii) Mutational variance (VM). We report VM scaled in two ways: relative to the trait mean (IM) and 217 

relative to the residual ("environmental") variance, ��
� .  Of the twelve correlations (two measures 218 

of mutational variance � six measures of centrality), the correlation with betweenness centrality 219 
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is very slightly negative; the rest are positive (Table 2), although only the correlation between 220 

core number and ��
�  approaches statistical significance at the experiment-wide 5% level 221 

(ρ=0.48, P<0.008).  The 29 metabolites in our data set have core number of either one or two 222 

(the maximum core number of any metabolite in the network is two).  Mean ��
�  of metabolites of 223 

core number = 2 is approximately 2.5X greater than that of metabolites of core number = 1 224 

(0.002 vs. 0.0008).  To put that result in context, the average ��
�  for a wide variety of traits in a 225 

wide variety of organisms is on the order of 0.001 [28].       226 

Core number is a discrete interval variable, whereas the other measures of network 227 

centrality are continuous variables.  As an alternative analysis, we performed ordinary linear 228 

regression (equivalent to analysis of variance in the case of a binary categorical variable) of 229 

log(��
� ) on core number; the results are similar to the rank correlation (F1,27 = 10.53, P<0.0032; 230 

Pearson's r = 0.53). 231 

The conservative interpretation of these results is that there is no relationship between 232 

network centrality and any measure of mutational sensitivity.  If so, there are various possible 233 

explanations.  For example, it may be that mutational target and mutational robustness 234 

effectively cancel each other out.  More worryingly, it may be that the representation of the C. 235 

elegans metabolic network used here misrepresents the network as it actually exists in vivo.  236 

The topology of the dynamic metabolic network of the bacterium E. coli varies depending on the 237 

environmental context [29], and it seems intuitive that the greater spatiotemporal complexity 238 

inherent to a multicellular organism would exacerbate that problem.  More mundanely, it may be 239 

that the sampling variance associated with the relatively small number of mutations and MA 240 

lines drowns out any signal of an association.  Or it may be that there simply is no functional 241 

relationship between the centrality of a metabolite in a network and its sensitivity to mutation.   242 

The liberal interpretation is that the near-significant correlation of mutational heritability 243 

with core number represents a weak signal emerging from a small sample from a noisy system. 244 
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Quantifying centrality in terms of core number is analogous to categorizing a set of size 245 

measurements into "small" and "large": power is increased, at the cost of losing the ability to 246 

discriminate between more subtle differences. 247 

The raw mutational variance, VM, appears in the numerator of both ��
�  and IM; the 248 

difference lies in the denominator, which is the residual variance VE for ��
�  and the square of the 249 

trait mean for IM.  For some replicates of some metabolites, estimated metabolite concentrations 250 

were atypically low and near zero; IM is more sensitive to low outliers than is ��
� .  However, the 251 

correlation between IM and the trait mean is small (r = -0.11) and not significantly different from 252 

zero.  Alternatively, it is possible that VM does not vary consistently with metabolite centrality, 253 

but that metabolites with low centrality (core number = 1) are more susceptible to random 254 

microenvironmental variation ("noise") than are metabolites with high centrality (core number = 255 

2), in which case VE would be greater for metabolites with low centrality and ��
�  would be lower.  256 

Unfortunately, the variance is correlated with the trait mean, so the least biased way to address 257 

that question is by comparing the residual squared coefficients of variation, IE.  There is no hint 258 

of correlation between core number and IE (ρ=0.025, P>0.89; Table 2), and IE is uncorrelated 259 

with the trait mean (r = -0.12, P>0.54), so the association between ��
�  and core number cannot 260 

obviously be attributed to differential sensitivity to random noise.  261 

The relationship between mutational correlation (rM) and shortest path length – In an MA 262 

experiment, the cumulative effects of mutations on a pair of traits i and j may covary for two, 263 

nonexclusive reasons [20].  More interestingly, individual mutations may have consistently 264 

pleiotropic effects, such that mutations that affect trait i also affect trait j in a consistent way.  265 

Less interestingly, but unavoidably, individual MA lines will have accumulated different numbers 266 

of mutations, and if mutations have consistently directional effects, as would be expected for 267 

traits correlated with fitness, lines with more mutations will have more extreme trait values than 268 

lines with fewer mutations, even in the absence of consistent pleiotropy.  Estes et al. [20] 269 
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simulated the sampling process in C. elegans MA lines with mutational properties derived from 270 

empirical estimates from a variety of traits and concluded that sampling is not likely to lead to 271 

large absolute mutational correlations in the absence of consistent pleiotropy (|rM| ≤ 0.25).  272 

 Ideally, we would like to estimate the full mutational (co)variance matrix, M, from the joint 273 

estimate of the among-line (co)variance matrix. However, with 25 traits, there are (25x26)/2 = 274 

325 covariances, and with only 43 MA lines, there is insufficient information to jointly estimate 275 

the restricted maximum likelihood of the full M matrix.  To proceed, we calculated mutational 276 

correlations from pairwise REML estimates of the among-line (co)variances, i.e., �� �277 

