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Abstract

The three-dimensional organization of chromatin plays a critical role in gene regulation
and disease. High-throughput chromosome conformation capture experiments such as Hi-C
are used to obtain genome-wide maps of 3D chromatin contacts. However, robust estimation
of data quality and systematic comparison of these contact maps is challenging due to the
multi-scale, hierarchical structure of the data and the resulting idiosyncratic properties of
experimental noise.

We introduce a multi-scale concordance measure called GenomeDISCO (DIfferences be-
tween Smoothed COntact maps) for assessing the similarity of a pair of contact maps ob-
tained from chromosome capture experiments. We denoise the contact maps using random
walks on the contact map graph, and integrate concordance at multiple scales of smoothing.
We use simulated datasets to benchmark GenomeDISCO’s sensitivity to different types of
noise typically affecting chromatin contact maps. When applied to a large collection of Hi-C
datasets, GenomeDISCO accurately distinguishes biological replicates from samples obtained
from different cell types.

Software implementing GenomeDISCO is available at http://github.com/kundajelab/
genomedisco.

Contact: akundaje@stanford.edu

1 Introduction
The three-dimensional (3D) conformation of chromatin defines a network of physical interactions
among genomic loci, including regulatory elements such as gene promoters, distal enhancers and
insulators (Krijger and De Laat, 2016). Thus, 3D chromatin architecture plays a key role in gene
regulation and cellular function. Changes in 3D chromatin architecture at multiple scales, ranging
from large-scale rearrangement of compartments and topologically-associating domains (TADs) to
rewiring of enhancer-promoter interactions, are associated with dynamic cellular processes such as
differentiation (Dixon et al., 2015; Fraser et al., 2015) and reprogramming (Krijger et al., 2016; Bea-
gan et al., 2016)). Moreover, aberrant disruption of 3D chromatin architecture has been associated
with several diseases (Lupiáñez et al., 2015; Gröschel et al., 2014).

The last decade has witnessed a revolution in high-throughput sequencing-based assays and
imaging techniques to map 3D chromatin architecture at multiple scales and resolutions, provid-
ing new insights into spatial genome organization (Schmitt et al., 2016). The sequencing-based
methods (referred to as 3C-seq experiments) for assaying 3D chromatin architecture such as 3C
(Dekker et al., 2002), 4C (Zhao et al., 2006; Simonis et al., 2006), 5C (Dostie et al., 2006), Hi-C
(Lieberman-Aiden et al., 2009), Capture Hi-C (CHi-C) (Mifsud et al., 2015), ChIA-PET (Full-
wood et al., 2009) and HiChIP (Mumbach et al., 2016) are all variations around the chromosome
conformation capture technique. In a Hi-C experiment, genome-wide interactions are mapped by
ligating proximal fragments followed by deep sequencing. The result of such an experiment is a
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genome-wide contact map, which is a matrix with a sequencing readout of the contact frequency
for every pair of genomic loci.

A number of computational methods have been designed to normalize (Yaffe and Tanay, 2011;
Hu et al., 2012; Imakaev et al., 2012; Knight and Ruiz, 2013; Servant et al., 2015) and extract
statistically significant contacts from the different types of 3D chromatin conformation assays (Ay
et al., 2014; Ron et al., 2017; Mifsud et al., 2017; Cairns et al., 2016; Carty et al., 2017). However,
principled methods for systematic comparisons of 3D contact maps are equally important and form
a core component of two key analyses. First, as an essential quality control tool, it is useful to
quantify the concordance of replicate experiments. This is particularly relevant because it is com-
mon practice to pool reads across biological replicates of a 3C-seq experiment before downstream
analyses. Significant differences between the pooled replicates could result in suboptimal or mis-
leading downstream results. Second, understanding and quantifying similarity between replicates
is also an essential step in differential analysis, where the goal is to reliably identify statistically
significant differences between contact maps in different biological conditions.

Experimentally derived contact maps exhibit certain properties that are distinct from other
types of functional genomic data. First, contact maps explicitly encode the adjacency matrix
of a multi-scale, modular network consisting of large-scale compartments, TADs, CTCF/cohesin
mediated loops and potentially transient interactions between other types of elements (Schmitt
et al., 2016). Second, the contact frequency between a pair of loci is strongly dependent on their
linear genomic distance (Dekker et al., 2002; Ay et al., 2014; Duan et al., 2010) and affected by
additional biases such as restriction fragment size, GC content and mappability (Yaffe and Tanay,
2011; Imakaev et al., 2012; Cournac et al., 2012; Hu et al., 2012; Schmitt et al., 2016). Third, the
resolution of a contact map defined in terms of the size (in nucleotides) of the interacting loci is often
a free parameter and heuristically determined based on the depth of sequencing (Rao et al., 2014).
Finally, the noise associated with estimates of contact frequencies is also strongly associated with
sequencing depth. These properties necessitate the development of new computational methods
specifically suited for analysis of Hi-C data.

