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Abstract 20 

In a quest for finding additional structural constraints, apart from disordered segments, regulating protein 21 

half-life in the cell (and during evolution), here we recognize and assess the influence of native topology 22 

of biological proteins and their sequestration into multimeric complexes. Native topology acts as a 23 

molecular marker of protein’s mechanical resistance and consequently captures their half-life variations 24 

on genome-scale, irrespective of the enormous sequence, structural and functional diversity of the 25 

proteins. Cooperative stability (slower degradation upon sequestration into complexes) is a master 26 

regulator of oligomeric protein half-life that involves at least three mechanisms. (i) Association with 27 

multiple complexes results longer protein half-life; (ii) hierarchy of complex self-assembly involves 28 

short-living proteins binding late in the assembly order and (iii) binding with larger buried surface area 29 

leads to slower subunit dissociation and thereby longer half-life. Altered half-lives of paralog proteins 30 

refer to their structural divergence and oligomerization with non-identical set of complexes. 31 
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Cellular proteins are regularly degraded and replaced with newly synthesized copies, minimizing the 1 

accumulation of toxic damage and ensuring a functional proteome. An elegant balance between 2 

translation and degradation rates thus maintains protein concentration within the cell, assigning each 3 

protein a specific half-life1–4. A protein’s life starts as its messenger RNA blueprint is translated into a 4 

chain of amino acid building blocks. This chain generally folds itself into a 3D molecule that then takes 5 

on functions such as enzymatic activity, binding specific ligands, helping to create cellular structures, 6 

assembling into macromolecular machines and transporting other proteins. Protein’s life ends as a 7 

degradation machinery, such as the ubiquitin-proteasome system (UPS) in eukaryotes, proteolyzes it into 8 

multiple fragments4,5. The UPS includes two major enzymes. One is ubiquitin, that stochastically festoons 9 

substrate proteins with a molecular marker for degradation (a polyubiquitin tag). The other is proteasome, 10 

that (i) recognizes its substrates based on this tag, (ii) engages with an intrinsically disordered region 11 

(IDR) of the substrate, (iii) mechanically unfolds the protein by pulling the polypeptide chain from the 12 

engaged IDR into a degradation channel6 where (iv) an ATP-driven proteolysis occurs5–7 (Fig. 1a). 13 

Experimental measurement of protein half-life in different organisms show a wide range of variation from 14 

minutes to days1–3, providing a platform based on which multiple biological questions can be addressed. 15 

Some studies have shown altered protein half-lives leading to abnormal development8, neurodegenerative 16 

diseases and cancer9. Accumulation of toxic damage in long-lived proteins is identified as a major inducer 17 

of ageing10. Other studies have looked for the factors that affect protein half-life in the cell11–19. Over the 18 

years, multiple factors have been identified—some tested only for specific proteins, some tested at 19 

genome-scale—to affect protein half-life in the cell. 20 

The proteolytic site of proteasome is accessible only through a narrow degradation channel (10–15Å 21 

width, ⁓70Å length), through which only unstructured polypeptides can penetrate4,5. Consequently, on a 22 

genome-scale, proteins featuring long intrinsically disordered regions (IDRs) are more susceptible to 23 

degradation and they exhibit short half-lives12. Shorter half-life is also observed for proteins featuring 24 

IDRs with amino acid compositions permitting high-affinity proteasomal engagement11. To degrade 25 

globular proteins, the ATPase molecular motor of proteasome first sequentially unfolds them by pulling 26 

their polypeptide chain from the engaged IDR into the degradation channel4,13. This mechanical unfolding 27 

is resisted by the native molecular contacts stabilizing the globule14 and only for a handful of proteins, it 28 

is shown that stronger resistance leads to slower degradation rates15,16. Protection from degradation is also 29 

achieved when proteins sequestrate into multicomponent complexes17–19. This effect is formally known as 30 

cooperative stability20, but neither its molecular basis is clearly understood, nor its impact on protein half-31 

life is tested on a genomic scale. 32 

Here, we exploit the experimental genome-scale half-life data of yeast proteins, wide-ranging information 33 

about their structural fold and 3D geometry, along with extensive biochemical characterization of the 34 

complexes they assemble into to develop a theory demonstrating how a wide spectrum of structural 35 

constraints of biological macromolecules regulates protein half-life in the cell. We begin by finding that 36 

native topology of monomeric globular proteins acts as a molecular marker of their mechanical resistance, 37 

and thus, affects half-life on a genomic-scale. For oligomeric proteins, the influence of topology is 38 

superseded by that of cooperative stability, that affects half-life in at least three mechanisms, (i) 39 