������,
�

�����������
�
 [30, 31].   Pairwise estimates of rM are shown in Supplementary Table S3.  To 278 

assess the extent to which the pairwise correlations are sensitive to the underlying covariance 279 

structure, we devised a heuristic bootstrap analysis.  For a random subset of 12 of the 300 pairs 280 

of traits, we randomly sampled six of the remaining 23 traits without replacement and estimated 281 

rM between the two focal traits from the joint REML among-line (co)variance matrix.  For each of 282 

the 12 pairs of focal traits, we repeated the analysis 100 times.   283 

There is a technical caveat to the preceding bootstrap analysis.  Resampling statistics 284 

are predicated on the assumption that the variables are exchangeable [32], which metabolites 285 

are not.  For that reason, we do not present confidence intervals on the resampled correlations, 286 

only the distributions.  However, we believe that the analysis provides a meaningful heuristic by 287 

which the sensitivity of the pairwise correlations to the underlying covariance structure can be 288 

assessed.   289 

Distributions of resampled correlations are shown in Supplementary Figure S2.  In every 290 

case the point estimate of rM falls on the mode of the distribution of resampled correlations, and 291 

in 11 of the 12 cases, the median of the resampled distribution is very close to the point 292 

estimate of rM.  However, in six of the 12 cases, some fraction of the resampled distribution falls 293 

outside two standard errors of the point estimate.  The most important point that the resampling 294 
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analysis reveals is this: given that 29 metabolites encompass only a small fraction of the total 295 

metabolome of C. elegans (<5%), even had we been able to estimate the joint likelihood of the 296 

full 29x30/2 M-matrix, the true covariance relationships among those 29 metabolites could 297 

conceivably be quite different from those estimated from the data.         298 

Correlations are properties of pairs of variables, so we expect a priori that network 299 

parameters that apply to pairs of elements are more likely to contain information about the 300 

mutational correlation between a pair of metabolites than will the pairwise average of a 301 

parameter that applies to individual elements of a network.  The shortest path length is the 302 

simplest network property that describes the relationship between two nodes, although since the 303 

metabolic network is directed, the shortest path from element i to element j is not necessarily 304 

the same as the shortest path from j to i.  For each pair of metabolites i and j, we calculated the 305 

shortest path length from i to j and from j to i, without repeated walks (Supplementary Table S4).  306 

We then calculated Spearman's correlation ρ between the mutational correlation rM and the 307 

shortest path length. 308 

Statistical assessment of the correlation between mutational correlations (rM) and 309 

shortest path length presents a problem of nonindependence, for two reasons.  First, all 310 

correlations including the same variable are non-independent.  Second, even though the 311 

mutational correlation between metabolites i and j is the same as the correlation between j and 312 

i, the shortest path lengths need not be the same, and moreover, the path from i to j may exist 313 

whereas the path from j to i may not.  To account for non-independence of the data, we devised 314 

a parametric bootstrap procedure; details are given in section V of the Methods.  Three 315 

metabolites (L-tryptophan, L-lysine, and Pantothenate) lie outside of the great strong component 316 

of the network [33] and are omitted from the analysis.     317 

There is a weak, but significant, negative correlation between rM and the shortest path 318 

length between the two metabolites (ρ = -0.128, two-tailed P<0.03; Supplementary Figure S1a), 319 

whereas |rM| is not significantly correlated with shortest path length (ρ = -0.0058, two-tailed 320 
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P>0.45; Supplementary Figure S1b).  The correlation between rM and the shortest path in the 321 

undirected network is similar to the correlation between rM and the shortest path in the directed 322 

network (ρ = -0.105, two-tailed P>0.10; Supplementary Figure S1c).     323 

An intuitive possible cause of the weak negative association between shortest path 324 

length and mutational correlation would be if a mutation that perturbs a metabolic pathway 325 

toward the beginning of the pathway has effects that propagate downstream in the same 326 

pathway, but the effect of the perturbation attenuates.  The attenuation could be due either to 327 

random noise or to the effects of other inputs into the pathway downstream from the 328 

perturbation (or both).  The net effect would be a characteristic pathway length past which the 329 

mutational effects on two metabolites are uncorrelated, leading to an overall negative correlation 330 

between rM and path length.  The finding that the correlations between rM and the shortest path 331 

length in the directed and undirected network are very similar reinforces that conclusion.  The 332 

negative correlation between rM and shortest path length is reminiscent of a finding from 333 

Arabidopsis, in which sets of metabolites significantly altered by single random gene knockouts 334 

are closer in the global metabolic network than expected by chance [34].   335 

Conclusions and Future Directions 336 

The proximate goal of this study was to find out if there are topological properties of the C. 337 

elegans metabolic network (node centrality, shortest path length) that are correlated with a set 338 

of statistical descriptions of the cumulative effects of spontaneous mutations (ΔM, VM, rM).  339 

Ultimately, we hope that a deeper understanding of those mathematical relationships will shed 340 

light on the mechanistic biology of the organism.  Bearing in mind the statistical fragility of the 341 

results, we conclude: 342 

(i) Network centrality may be associated with mutational sensitivity (VM), it is not associated with 343 

mutational robustness (1/VM).  If the liberal interpretation of the results is true, the most plausible 344 

explanation is that metabolites that are central in the network present a larger mutational target 345 

than do metabolites that peripherally located.  However, although 1/VM is a meaningful measure 346 
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of mutational robustness [35], it does not necessarily follow that highly-connected metabolites 347 

are therefore more robust to the effects of individual mutations [19, 36].         348 

(ii) Pleiotropic effects of mutations affecting the metabolome are predominantly local, as 349 

evidenced by the significant negative correlation between shortest path length between a pair of 350 

metabolites and the mutational correlation, rM, between that pair of metabolites.  That result is 351 

not surprising in hindsight, but the weakness of the correlation suggests that there are other 352 

important factors that underlie pleiotropy beyond network proximity.    353 

  To advance understanding of the mutability of the C. elegans metabolic network, three 354 

things are needed.  First, it will be important to cover a larger fraction of the metabolic network.  355 