Statistical measures that have been developed to quantify the reproducibility of 1D functional
genomics assays, such as chromatin immunoprecipitation followed by sequencing (ChIP-seq), DNA
methylation and RNA sequencing, cannot be trivially applied to 3D contact maps. For instance,
simple correlation measures, which are most frequently used as measures of reproducibility (Rao
et al., 2014), do not correctly capture the reproducibility of Hi-C data (Yang et al., 2017). This
is partly because these simple correlation measures consider each entry in a contact map as an
independent measurement, thereby ignoring the rich connectivity and dependence structure in 3D
contact maps. More sophisticated reproducibility measures have recently been introduced including
comparison of eigenvectors (Yan et al., 2016), and a stratified correlation coefficient (Yang et al.,
2017), and these methods alleviate many of the problems with traditional correlation.

In this work, we introduce GenomeDISCO (DIfferences between Smoothed COntact maps), a
computational framework for quantifying reproducibility or concordance of contact maps from
3C-seq experiments (Figure 1). We represent a contact map as a network or graph, where
nodes are genomic loci and edges are weighted proportional to the appropriately normalized
contact frequency between a pair of loci (nodes). We denoise the contact maps using random
walks on the graph, and perform comparisons at multiple scales of smoothing. We use sys-
tematic simulations to calibrate the method, showing its ability to detect artificially introduced
noise, differences in distance dependence curves and differences in structural properties of con-
tact maps. We then apply GenomeDISCO and other related approaches to the largest existing
collection of Hi-C experiments (Rao et al., 2014), and benchmark their performance on a com-
parison of replicate experiments and experiments from different cell types. We provide an effi-
cient implementation of our method as well as comprehensive analysis reports and visualizations
in the form of a user-friendly software package at http://github.com/kundajelab/genomedisco.
GenomeDISCO is also included in the 3D genome analysis suite recommended by the Encyclopedia
of DNA Elements (ENCODE) Consortium, at http://github.com/kundajelab/genomedisco/
tree/master/reproducibility_analysis.
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2 Methods

2.1 A graph representation of chromatin contact maps
We represent a chromatin contact map as a graph or network of interactions between genomic loci,
with a weighted adjacency matrix A. Each node i in the network is a genomic locus (segment) of
a specified resolution or size (in nucleotides). The weight of each edge Aij is a suitably normal-
ized, experimentally-derived contact frequency between a pair of nodes i and j. In practice, we
ignore inter-chromosomal interactions and hence represent all chromosomes as independent graphs
(contact maps). For simplicity of notation, we refer to each of these chromosomal contact maps as
A. We aggregate concordance scores across all chromosomes as described in Section 2.3. For Hi-C
contact maps, the nodes in the contact map graph of each chromosome (rows and columns of A)
span all consecutive non-overlapping segments of the chromosome at a specified resolution.

2.2 Datasets, preprocessing and normalization
Hi-C Data We use Hi-C datasets from seven cell types from (Rao et al., 2014) as summarized
in Supplementary Table 1 (GEO accession numbers included in the table). For each cell type,
we downloaded reads mapped to the hg19 human genome reference, filtered for mapping quality
(MAPQ > 30). We then computed the number of reads supporting contacts between all pairs of
genomic bins of a specified resolution to obtain a contact map. In general, GenomeDISCO expects
a user-defined resolution, which can be determined empirically, for instance using the definition
provided in (Rao et al., 2014), i.e. choosing the lowest resolution such that at least 80% of the
genomic bins have at least 1000 contacts with non-zero counts. In this work, we use a 50 kb
resolution for our simulations and 40kb for the real Hi-C datasets.

We normalize the raw contact count matrix, C to its normalized version, A using the square root
normalization method (sqrtvc from (Rao et al., 2014)) that corrects for node-specific, factorizable
biases.

A = D− 1
2CD− 1

2

whereD is a diagonal matrix, with each entryDii corresponding to the degree (row sum) of node
ni. Other normalization frameworks such as ICE (Imakaev et al., 2012) or KR (Knight and Ruiz,
2013) are also compatible with our framework and do not change any presented conclusions. We
prefer the sqrtvc normalization since KR and ICE occasionally do not converge for Hi-C datasets
with moderate sequencing depth processed at very high resolution, such as 5-10kb. In the case
of KR and sqrtvc normalization, the normalized matrix A is a valid or close approximation to a
transition probability matrix (i.e. the entries in each row sum to 1).

2.3 The GenomeDISCO score for estimating multi-scale concordance of
contact maps

A concordance score that aims to estimate the global similarity between a pair of contact maps
must account for the specific properties of experimentally-derived contact maps.