association with multiple complexes leads to longer half-lives of subunit proteins, (ii) hierarchy of 40 

complex self-assembly involves short-living proteins binding late in the assembly order and (iii) for small 41 

complexes, larger buried surface area, that generally reflects strong association and weak dissociation 42 
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constants, generally leads to longer half-lives. Finally, we confirm that diversification of native topology 1 

and promiscuous oligomerization are further exploited to alter protein half-life during evolution. Our 2 

work not only evaluates the independent and combined impacts of different structural constraints to 3 

regulate protein half-life, and places them into genomic context, but further deepens our understanding of 4 

the designing principles of biological macromolecules. 5 

RESULTS 6 

Prevalence of long-range contacts of globular proteins contribute to stronger mechanical 7 
resistance and thereby longer half-life 8 

Mechanical unfolding is a crucial step of globular protein degradation4,13 and this phenomenon has 9 

received a great deal of scientific focus in the past decade, encouraging multiple experimental and 10 

simulation studies attempting to understand the molecular origin of protein’s mechanical resistance (Data 11 

S1). An interesting comparison of ubiquitin and protein L (similar fold class) showed equivalent 12 

unfolding patterns at all chain pulling speeds, but the former having higher native long-range contacts 13 

(non-covalent contacts between residues far separated in primary chain) required higher peak unfolding 14 

force21. Starting from this point, we ask to what extent the prevalence of long-range native contacts of 15 

globular proteins (quantified as absolute contact order (ACO), the average primary chain separation of 16 

atomic contacts) affect their mechanical resistance. We perform three analyses. First, we estimate the 17 

correlation between native state ACO and the peak force required for mechanical unfolding (Fm) for two 18 

groups of proteins (Online Methods). The first group (G1) includes 16 proteins unfolded in Atomic Force 19 

Microscopy experiments, by pulling the polypeptide chains at 600 nm/s (11 proteins) and 300 nm/s (5 20 

proteins) speeds. The second group (G2) includes 27 proteins unfolded in all-atom computer simulations. 21 

Eleven proteins (G2A) were pulled from the N-terminal at 
7

5 10 nm/s speed (C-terminal fixed). Sixteen 22 

proteins (G2B) were pulled from N- and C-terminal separately at 
6

5 10 nm/s speed, keeping the other 23 

terminal free, thus allowing the substrate to rotate and adopt a less obstructive orientation for unfolding 24 

(as happens during degradation). Between ACO and Fm, we obtain surprisingly strong 
600nm/s

, 0.95ACO Fmr   and 25 

300nm/s

, 0.93ACO Fmr   correlations in G1, 
75 10 nm/s

, 0.78ACO Fmr


  in G2A and 
65 10 nm/s

, |N 0.74ACO Fmr


 , and 
65 10 nm/s

, |C 0.69ACO Fmr


  in 26 

G2B for N- and C-terminal pulling respectively (Fig. 1b-d). Second, for three globular proteins with 27 

experimental data depicting alterations of mechanical resistance upon point-mutations (Online Methods), 28 

we confirm that an elevation/demotion of mechanical resistance is perpetually associated with alike 29 

changes of ACO (Fig. 1e, Data S1). Third, for some proteins it was demonstrated that their mechanical 30 

anisotropy (pulling from different termini requires different peak unfolding forces) determines the 31 

directional bias of degradation (the terminus that is intrinsically disordered / easier to mechanically unfold 32 

is preferred by the proteasome to initiate degradation)22. For three such cases (maltose-binding protein, 33 

apo-calmodulin and ovalbumin), where the two termini are located at two distinct structured domains, we 34 

make two crucial observations. (i) Proteasome prefers unwinding maltose binding protein from the C-35 

terminal domain, that has lower ACO (and requires weaker unwinding force) compared to that of N-36 

terminal domain. (ii) Proteasome has no directional preference to unwind apo-calmodulin and ovalbumin, 37 

and both of their N- and C-terminal domains exhibit nearly identical ACO (Fig. 1f). These three sets of 38 

analyses provide a statistical proof-of-concept that ACO acts as a molecular marker of protein’s 39 

mechanical resistance, in a manner that higher ACO dictates higher mechanical resistance. 40 
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During an interesting experiment of titin degradation by ClpXP (bacterial/mitochondrial homolog of 1 

proteasome) Kenniston et al.15 observed that folded titin molecules are processed at much slower rates 2 