Untargeted mass spectrometry of cultures of C. elegans reveals many thousands of features 356 

(Art Edison, personal communication); 29 metabolites are only the tip of a large iceberg.  For 357 

example, our intuition leads us to believe that the mutability of a metabolite will depend more on 358 

its in-degree (mathematically, the number of edges leading into a node in a directed graph; 359 

biochemically, the number of reactions in which the metabolite is a product) than its out-degree.  360 

The point-estimate of the correlation of ��
�  with in-degree is twice that of the correlation of ��

�  361 

with out-degree (Table 2), although the difference is not statistically significant.    362 

Second, to more precisely partition mutational (co)variance into within- and among-line 363 

components, more MA lines are needed.  We estimate that each MA line carries about 80 364 

unique mutations (see Methods), thus the mutational (co)variance is the result of about 3500 365 

total mutations, distributed among 43 MA lines.  The MA lines were a preexisting resource, and 366 

the sample size was predetermined.  It is encouraging that we were able to detect significant 367 

mutational variance for 25/29 metabolites (Supplementary Table S1b), but only 14% (42/300) of 368 

pairwise mutational correlations are significantly different from zero at the experiment-wide 5% 369 

significance level, roughly corresponding to |rM|>0.5 (Supplementary Table S3); 18 of the 42 370 

significant mutational correlations are not significantly different from |rM| = 1.  It remains 371 

uncertain how sensitive estimates of mutational correlations are to the underlying covariance 372 
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structure of the metabolome.  It also remains to be seen if the mutability of specific features of 373 

metabolic networks are genotype or species-specific, and the extent to which mutability 374 

depends on environmental context. 375 

Third, it will be important to quantify metabolites (static concentrations and fluxes) with 376 

more precision.  The metabolite data analyzed in this study were collected from large cultures 377 

(n>10,000 individuals) of approximately age-synchronized worms, and were normalized relative 378 

to an external quantitation standard [23].  Ideally, one would like to characterize the 379 

metabolomes of single individuals, assayed at the identical stage of development.  That is not 380 

yet practical with C. elegans, although it is possible to quantify hundreds of metabolites from a 381 

sample of 1000 individuals [37], and preliminary studies suggest it will soon be possible to 382 

reduce the number of individuals to 100 or even ten (M. Witting, personal communication).  383 

Minimizing the number of individuals in a sample is important for two reasons; (1) the smaller 384 

the sample, the easier it is to be certain the individuals are closely synchronized with respect to 385 

developmental stage, and (2) knowing the exact number of individuals in a sample makes 386 

normalization relative to an external standard more interpretable.  Ideally, data would be 387 

normalized relative to both an external standard and an internal standard (e.g., total protein; 388 

[30]). 389 

This study provides an initial assessment of the relationship between mutation and 390 

metabolic network architecture.  To begin to uncover the relationship between metabolic 391 

architecture and natural selection, the next step is to repeat these analyses with respect to the 392 

standing genetic variation (VG).  There is some reason to think that more centrally-positioned 393 

metabolites will be more evolutionarily constrained (i.e., under stronger purifying selection) than 394 

peripheral metabolites [8], in which case the ratio of the mutational variance to the standing 395 

genetic variance (VM/VG) will increase with increasing centrality.    396 

 397 

Methods and Materials: 398 
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I. Metabolic Network:  399 

The metabolic network of C. elegans was estimated in two ways: (i) by the static, purely 400 

graphical method of Ma and Zeng ([24]; updated at http://www.ibiodesign.net/kneva/; we refer to 401 

this method as MZ), and (ii) by the dynamical, flux-balance analysis (FBA) method of Yilmaz 402 

and Walhout ([25]; http://wormflux.umassmed.edu/; we refer to this method as YW).  403 

Subnetworks that do not contain at least one of the 29 metabolites were excluded from 404 

downstream analyses.  The MZ method  includes several ad hoc criteria for retaining or omitting 405 

specific metabolites from the analysis (criteria are listed on p. 272 of [24]).  The set of reactions 406 

in the MZ and YW networks are approximately 99% congruent; in the few cases in which there 407 

is a discrepancy (listed in Supplementary Table S2), we chose to use the MZ network because 408 

we used the MZ criteria for categorizing currency metabolites (defined below).  409 

To begin, the 29 metabolites of interest were identified and used as starting sites for the 410 

network. Next, all forward and reverse reactions stemming from the 29 metabolites were 411 

incorporated into the subnetwork until all reactions either looped back to the starting point or 412 

reached an endpoint. Currency metabolites were removed following the MZ criteria (a currency 413 

metabolite is roughly defined as a molecule such as water, proton, ATP, NADH, etc., that 414 

appears in a large fraction of metabolic reactions but is not itself an intermediate in an 415 

enzymatic pathway).  Metabolic networks in which currency metabolites are included have much 416 

shorter paths than networks in which they are excluded.  When currency metabolites are 417 

included in the network reported here, all shortest paths are reduced to no more than three 418 

steps, and most shortest paths consist of one or two steps.  The biological relevance of path 419 

length when currency metabolites are included in the network is unclear [24].         420 

A graphical representation of the network was constructed with the Pajek software 421 

package (http://mrvar.fdv.uni-lj.si/pajek/) and imported into the networkX Python package [38], 422 

which was used to generate network statistics.  Proper importation from Pajek to networkX was 423 

verified by visual inspection. 424 
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II. Mutation Accumulation Lines 425 