First, contact maps contain structural features that manifest at different scales, such as large-
scale compartments, sub-Mb scale TADs and sub-TADs that manifest as densely connected diago-
nal blocks and CTCF/cohesin mediated loops observed as focal points of enriched contacts. Thus,
an ideal concordance score would be able to measure similarity across multiple scales. Previous
studies have found that using features defined at multiple scales of the contact map lead to a boost
in performance when predicting gene co-expression (Babaei et al., 2015).

Second, genome-wide contact maps such as those from Hi-C experiments measure a very large
space of possible contacts and hence require deep sequencing (> billion reads) for reliable estimates
of contact frequency. Due to cost and material constraints, typical Hi-C datasets are sequenced at
significantly lower coverage (e.g. 100M reads (Lajoie et al., 2015)). These undersampled datasets
exhibit a large proportion of contacts with low observed counts with high variance (Carty et al.,
2017) including some contacts with 0 observed counts, a phenomenon known as stochastic dropout.
To address this issue, we propose a denoising approach to smooth contact maps by leveraging
random walks on the contact map graph followed by comparisons at multiple scales of smoothing.

The key steps to comparing a pair of chromatin contact maps A1 and A2 are as follows (Figure
1).
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Figure 1: The GenomeDISCO method for computing concordance using differences in
smoothed contact maps
A) An example comparison between two cell lines, GM12878 (top, red matrix) and IMR90 (bottom,
blue matrix). We start from the original matrix (t=1), and perform smoothing of the data using
random walks on graphs at multiple steps, t. At each random walk step, we compute the L1

difference between the contact maps. Finally, we integrate these differences into a concordance
score, equal to 1 - normalized area under the curve of the obtained differences.
B) Smoothing process displayed for the IMR90 sample, either at its original sequencing depth
(top, red matrix), or when subsampled to 10% of reads (bottom, blue matrix). We find that our
smoothing scheme closely recovers the domain and compartment features of the deeply sequenced
sample even when starting with a sample with lower sequencing depth.
C) Output from GenomeDISCO, including its diagnostic information including the sequencing
depth of the samples being compared, a plot showing the distance dependence curves of the two
datasets and the difference matrix between the smoothed matrices (for this example, using t=3).
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• Equalizing sequencing depth In order to avoid artificial differences due to sequencing
depth, we first equalize the sequencing depth of the pair of datasets to be compared by
randomly subsampling the count matrix to the minimum depth of the two datasets. This
is done by sampling for each entry in the contact map from a binomial distribution with
N=count at the entry and p chosen such that p(total sequencing depth) = (desired sequencing
depth).

• Denoising contact maps using random walks We denoise each contact map separately
using random walks on the contact map graph A. In particular, we ask: if we start a random
walk at node i, and allow it to take t steps, what is the probability we will reach node j?
This probability can be obtained from

At

where Atij represents the probability of reaching node j from node i in t steps. We perform
random walks of increasing steps from 1 to tmax, without any reduction in resolution (bin size)
of the nodes. We perform these operations separately for A1 and A2, obtaining A1, A12, A13

etc., and similarly A2, A22, A23 etc.

• Computing the difference between smoothed contact maps at each step For each
step t of the random walk, we compute the difference dt(A1, A2) between A1t and A2t as
the L1 distance between the two smoothed contact maps, divided by the average number of
non-zero nodes in the two contact maps:

dt(A1, A2) =

∑
i

∑
j |A1tij −A2tij |

|Nnonzero = {ni|
∑
j nij > 0}|

. Since each row of A1 and A2 sums to ≈ 1, the weighted degree (sum of weights of all edges
to/from a node) of each node is ≈ 1. Hence, dt(A1, A2) scores range from 0 to 2, with small
values indicating high similarity.

• Integrating differences across multiple scales We compute an integrated multi-scale
difference D(A1, A2) between A1 and A2 as the area under the curve (AUC) obtained by
plotting the difference scores dt(A1, A2) relative to a range of steps t = [tmin, tmax], divided
by ∆t = (tmax − tmin) i.e. the range of t values used. If tmin = tmax, then D(A1, A2) =
dtmin

(A1, A2). We determined the optimal parameters tmin and tmax as those that lead to
the best separation of biological replicates from datasets corresponding to different cell types
or conditions. Based on our benchmarking results on simulated and on real Hi-C datasets
from (Rao et al., 2014) (see Section 2.5), we found tmin = tmax = 3 to be optimal for human
Hi-C datasets. These parameters may need to be optimized for datasets from other types of
assays or other species.

• Converting the difference to a concordance score We converted the integrated differ-
ence D(A1, A2) into a concordance score R(A1, A2) as follows:

R(A1, A2) = 1−D(A1, A2)

R(A1, A2) scores ranges from -1 to 1, with larger values indicating greater similarity.

• Combining concordance scores across multiple chromosomes We computed a sepa-
rate concordance score for each chromosome. To obtain a genome-wide concordance score,
we computed the average of the scores across all chromosomes in the genome.