A full description of the construction and propagation of the mutation accumulation (MA) lines is 426 

given in [26]. Briefly, 100 replicate MA lines were initiated from a nearly-isogenic population of 427 

N2-strain C. elegans and propagated by single-hermaphrodite descent at four-day (one 428 

generation) intervals for approximately 250 generations.  The long-term Ne of the MA lines is 429 

very close to one, which means that mutations with a selective effect less than about 25% are 430 

effectively neutral [39].  The common ancestor of the MA lines ("G0") was cryopreserved at the 431 

outset of the experiment; MA lines were cryopreserved upon completion of the MA phase of the 432 

experiment.  Based on extensive whole-genome sequencing [40; A. Saxena and CFB, in prep], 433 

we estimate that each MA line carries about 80 mutant alleles in the homozygous state.   434 

At the time the metabolomics experiments reported in [23] were initiated, approximately 435 

70 of the 100 MA lines remained extant, of which 43 ultimately provided sufficient material for 436 

Gas Chromatography/Mass Spectrometry (GC-MS).  Each MA line was initially replicated five-437 

fold, although not all replicates provided data of sufficient quality to include in subsequent 438 

analyses; the mean number of replicates included per MA line is 3.9 (range = 2 to 5).  The G0 439 

ancestor was replicated nine times.  However, the G0 ancestor was not subdivided into 440 

"pseudolines" [41], which means that inferences about mutational variances and covariances 441 

are necessarily predicated on the assumption that the among-line (co)variance of the ancestor 442 

is zero. Each replicate consisted of age-synchronized young-adult stage worms taken from a 443 

single 10 cm agar plate.    444 

III. Metabolomics: 445 

Details of the extraction and quantification of metabolites are given in [23]. Briefly, samples were 446 

analyzed using an Agilent 5975c quadrupole mass spectrometer with a 7890 gas 447 

chromatograph.   Metabolites were identified by comparison of GC-MS features to the Fiehn 448 

Library [42] using the AMDIS deconvolution software [43], followed by reintegration of peaks 449 

using the GAVIN Matlab script [44].  Metabolites were quantified and normalized relative to an 450 
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external quantitation standard.  34 metabolites were identified, of which 29 were ultimately 451 

included in the analyses.  Normalized metabolite data are archived in Dryad 452 

(http://dx.doi.org/10.5061/dryad.2dn09). 453 

IV. Quantitative Genetic Analyses: There are three quantitative genetic parameters of interest: 454 

(i) the per-generation proportional change in the trait mean, referred to as the mutational bias, 455 

ΔM; (ii) the per-generation increase in the genetic variance, referred to as the mutational 456 

variance, VM; and (iii) the genetic correlation between the cumulative effects of mutations 457 

affecting pairs of traits, the mutational correlation, rM.  Details of the calculations of ΔM and VM 458 

are reported in [23]; we reprise the basic calculations here.   459 

(i) Mutational bias (ΔM) – The mutational bias is the change in the trait mean due to the 460 

cumulative effects of all mutations accrued over one generation.  ΔMz=µGαz, where µG is the per-461 

genome mutation rate and αz is the average effect of a mutation on trait z, and is calculated as 462 

∆�� �
��������
����

, where �	� and �	�represent the MA and ancestral (G0) trait means and t is the 463 

number of generations of MA. 464 

(ii) Mutational variance (VM) - The mutational variance is the increase in the genetic variance 465 

due to the cumulative effects of all mutations accrued over one generation.  VM=µG��
� and is 466 

calculated as 
� � ∆
� �
��,�����,��

��
, where 
�,� is the variance among MA lines, 
�,�� is the 467 

among-line variance in the G0 ancestor, and t is the number of generations of MA [27, p. 330].  468 

In this study, we must assume that VL,G0 = 0. 469 

(iii) Mutational correlation, rM – Pairwise mutational correlations were calculated from the 470 

among-line components of (co)variance, which were estimated by REML as implemented in the 471 

in the MIXED procedure of SAS v. 9.4, following JD Fry [45].  Statistical significance of 472 

individual correlations was assessed by Z-test, with a global 5% significance criterion of 473 

approximately P<0.000167.    474 
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V. Analysis of the correlation between mutational correlation (rM) and shortest path length - 475 

Each off-diagonal element of the 24x24 mutational correlation matrix (rij=rji) was associated with 476 

a random shortest path length sampled with probability equal to its frequency in the empirical 477 

distribution of shortest path lengths between all metabolites included in the analysis.  Next, we 478 

calculated the Spearman's correlation ρ between rM and the shortest path length.  The 479 

procedure was repeated 10,000 times to generate an empirical distribution of ρ, to which the 480 

observed ρ can be compared.  This comparison was done for the raw mutational correlation, rM, 481 

the absolute value, |rM|, and between rM and the shortest path length in the undirected network 482 

(i.e., the shorter of the two paths between metabolites i and j).   483 

  484 
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Figure Legends 

 

Figure 1. (a) Schematic diagram of the mutation accumulation (MA) experiment.  An MA 

experiment is simply a pedigree.  The genetically homogeneous ancestral line (G0) was 

subdivided into 100 MA lines, of which 43 are included in this study.  Lines were allowed to 

accumulate mutations for t=250 generations.  At each generation, lines were propagated by a 

single randomly chosen hermaphrodite (N=1).  Mutations, represented as colored blocks within 

a homologous pair of chromosomes, arise initially as heterozygotes and are either lost or fixed 

over the course of the experiment.  At the culmination of the experiment, each line has 

accumulated its own unique set of mutations.  MA lines were compared to the cryopreserved G0 

ancestor, which is wild-type at all loci.  After [12]. (b) Expected outcome of an MA experiment.  