• Calibrating the concordance score We calibrated the concordance scores using high
quality biological replicates as the gold standard for defining similarity and datasets from
different cell types as the gold standard for defining dissimilarity. Specifically, for Hi-C data,
we identified concordance score thresholds that best distinguished pairs of simulated repli-
cates from pairs of simulated datasets representing contact maps from different cell types (See
Section 2.4. Concordance scores also depend on the baseline resolution of the contact maps
(higher resolutions result in an overall decrease in the magnitude of concordance scores).
Hence, we provide precomputed calibrated thresholds on concordance scores for a range of
resolutions: 10 kb, 40 kb, 500 kb at http://github.com/kundajelab/genomedisco/tree/
master/reproducibility_analysis/calibration_tables/GenomeDISCO.calibration_table.
txt.
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2.4 Simulating different types of noise in contact maps
We first simulated realistic contact maps based on Hi-C datasets from seven cell types from (Rao
et al., 2014) (see Supp Table 2) in order to calibrate parameters and evaluate the performance of
GenomeDISCO. We pooled reads across all replicates for each cell type. We used a resolution of
50 kb fixed size genomic bins. For the sake of efficiency, we then restricted the contact map to
chromosome 21 for our simulations. For each cell type, we rescaled the raw contact count matrix
C into a probability matrix P , such that all entries in the upper triangle of P sum to 1 (i.e. a valid
probability distribution). Then, to distinguish structural differences from differences in distance
dependence curves, we scaled the obtained probabilities to ensure that datasets for all cell types
contain identical distance dependence functions. We modified the distance dependence curves to
follow one reference distance dependence function. For the Hi-C datasets, we used the GM12878
dataset as the reference since it is the most deeply sequenced cell type. For each genomic distance
g (from 0 bp to the length of the chromosome), we divided each entry at genomic distance g by
the ratio of the average contact probability at distance g in the target dataset and the average
contact probability at distance g in the reference dataset with the desired distance dependence
curve. Note that the upper triangle of the resulting scaled matrix is a valid probability distribu-
tion, because the upper triangle of the reference matrix is a probability distribution. Finally, we
simulated a contact map of a desired read depth N by sampling each entry (i, j) from a binomial
distribution, with p = Pij . We repeated this process twice per contact map for each simulation
configuration (i.e. we sampled twice from the same underlying probability matrix) to generate a
pair of "pseudo-replicates", obtaining 14 (7 x 2) simulated contact maps.

We then simulated various types of noise in the contact maps to evaluate the behavior of the
GenomeDISCO concordance score.

• Edge dropout The edge dropout simulations measured how our concordance score changes
as a function of removing edges from contact map graphs. For this simulation, we randomly
set x% (for x between 10% and 90%) of the entries in the probability matrix to 0. We then
renormalized the upper triangle to a valid probability distribution and then sampled from
a binomial distribution as described above. For each level of noise, we computed scores by
comparing the original sample (0% dropout) against a sample with x% edge dropout. We
estimated the standard deviation of scores for x% edge dropout based on 14 comparisons.
Seven of these correspond to concordance scores obtained across the 7 cell types with Hi-C
data. Also, for each cell type, we computed 2 scores: one comparison for replicate 1 (0%
dropout) vs. replicate 2 (x% dropout), the second comparison for replicate 2 (0% dropout)
vs. (replicate 1, x% dropout).

• Node dropout The node dropout simulations involve random removal of nodes. As in the
edge dropout simulations, we perturbed P . For a given percent of dropout, x, we removed
x% of the nodes, which is equivalent to setting all probabilities involving that node to 0.
Then we renormalized and sampled reads from the binomial distribution as described above.
The comparisons are analogous to the ones described in the edge dropout simulations: we
compared the contact maps with 0% dropout against those with x% dropout for a total of
14 comparisons per dropout level.

• Domain boundary noise The domain boundary noise simulations were designed to un-
derstand how the concordance score changes as a function of uncertainty in the location of
domain/TAD boundaries in the contact map. To simulate variation in domain location, we
used a reference contact map and shifted it by a specific number of nodes b called the domain
boundary noise. The contact frequency for a pair of nodes (i, j) in the shifted contact map
is equal to the contact frequency at nodes (i + b, j + b) in the reference contact map. Then,
we compared the original matrix with matrices shifted by different values of b (50 kb, 100
kb, 200 kb, 400 kb, 80 kb, 1.6 Mb). We performed this shift using all nodes on chr21, but
for scoring, we only used a subset of this chromosome that is contiguous (starting at 20 Mb
and ending at 45 Mb). For consistency with the other simulation types described above, this
subset was used in all simulations in this paper. As in the previous simulations, we obtained
14 comparisons per shift.
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• Different distance dependence curves For each contact map, we used two different
distance dependence curves, obtained from Hi-C datasets from two different cell lines HMEC
and HUVEC, which had the largest difference in distance dependence curves (Rao et al.,
2014). To transform a contact map to obey a desired distance dependence function, we
used the probability matrix P representation of the contact map (as described above) and
rescaled values at each genomic distance such that the average contact probability at that
distance corresponds to the average contact frequency of the desired dataset. Finally, given
the rescaled probability matrix, we sampled from the binomial distribution to obtain the
simulated datasets. For each of the two distance dependence curves of interest, we obtained
2 pseudoreplicates by sampling from the binomial distribution twice. Thus, we obtained 7 cell
types x 2 comparisons with shared distance curves: the first comparison involving (replicate
1, distance dependence 1) vs. (replicate 2, distance dependence 1) and the second comparison
involving (replicate 1, distance dependence 2) vs. (replicate 2, distance dependence 2). The
comparisons with different distance curves were restricted to be in the same cell type i.e.
(replicate 1, distance dependence 1) vs (replicate 1, distance dependence 2) and so on.