As mutations accumulate over time, relative fitness (solid dark blue line) declines from its initial 

value of 1 at rate ΔM per generation and the genetic component of variance (solid orange line) 

increases from its initial value of 0 at rate VM per generation.  Trait X (light blue dashed line) is 

positively correlated with fitness and declines with MA; trait Y (green dashed line) is negatively 

correlated with fitness and increases with MA.  Trajectories are depicted as linear, but they need 

not be. (c) Accumulation of mutational covariance in an MA experiment.  Coordinate axes 

represent two traits, X and Y.  Concentric ellipses show the increase in genetic covariance with 

MA, beginning from the initial value of zero; the orientation of the ellipses represents the linear 

relationship between pleiotropic mutational effects on the two traits. 

 

Figure 2. Graphical depiction of the metabolic network including all 29 metabolites.  Pink nodes 

represent included metabolites with core number = 1, red nodes represent included metabolites 

with core number = 2.  Gray nodes represent metabolites with which the included 29 

metabolites directly interact.  Metabolite identification numbers are: 1, L-Serine; 2, Glycine; 3, 

Nicotinate; 4, Succinate; 5, Uracil; 6, Fumarate; 7, L-Methionine; 8, L-Alanine. 9, L-Aspartate; 
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10, L-3-Amino-isobutanoate; 11, trans-4-Hydroxy-L-proline; 12, (S) – Malate; 13, 5-Oxoproline; 

14, L-Glutamate; 15, L-Phenylalanine; `6, L-Asparagine; 17, D-Ribose; 18, Putrescine; 19, 

Citrate; 20, Adenine; 21, L-Lysine; 22, L-Tyrosine; 23, Pantothenate; 24, Xanthine; 25, 

Hexadecanoic acid; 26, Urate; 27, L-Tryptophan; 28, Adenosine; 29, Alpha;alpha-Trehalose. 

 

Figure 3. Schematic depiction of the k-cores of a graph.  The k-core of a graph is the largest 

subgraph that contains nodes of degree at least k.  The colored balls represent nodes in a 

network and the black lines represent connecting edges.  Each red ball in the darkest gray area 

has core number k=3; note that each node with k=3 is connected to at least three other nodes.  

After Batagelj and Zaveršnik [46]. 
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Parameter Heuristic Definition Formal Definition 

In Degree (IN°), deg+( �) The number of incoming edges to node � in a 

directed graph. 

self-explanatory 

Out Degree (OUT°), deg−( �) The number of outgoing edges from node � in a 

directed graph. 

self-explanatory 

Shortest Path Length, ���, �� Shortest distance from node � to another node � 

with no repeated walks 

self-explanatory 

Betweenness Centrality (BET), 

cB(�) 

Betweenness centrality of node � is the sum of 

the fraction of all-pairs shortest paths that pass 

through �.  The greater cB(�), the greater the 

fraction of shortest paths that pass through node 

�.  

�����

����������
, where �	��� 	 ∑


��,|��

��,��,�� , V is 

the set of nodes, ���, � is the number of 

shortest paths from node s to node t, 

���, |�� is the number of paths from s to t 

that pass through node �, and n is the 

number of nodes in the graph.  The 

denominator (n-1)(n-2) is the normalization 

factor for a directed graph that scales cB(�) 

between 0 and 1. 

Closeness Centrality (CLO), Closeness centrality of node � is the reciprocal of ���� 	
���

∑ ���,�����
���

, where n is the number of 
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Parameter Heuristic Definition Formal Definition 

C(�) the sum of the shortest path lengths to all n-1 

other nodes, normalized by the sum of minimum 

possible distances n-1.  The greater C(�), the 

closer � is to other nodes. 

nodes and ���, �� is the shortest path 

distance between � and �. 

Degree Centrality (DEG), CD(�) Degree centrality of node � is the fraction of 

nodes in the network that node � is connected to. 

����� 	
���������������

���
, where n is the 

number of nodes in the network. 

Core Number (CORE) A k-core is the largest subgraph that contains 

nodes of at least degree k.  The core number of 

node � is the largest value k of a k-core 

containing node �.  

Calculated using the algorithm of Batagelj 

and Zaversnik (2011). 

Mutational Bias (ΔM) Per-generation rate of change of the trait mean in 

an MA experiment.  Equivalent to the product of 

the genome-wide mutation rate, µG, and the 

average effect of a mutation on the trait, α. 

∆�� 	
���	���

��


;  ���� and ���represent the MA 

and ancestral (G0) trait means and t is the 

number of generations of MA. 

Mutational Variance (VM) Per-generation rate of increase in genetic 

variance for a trait in an MA experiment.  

�� 	 ∆�� 	
��,�	���,


�
, where ��,�� is the 

variance among MA lines, ��,�� is the among-
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Parameter Heuristic Definition Formal Definition 

Equivalent to the product of the genome-wide 

mutation rate, µG, and the square of the average 

effect of a mutation on the trait, α2. 

line variance in the G0 ancestor, and t is the 

number of generations of MA 

Squared coefficient of variation 

(IM, IE) 

IM is the mutational variance (VM) scaled by the 

square of the trait mean, and provides a measure 

of the evolvability of a trait.  IE is the residual 

variance (VE) scaled in the same way.   

 

Mutational heritability (��
 ) Mutational variance (VM) scaled as a fraction of 

the residual variance (VE).  Provides a measure 

of the short-term response to selection on 

mutational variance. 

��
� 	

��

�!
 

Mutational correlation (rM) Genetic correlation between two traits in MA 

lines.  Provides an estimate of pleiotropic effects 

of new mutations. 

�� 	
"#���$,%�

&���$����%�
, where COVM is the 

mutational covariance and VM is the 

mutational variance. 

 

Table 1. Definitions of network parameters, following the documentation of NetworkX, v.1.11 (Hagberg et al. 2008) and quantitative 

genetic parameters.  Abbreviations of the parameters used in Table 2 follow the parameter name in parentheses in bold type.  
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 BTW CLO DEG IN° OUT° CORE ΔM |ΔM| IM IE ��
  

BTW  0.60 0.84 0.86 0.66 0.79 -0.009 (0.96) -0.055 (0.77) -0.007 (0.97) -0.122 (0.52) 0.128 (0.51) 

CLO   0.54 0.51 0.47 0.54 0.012 (0.94) 0.297 (0.11) 0.119 (0.53) 0.034 (0.86) 0.089 (0.64) 

DEG    0.88 0.92 0.83 0.038 (0.84) -0.078 (0.68) 0.178 (0.35) -0.062 (0.74) 0.218 (0.25) 

IN°     0.65 0.85 0.099 (0.60) 0.043 (0.82) 0.188 (0.32) 0.007 (0.97) 0.277 (0.14) 

OUT°      0.68 0.031 (0.87) -0.200 (0.29) 0.133 (0.49) -0.096 (0.62) 0.139 (0.47) 

CORE       0.245 (0.20) 0.104 (0.59) 0.298 (0.11) 0.025 (0.89) 0.481 (0.008) 

 

Table 2.  Spearman's rank correlation ρ between network parameters (rows/first five columns) and between network parameters and 

mutational parameters (rows/last four columns).  Abbreviations of network parameters are: BTW, betweenness centrality; CLO, 

closeness centrality; DEG, degree centrality; IN°, in-degree, OUT°, out-degree; CORE, core number.  Network parameters are 

defined mathematically and heuristically in Table 1.  Abbreviations of mutational parameters are: ΔM, per-generation change in the 

trait mean; |ΔM|, absolute value of ΔM; IM, squared mutational coefficient of variation; IE, squared residual coefficient of variation; ��
� , 

mutational heritability.  See text and Supplementary Table S1 for details of mutational parameters.  Uncorrected P-values of 

mutational parameters are given in parentheses. 
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Supplementary Figure S1 - Parametric bootstrap distributions of random correlations ρ between (a) rM and the shortest path length 

in the directed network, (b) |rM| and the shortest path length in the directed network, (c) rM and shortest path length in the undirected 

network (i.e., the shorter of the two path lengths between metabolites i and j in the directed network).  Red lines show the observed 

values of ρ, yellow lines show the 95% confidence interval of the distribution of the correlation between the mutational correlation and 

a random shortest path length drawn from the observed distribution of shortest path lengths.  See Methods for details. 
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Supplementary Figure S2.  Bootstrap distributions of mutational correlations (rM) calculated from the joint REML estimate of the 

among-line components of covariance from a pair of focal metabolites (listed at the top of each panel) and six other metabolites 

randomly sampled without replacement.  Each distribution is based on 100 resamples from the data.  Red lines show the observed 
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rM, blue lines show the median of the resampled values, yellow lines show + two standard errors of the observed rM.  Details of the 

bootstrap analysis are given in the Methods. 
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Metabolite ID # BTW CLO DEG IN° OUT° CORE 

trans-4-Hydroxy-L-proline  11 0.004482 0.002761 0.004658 2 1 1 

L-3-Amino-isobutanoate 10 0 0 0.001553 1 0 1 

Adenine 20 0.003335 0.032205 0.009317 2 4 2 

Adenosine 28 0.005516 0.032198 0.009317 4 2 2 

L-Alanine 8 0 0 0.001553 1 0 1 

L-Asparagine 16 0.002236 0.052579 0.004658 1 2 1 

L-Aspartate 9 0.055054 0.056756 0.012422 3 5 2 

Citrate 19 0.171567 0.058576 0.012422 4 4 2 

Fumarate 6 0.028317 0.053784 0.007764 3 2 2 

L-Glutamate 14 0.036659 0.048283 0.020186 5 8 2 

Glycine 2 0.02661 0.044377 0.017081 5 6 2 

L-Lysine 21 0 0.004658 0.004658 0 3 1 

(S) – Malate 12 0.029016 0.057446 0.007764 2 3 2 

L-Methionine 7 7.49E-05 0.004969 0.007764 2 3 2 

Nicotinate 3 0.00221 0.046122 0.006211 2 2 2 

Hexadecanoic acid 25 0.066162 0.019529 0.01087 2 5 2 
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Supplementary Table S1(a), above. Network parameters for the 29 metabolites.  Column headings are the abbreviations for the 

network parameters given in Tables 1 and 2.  ID# is the number of the metabolite in the network shown in Figure 1. 