To measure the separation between the two groups of comparisons (pairs of samples with
the same distance dependence curves and those with different curves), we used the Silhou-
ette score (Rousseeuw, 1987). This entails computing for every comparison i the following
quantity: s(i) = b(i)−a(i)

max(a(i),b(i)) , where b(i)=lowest difference between the score for comparison
i and a score from the opposite group and a(i)=the average difference in score between i and
the other comparisons in the group i is a part of. The silhouette score is the average s(i)
across all datapoints.

• Comparing simulated pseudoreplicates within a cell type to simulated maps be-
tween different cell types For this simulation, we use the datasets created in the "Edge
noise" simulation, with 0% noise. Since each cell type has 2 simulated pseudoreplicates, we
can evaluate concordance of pairs of pseudoreplicates from the same cell type and compare
it to concordance of pairs of simulated contact maps from different cell types. We measured
the separation between pseudoreplicates and different cell types using the silhouette score as
described above.

The simulator code is included in the GenomeDISCO package (http://github.com/kundajelab/
genomedisco/tree/master/genomediscosimulations_from_real_data.py).

For the results on the simulations, we used t = 3, as this value was deemed optimal in our
parameter optimization (see Section 2.5).

2.5 Parameter optimization on the real data
We used the following procedure to identify the optimal random walk step parameters t = [tmin, tmax]
on real Hi-C datasets from (Rao et al., 2014), which contains more than 80 experiments across
multiple human cell lines. We used half the experiments as a training set and the remaining half
as a test set. We then computed GenomeDISCO concordance scores for all pairs of datasets in the
training set, for random walks with different t. We considered all combinations of tmin and tmax
within the range of 1 ≤ t ≤ 5. We optimized parameters based on their ability to classify pairs of
biological replicates from pairs of non-replicates in the training set. We used auPRC (see Figure
4A) to evaluate classification performance. We then used the test set to compare GenomeDISCO
with the methods described below.

2.6 Comparison with other methods
We compared our method with two other recently developed concordance scoring methods for
Hi-C data; HiCRep (Yang et al., 2017) and HiC-Spector (Yan et al., 2016). For HiCRep we used
a maximum distance of contacts equal to 5 Mb and a smoothing parameter h=5, which is what
was suggested for 40kb resolution Hi-C data. For HiC-Spector we used 20 eigenvectors. Another
commonly used concordance score is correlation (Spearman or Pearson), but (Yang et al., 2017)
have already pointed out its deficiencies. Hence, we do not include comparisons to naive correlation
measures.
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2.7 Analysis of differences in distance dependence curves
To obtain a quantitative measurement of whether two contact maps have different functions that
map contact probability as a function of genomic distance, we computed the sum of absolute values
of the difference between contact probability at each genomic distance. The values obtained in this
manner and used in Figure 4 are based on chr18.

3 Results

3.1 Benchmarking GenomeDISCO on simulated perturbations to 3C-
seq datasets

We expect a sound concordance score for 3C-seq datasets to be sensitive to key types of noise and
artifacts that typically affect these data (Figure 2B).