Metabolite ID # BTW CLO DEG In° Out° Core 

Pantothenate 23 0 0.001553 0.001553 0 1 1 

L-Phenylalanine 15 0.001137 0.040279 0.009317 1 5 1 

Putrescine 18 0.003362 0.002795 0.003106 1 1 1 

5-Oxoproline 13 0 0.045387 0.001553 0 1 1 

D-Ribose 17 0 0.044346 0.001553 0 1 1 

L-Serine 1 0.034582 0.057313 0.017081 5 6 2 

Succinate  4 0.02215 0.051067 0.01087 4 3 2 

Alpha,alpha-Trehalose 29 0 0.042179 0.001553 0 1 1 

L-Tryptophan 27 0 0.004969 0.004658 0 3 1 

L-Tyrosine 22 0.004518 0.041547 0.012422 3 5 2 

Uracil 5 0.078303 0.044365 0.01087 4 3 2 

Urate 26 0 0.029702 0.003106 1 1 1 

Xanthine 24 0.004393 0.031003 0.01087 3 4 2 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM ��
  (x 103) 

trans-4-Hydroxy-L-

proline  

 

11 228.6 

(10.4) 

149.4 

(14.5) 

0.14 

(0.02) 

1058.0 

(349.0) 

2.12 

(0.70) 

3577.4 

(1052.3) 

9.45E-05 0.59 

(0.26) 

L-3-Amino-

isobutanoate 

10 20.0 

(3.1) 

14.5 

(0.8) 

-0.11 

(0.06) 

3.58 

(4.32) 

0.007 

(0.009) 

95.0 

(9.86) 

3.43E-05 0.08 

(0.09) 

Adenine 20 11.3 

(1.4) 

13.2 

(0.8) 

0.07 

(0.06) 

15.4 

(4.4) 

0.03 

(0.009) 

28.0 

(4.02) 

0.000178 1.10  

(0.35) 

Adenosine 28 2.1 

(0.7) 

26.0 

(3.4) 

4.39 

(0.62) 

407.7 

(78.2) 

0.82 

(0.16) 

186.5 

(75.9) 

0.001261 4.37 

(1.97) 

L-Alanine 8 5.5 

(1.5) 

6.1 

(0.6) 

0.04 

(0.12) 

5.48 

(3.43) 

0.011 

(0.007) 

30.3 

(5.0) 

0.000278 0.36 

(0.23) 

L-Asparagine 16 3.7 

(1.3) 

1.2 

(0.1) 

-0.27 

(0.14) 

0.11 

(0.15) 

0.0002 

(0.0003) 

2.4 

(0.4) 

0.000135 0.09 

(0.13) 

L-Aspartate 9 37.7 

(2.7) 

19.0 

(1.2) 

-0.20 

(0.03) 

48.2 

(19.2) 

0.096 

(0.038) 

60.2 

(18.2) 

0.00026 1.60 

(0.80) 

Citrate 19 11.4 

(2.2) 

5.7.1 

(0.5) 

-0.16 

(0.08) 

4.56 

(1.54) 

0.009 

(0.003) 

19.8 

(6.8) 

0.000182 0.46 

(0.22) 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM ��
  (x 103) 

Fumarate 6 33.0 

(2.1) 

25.5 

(1.2) 

-0.09 

(0.03) 

35.1 

(9.2) 

0.070 

(0.018) 

84.1 

(26.1) 

0.000109 0.83 

(0.34) 

L-Glutamate 14 115.2 

(24.5) 

93.2 

(6.3) 

-0.08 

(0.09) 

973.0 

(556.8) 

1.94 

(1.11) 

2703.7 

(556.9) 

0.000214 0.72 

(0.44) 

Glycine 2 47.1 

(5.3) 

52.8 

(4.5) 

0.05 

(0.06) 

606.7 

(411.6) 

1.21 

(0.82) 

939.3 

(323.7) 

0.000393 1.29 

(0.98) 

L-Lysine 21 6.7 

(2.6) 

5.0 

(0.6) 

-0.10 

(0.16) 

4.43 

(3.99) 

0.009 

(0.008) 

38.4 

(7.01) 

0.00032 0.23 

(0.21) 

(S) – Malate 12 44.7 

(4.0) 

71.9 

(4.2) 

0.24 

(0.05) 

397.8 

(135.4) 

0.80 

(0.27) 

1179.7 

(276.2) 

0.000157 0.67 

(0.28) 

L-Methionine 7 47.9 

(4.1) 

32.2 

(1.7) 

-0.13 

(0.04) 

101.2 

(20.5) 

0.202 

(0.041) 

72.4 

(13.4) 

0.000197 2.79 

(0.77) 

Nicotinate 3 4.9 

(0.6) 

33.0 

(3.5) 

2.29 

(0.29) 

473.9 

(88.1) 

0.95 

(0.18) 

120.3 

(21.4) 

0.000863 7.88 

(2.03) 

Hexadecanoic acid 25 238.4 

(22.3) 

265.1 

(15.0) 

-0.03 

(0.04) 

6712.9 

(1579.6) 

13.43 

(3.16) 

9579.1 

(2985.7) 

0.000194 1.40 

(0.55) 
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Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM ��
  (x 103) 

Pantothenate 23 22.9 

(0.8) 

14.4 

(0.6) 

-0.15 

(0.02) 

12.8 

3.2 

0.026 

(0.006) 

16.0 

(3.17) 

0.000123 1.60 

(0.51) 

L-Phenylalanine 15 87.4 

(7.9) 

94.4 

(6.3) 

0.03 

(0.05) 

678.9 

(263.6) 

1.36 

(0.53) 

3835.0 

(810.3) 

0.000155 0.35 

(0.16) 

Putrescine 18 73.7 

(15.3) 

57.4 

(3.4) 

-0.09 

(0.08) 

70.9 

(70.6) 

0.14 

(0.14) 

1672.3 

(193.2) 