Concordance score

A

B

Edge noise

Node noise

original noise: 25% noise: 50%

Boundary 
noise

original noise:400 kb noise:800 kb

Concordance score

original noise: 25% noise: 50%

Biol. repl. >
Diff. cell types

replicates diff. cell types

Sequencing 
depth

original 10% reads 1% reads

Different 
distance 

dependence

same dep different dep

Figure 2: Definition of concordance for chromosome conformation capture data
A) A concordance score measures the global similarity between a pair of contact maps. Upper
triangle of the matrix (red) is from the first contact map and lower triangle (blue) of the matrix is
from the second contact map.
B) Desired features for a concordance score. The score should decrease as we add edge noise, node
noise and boundary noise. The score should be higher for replicates from the same cell type than
for comparisons between different cell types. The concordance score should drop when sequencing
depth is lowered. Scores should be lower for pairs of replicates with different distance dependence
curves (the lower panel is showing the difference between the matrices involved in the distance
dependence comparisons).
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We benchmarked the behavior of GenomeDISCO by using it to compute concordance between
a reference Hi-C contact map and a version of the map that is explicitly perturbed with different
types and levels of of simulated noise (see Figure 2B) (See Methods). We further compared
GenomeDISCO to two other recently developed methods for estimating concordance of HiC data:
HiCRep, which measures correlation of contacts stratified by distance (Yang et al., 2017) and HiC-
Spector, which computes an eigendecomposition of the Laplacian of the graph, and then compares
the L2 distance between eigenvectors of the 2 contact maps Yan et al. (2016).
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Figure 3: GenomeDISCO exhibits desired features for a reproducibility score
A-E) Results from simulations, consistent with the expectations in Figure 2B. Error bars represent
one standard deviation from the mean score, based on independent simulations across 7 cell types.
For D), E), the values above the plots are silhouette scores measuring the separation between the
two groups of scores being compared.

We examined the sensitivity of the concordance scores to perturbations that involve random
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dropout of edges and nodes as well as misalignment of domain boundaries in the perturbed contact
map relative to the reference. Indeed, we found that concordance scores from all three methods
decrease with increasing edge drop out (Figure 3A), increasing node drop out (Figure 3B) and
increasing domain boundary misalignment (Figure 3C, see Methods).

Next, in order to understand the effect of sequencing depth of the contact maps, we repeated
the above three perturbation analyses for reference and perturbed maps subsampled to four depths:
100%, 10%, 1%, 0.1% of 10 million reads restricted to chromosome 21. As expected, we found that
the GenomeDISCO score is highest for the deepest samples, and drops consistently with decreasing
sequencing depth across all types and levels of perturbations (Figure 3). In addition, the sensitivity
to increasing levels of each of the perturbations decreases with lowered sequencing depth. Also,
the scores plateau as the sequencing depth is increased from 1 million to 10 million reads, which
is expected, since for a 40kb resolution, one would need approx. 1 million reads for chr21.

Contact maps can also differ in their fundamental distance dependence curves that capture the
probability of contact as a function of linear genomic distance. Distance dependence functions
can differ due to the stage of the cell cycle of cells (Naumova et al., 2013; Nagano et al., 2016) or
as a function of perturbation of proteins involved in chromatin 3D architecture, such as RAD21
knockout in yeast (Mizuguchi et al., 2014) or WAPL and SCC4 knockouts in human HAP1 cells
(Haarhuis et al., 2017). Replicates from the same condition are often pooled, and if they have
different distance dependence curves, the result will be an average that is not representative of
either replicate. Hence, being sensitive to differences in distance dependence curves is a useful
property of a concordance score. We simulated pairs of contact maps from a common reference
contact map by sampling reads according to two different distance dependence curves, obtained
from HiC maps from two different cell types (see Methods). We also simulated pairs of contact maps
with the same distance distributions. We then compared the concordance of the pairs of simulated
maps with different distance curves and to concordance of pairs with the same distance dependence
curves at different sequencing depths (as above) using all three methods. GenomeDISCO correctly
identified pairs of samples with the same distance dependence curves as more concordant than
pairs of samples with different distance dependence curves. As in the other simulations, the
margin between the two sets of pairs decreased as we decreased sequencing depth (Figure 3D).
Only GenomeDISCO and HiC-Spector are sensitive to differences in distance dependence curves,
with GenomeDISCO having better margins of separation at lower sequencing depths as compared
to HiC-Spector (GenomeDISCO silhouette scores of 0.47, 0.93, 0.97, 0.98 for 10 million, 1 million,
0.1 million and 10000 reads respectively, and HiC-Spector silhouette scores of 0.02, 0.20, 0.70,
0.79).

Finally, we asked whether pairs of simulated pseudo-replicates sampled from the same reference
HiC map are deemed more concordant than pairs of samples from HiC reference maps from different
cell types. All three methods were able to successfully discriminate the two sets of pairs with
margins decreasing with decreasing sequencing depth (Figure 3E).

3.2 Calibrating and benchmarking GenomeDISCO on real Hi-C datasets
We used > 80 high quality Hi-C datasets from (Rao et al., 2014) spanning multiple human cell-
lines (GM12878, HMEC, HUVEC, IMR90, K562, KBM7, NHEK) to benchmark the behavior of
our concordance score (Figure 4). Due to the lack of explicit ground truth about the nature
of noise in real datasets, we evaluate the validity of the concordance score by expecting higher
scores when comparing pairs of biological replicates of Hi-C data with similar distance-dependence
characteristics as compared to scores obtained by comparing Hi-C datasets from different cell types.
We focused our analysis on a subset of experiments from (Rao et al., 2014) defined as those done
with in-situ Hi-C (see Supp Table 1 for a list of the datasets used).
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Figure 4: GenomeDISCO distinguishes biological replicates from nonreplicates, taking
distance dependence curves into account
A) Parameter optimization for GenomeDISCO, by maximizing auPRC for distinguishing biological
replicates from non-replicates in a training set of samples. We find that three iterations of random
walk works best.
B) Scatterplot of scores obtained with GenomeDISCO vs those obtained with HiCRep and HiC-
Spector. For each of the thre methods, we define a threshold that separates low-concordance from
high-concordance pairs of samples. The threshold is chosen as the highest score obtained by a
comparison between different cell types. GenomeDISCO largely agrees with the other methods.
There is a subset of scores that GenomeDISCO selectively ranks as low-concordance and those
involve pairs of contact maps with large differences between their distance dependence curves.
C) An example of contact maps with different distance dependence functions that GenomeDISCO
deems non-concordant while HiCRep defines as concordant.
D) Concordance scores as a function of difference in distance dependence functions. The differ-
ence is measured as the sum of absolute values of differences between the distance curves at each
genomic distance.
E) One example dataset whose comparisons consistently receive low concordance scores is exper-
iment HIC014. Upon closer inspection, we found that row sums for each genomic bin for sample
HIC014 are non-uniform, compared to e.g. HIC005, at a similar sequencing depth of 300 million
reads.
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First, we optimized the parameters t = [tmin, tmax] (minimum and maximum number of random
walk steps to integrate over) for GenomeDISCO (See Methods) as follows: we split the datasets
from (Rao et al., 2014) into a training and a test set. Then we used the training set to try a
set of combinations of t = [tmin, tmax] and identified the optimal set of as those that maximize
auPRC of distinguishing biological replicates from non-replicates on the training set (Figure 4A).
We obtained the lowest auPRC when (tmin = tmax = 1) and also obtained low auPRCs whenever
tmin was set to 1, indicating that smoothing the contact map is critically important to obtain
optimal performance. We obtained optimal auPRC for tmin = tmax = 3.

Next, we used GenomeDISCO, HiCRep and HiC-Spector to compute concordance scores for all
the pairs of biological replicates and pairs of samples from different cell types. For each method
we defined an empirical threshold for classifying sample-pairs into one of two categories labeled
high-concordance and low-concordance. The threshold was determined as the highest score across
all pairs of samples from different cell types, since we expect concordant biological replicates to
be at least as concordant as samples from different cell types. We then analyzed the similarities
and differences between the three methods in terms of their classification of the pairs of biological
replicates. (Figure 4B).

Out of 149 pairs of biological replicates in the test set, we found that the methods agreed
for a majority of cases (104/149 biological replicate pairs were classified consistently between
GenomeDISCO and HiCRep, and 93/149 between GenomeDISCO and HiC-Spector). For a small
subset of replicate-pairs, HiCRep and/or HiC-Spector classified them as high-concordance, while
GenomeDISCO classified them as low concordance. For 36/45 of the discrepancies between Genome-
DISCO and HiCRep and 44/56 of the discrepancies with HiC-Spector, the comparisons involved
samples with large differences in distance dependence curves (difference in distance dependence
curve higher than 0.0001, a value which was found to distinguish pairs of biological replicates
in the high-concordance class from those in the low concordance class). For example, samples
HIC070 and HIC072 (biological replicates for the K562 cell line) are classified as low-concordance
by GenomeDISCO (score 0.641), but classified as high-concordance by HiCRep (score 0.908). These
samples have a marked difference in their distance dependence curves (ranked as the 6th largest
difference in distance dependence curve among all biological replicate pairs) (Figure 4C). In fact,
GenomeDISCO scores in general drop proportional to the difference in distance dependence curves
between the pair of samples being compared (Figure 4D). Consistent with our simulation results,
HiC-Spector scores also drop with increasing differences in distance dependence curves for pairs
of replicates (Figure 4D). But a larger proportion of these replicates fall in the high-concordance
class for HiC-Spector as compared to GenomeDISCO.

We also found a subset of replicates that were deemed low-concordance by all three methods
(39 for GenomeDISCO vs HiCRep and 26 for GenomeDISCO vs HiC-Spector). For example,
three replicate pairs classified as low-concordance by all three methods despite being very deeply
sequenced (>300 million reads) involved sample HIC014 from the GM12878 cell type (specifically
HIC014 vs HIC020, HIC014 vs HIC022 and HIC014 vs HIC026). Upon closer inspection, we found
that HIC014 exhibited an unusual pattern of uneven coverage across the genome (Figure 4E), likely
explaining the observed results. In fact, 13/39 pairs of non-concordant pairs of samples between
GenomeDISCO and HiCRep (and 12/26 against HiC-Spector) involve comparisons against sample
HIC014.