4.15E-05 0.08 

(0.08) 

5-Oxoproline 13 701.6 

(40.0) 

528.2 

(22.2) 

-0.10 

(0.03) 

7275.6 

(3649.0) 

14.56 

(7.30) 

52146.6 

(13671.9) 

5.24E-05 0.28 

(0.16) 

D-Ribose 17 5.6 

(0.8) 

13.3 

(1.5) 

0.51 

(0.11) 

76.3 

(22.8) 

0.15 

(0.05) 

66.3 

(27.2) 

0.000841 2.30 

(1.17) 

L-Serine 1 130.0 

(49.8) 

85.8 

(3.7) 

-0.14 

(0.15) 

373.7 

(117.7) 

0.75 

(0.24) 

1221.7 

(376.9) 

9.87E-05 0.61 

(0.27) 

Succinate  4 7.3 

(0.8) 

91.1 

(9.7) 

4.52 

(0.51) 

3216.6 

(688.3) 

6.43 

(1.38) 

2797.7 

(932.6) 

0.000778 2.30 

(0.91) 

Alpha,alpha-

Trehalose 

29 1772.2 

(147.2) 

2525.4 

(277.6) 

0.19 

(0.07) 

2118803 

(105069) 

4237.6 

(2101.4) 

4355039 

(1656108) 

0.000584 0.97 

(0.61) 
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Supplementary Table S1(b). Mutational statistics of the 29 metabolites, reprised from Supplementary Table S1 of Davies et al. 

(2016).  Column Headings are: ID#, the number of the metabolite in the network shown in Figure 1; Mean (G0), mean metabolite 

pool of the G0 ancestor; Mean (MA), mean metabolite pool of the MA lines; ΔM (%), percent change per-generation in mean trait 

Metabolite ID # Mean (G0) Mean (MA) ΔM (%) VL VM VE IM ��
  (x 103) 

L-Tryptophan 27 107.7 

(14.3) 

92.2 

(2.8) 

-0.06 

(0.05) 

205.7 

(87.3) 

0.411 

(0.174) 

496.9 

(64.0) 

4.93E-05 0.83 

(0.37) 

L-Tyrosine 22 74.7 

(9.3) 

47.9 

(2.9) 

-0.14 

(0.05) 

197.2 

(70.9) 

0.394 

(0.142) 

643.3 

(99.7) 

0.00017 0.61 

(0.24) 

Uracil 5 9.5 

(1.0) 

8.8 

(0.4) 

-0.03 

(0.05) 

4.67 

(1.59) 

0.009 

(0.003) 

8.3 

(1.4) 

0.000123 1.13 

(0.43) 

Urate 26 20.7 

(3.4) 

11.5 

(1.2) 

-0.18 

(0.07) 

45.3 

(20.1) 

0.091 

(0.040) 

45.3 

(4.75) 

0.000654 2.00 

(0.91) 

Xanthine 24 0.4 

(0.3) 

6.7 

(1.0) 

6.64 

(1.09) 

36.5 

(8.04) 

0.073 

(0.016) 

15.5 

(2.8) 

0.001711 4.70 

(1.34) 

Mean   0.73* 

(0.30) 

   1.46 

(0.31) 

  

Median   0.14    0.83   
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value; VL, among-line component of variance, VM, mutational variance; CVM,G0, mutational coefficient of variation standardized by 

the G0 mean; CVM,MA, mutational coefficient of variation standardized by the MA mean; VE, environmental (= within-line) component 

of variance; ��
� , mutational heritability.   

* - Mean ΔM (%) is the mean absolute value. 
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Reaction Number Reaction 

R01579 D-Glutamine + H2O = D-Glutamate + NH3 

R01887 gamma-Amino-gamma-cyanobutanoate + 2 H2O = DL-Glutamate + NH3 

R04936 Se-Adenosylselenohomocysteine + H2O = Adenosine +Selenohomocysteine 

R00891 L-Serine + Hydrogen sulfide = L-Cysteine + H2O 

R09099 L-Serine + 5,6,7,8-Tetrahydromethanopterin = 5,10-Methylenetetrahydromethanopterin + Glycine + H2O 

R02853 D-O-Phosphoserine + H2O = D-Serine + Orthophosphate 

R00904 3-Aminopropanal + NAD+ + H2O = beta-Alanine + NADH + H+ 

R03542 alpha-Aminopropiononitrile + 2 H2O = Alanine + NH3 

R01324 Citrate = Isocitrate 

R00483 ATP + L-Aspartate + NH3 = AMP + Diphosphate + L-Asparagine 

R01221 Glycine + Tetrahydrofolate + NAD+ = 5,10-Methylenetetrahydrofolate+ NH3 + CO2 + NADH + H+ 

R02078 3,4-Dihydroxy-L-phenylalanine + L-Tyrosine + Oxygen = Dopaquinone+ 3,4-Dihydroxy-L-phenylalanine + H2O 

R01706 Hexadecanoyl-[acp] + H2O = Acyl-carrier protein + Hexadecanoicacid 

R04666 3-Ureidoisobutyrate + H2O = 3-Aminoisobutyric acid + CO2 + NH3 

 

Supplementary Table S2. Discrepancies between the metabolic networks constructed using the MZ and YW methods. All reactions 

listed here are in the Ma and Zeng database (http://www.ibiodesign.net/kneva/) but not in the Wormflux database 

(http://wormflux.umassmed.edu/) and were used in the generation of the metabolic network. There is a total of 1203 reactions in the 

network, these represent about 1% of all reactions.  
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