4 Discussion
Here, we present GenomeDISCO, a new approach specifically designed for evaluating concordance
and reproducibility of chromatin contact maps obtained from chromosome conformation capture
experiments. Our benchmarking experiments on simulated contact maps and high quality Hi-C
datasets, which include systematic comparisons to two other methods HiCRep and HiC-Spector,
indicate that GenomeDISCO displays competitive accuracy in distinguishing biological replicates
from different cell types with the desired sensitivity to sequencing depth, node and edge dropout
noise, changes in domain boundaries and subtle differences in distance dependence.

GenomeDISCO introduces a novel approach of using random walks on the contact map graph
for progressive smoothing and evaluation of concordance at multiple scales. A weighted graph is
a natural representation of a chromatin contact map. A random walk on a contact map graph
progressively upweights direct edges involving node pairs that have many high-weight indirect paths
of progressively increasing lengths that connect the node pairs. In contrast to other smoothing
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approaches, the random walk smoothing algorithm has the advantage of adapting seamlessly to
different structural properties and constraints encoded in contact maps from different experimental
protocols. For instance, the HiCRep method (Yang et al., 2017), which is specifically designed for
comparing Hi-C contact maps, uses a fixed size local 2D smoothing window around each entry in
the contact map. This approach is well-suited to genome-wide contact maps such as Hi-C where
adjacent neighbors of a node in the contact map are contiguous in linear genomic space. However,
it is less appropriate for targeted maps such as those obtained from CHi-C, ChIA-PET or HiChIP
where the targeted nodes are not contiguous in linear genomic space and neighbors’ of a node
in the contact map may be distant loci. GenomeDISCO can be applied as-is to asymmetric or
symmetric contact maps from targeted assays such as CHi-C, ChIA-PET or HiChIP.

Another advantage of the random walk is that it is ideally suited to progressively highlight
structural properties of contact maps at increasing scales. Short random walks naturally reinforce
local network structure, such as loop cliques, whereas longer random walks can highlight global
structures such TADs and compartments. GenomeDISCO can compare contact maps at multiple
scales and integrate the similarities into a unified score.

Further, GenomeDISCO is sensitive to subtle differences in distance dependence curves. Since
it is common to pool multiple Hi-C replicates, it is essential to know if samples exhibit differences,
so as to not eliminate signal during pooling. For instance, pooling two samples with very different
distance dependence curves may lead to a pooled sample that is difficult to interpret. In addition,
since in some cases variation in distance dependence curves is biologically meaningful (for instance,
as when distance dependence varies as a function of cell cycle (Naumova et al., 2013; Nagano et al.,
2016), or when proteins governing genome 3D structure are knocked out (Mizuguchi et al., 2014;
Haarhuis et al., 2017)), it is essential to be able to measure these changes in the distance depen-
dence. On the other hand, two datasets can have different distance dependence curves but still
be concordant in terms of enrichments of contacts when accounting for the different distance de-
pendence function of each dataset. Thus, if one is interested in evaluating concordance of contact
enrichment (e.g. as measured by methods that call significant contacts), then one can normalize the
observed contact frequencies by the expected distance-dependent contact frequencies (which would
correct for most differences in distance dependence) for the pair of contact maps before feeding
them into GenomeDISCO. One can obtain these observed/expected ratios or associated q-values
from Fit-Hi-C (Ay et al., 2014). Another approach is to normalize the contact maps such that
their distance dependence curves are matched, with methods such as HiCDiff (Stansfield and Doz-
morov, 2017). Alternatively, since HiCRep is not as sensitive to differences in distance dependence
curves, one can cross-check results against it to learn if the main reason for low reproducibility
from GenomeDISCO is a difference in distance dependence. One quick look at GenomeDISCO’s
diagnostic plots is usually sufficient to understand if this is the case.

Further, GenomeDISCO provides a variety of diagnostic analyses which are useful to dig deeper
in the potential reasons for low concordance. The diagnostic analyses include the comparison of
distance dependence curves, sequencing depth (since low sequencing depth leads to lower repro-
ducibility) and a difference matrix between smoothed contact maps.

Finally, what determines a good threshold for concordance of biological replicates? Based on
our extensive analyses of simulated datasets and extensive collections of Hi-C data, we define
an empirical GenomeDISCO score threshold of 0.8 at 40kb resolution. We also provide a set
of precomputed standards based on pseudoreplicates for frequently used resolutions, allowing a
direct calibration of a given score to an upper bound. We recommend subsampling datasets to
equal sequencing depth before computing reproducibility, since sequencing depth directly affects
the reproducibility score. GenomeDISCO performs this subsampling by default.

Three-dimensional chromatin architecture is the next frontier in deciphering genome function.
Rapid innovations and improvements of experimental protocols based on chromosome conforma-
tion capture are providing us a powerful collection of tools to directly interrogate 3D chromatin
architecture. Ensuring high quality reproducible experiments is an essential part of this revolution
in understanding chromatin architecture. GenomeDISCO is a user-friendly, efficient and accurate
diagnostic tool to evaluate the reproducibility of 3D chromatin conformation capture experiments.
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