(150 molecules/min) than unfolded ones (600 molecules/min). They concluded that proteasomal 3 

degradation being a stochastic process, each substrate has a fixed probability of denaturation during each 4 

enzymatic cycle. For substrates with stronger mechanical resistance (such as folded titin, compared to 5 

unfolded ones), this probability would be lower and denaturing most of the molecules in the population 6 

would require many ATP cycles15. Since higher ACO prompts higher mechanical resistance, for two 7 

proteins subjected to proteasomal degradation for the same time span, larger fraction of undegraded 8 

molecules is expected for the one with higher ACO. This notion is supported by the outcome of an 9 

experiment subjecting dihydrofolate reductase (from Escherichia coli and mouse) and ribonuclease 10 

barnase proteins to proteasomal degradation13. After 200 minutes of incubation, the percent of undegraded 11 

molecules of the three proteins exhibit a surprising −0.98 correlation with their ACO values (Fig. 1g). 12 

These results encourage us to ask whether and how native topology influences protein half-lives in the 13 

cell. We start with 52 X-ray crystallographic structures (≤3 Å resolution) of annotated yeast monomeric 14 

proteins (sequence coverage of crystal structure 100%sc  ) and obtain a surprising 
1 2

mono|100%

, 0.72ACO Tr   (15 

17
10p


 ) correlation between ACO and 

1 2logT (Fig. 2a). For the 158 oligomeric protein structures as 16 

well, collected under the same criterion, we find a statistically significant, albeit much weaker correlation 17 

(
1 2

oligo|100%

, 0.29ACO Tr  ,
3

10p


 , Fig. 2b). Even if we include crystal structures of 30 monomeric and 71 18 

oligomeric proteins with missing coordinates (signify flexible or disordered regions and crystal artifacts, 19 

75%sc   is taken), significant correlations are obtained (
1 2

mono| 75%

, 0.70ACO Tr 
 , 

1110p  ; 
1 2

oligo| 75%

, 0.24ACO Tr 
 , 20 

0.01p  , Fig. 2c-d). 21 

Even after including all the ≤3 Å resolution structures with 75%sc  , we are left with structures of only 22 

311 proteins, which although depicts a significant correlation (
1 2

all| 75%

, 0.36ACO Tr 
 ,

13
10p


 ), but is 23 

inadequate to infer a proteome-wide tendency (
1/2

T  known for 3274 proteins). Hence, we extend our 24 

structure dataset by including additional 799 modeled structures ( 75%sc  ) generated with reliable 25 

accuracy of fold assignment (Online Methods). For this set of total 1110 crystallographic and modeled 26 

structures, we obtain a striking 
1 2, 0.37ACO Tr   correlation (

37
10p


 ) between 

1 2logT  and ACO, 27 

demonstrating a proteome-wide tendency of native topology regulating protein half-lives (Fig. 2e). 28 

Notably, 
1 2,ACO Tr is stronger for monomers (

1 2

mono

, 0.74ACO Tr  ,
18

10p


 ), compared to both homo- (29 

1 2

homo

, 0.26ACO Tr  , 0.01p  ) and heteromers (
1 2

hetero

, 0.34ACO Tr  ,
13

10p


 ), for any 75%sc  . Molecular basis 30 

of this weak correlation probably refers to at least two factors. First, the cooperative stability20 of 31 

oligomeric proteins (escaping proteasomal degradation in complexed state17–19) is generally independent 32 

of, and often overpowers, the effect of ACO. Degradation of β-casein is an interesting example of this 33 

trend. Intrinsically disordered C-terminal domains of two β-casein molecules dock together to form a 34 

homodimer, forcing the proteasome to initiate degradation exclusively from the globular N-terminus22. 35 

Second, proteins associated with larger complexes (multiple subunits) are generally more flexible and 36 

experience higher structural rearrangements upon oligomerization23. Oligomeric proteins are observed to 37 
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degrade much faster at their monomeric states17–19, the ACO of which is not equal to the ACO we estimate 1 

from crystal structure data of yeast complexes. This may also weaken 
1 2,ACO Tr correlations in oligomeric 2 

proteins. This notion is supported by the gradual reduction of 
1 2,ACO Tr  for larger homo- and heteromeric 3 

complexes (Fig. 2f).  4 

Taken together, these data show that native topology acts as a master regulator of globular protein half-5 

life, with indications that cooperative stability has some strong influence as well. 6 

Promiscuity of oligomerization results longer half-lives 7 

To assess the impact of cooperative stability on oligomeric protein half-life, first we develop a proteome-8 

scale database of yeast macromolecular complexes. Starting from earlier published databases24,25, we 9 

continue a protein-by-protein manual curation of available experimental data (Online Methods), yielding 10 

a massive database of 805 heteromeric and 80 homomeric yeast complexes (Data S2). This database 11 

includes 2487 annotated yeast proteins. Complex subunits are classified into two classes, central 12 

(functional subunits of a matured complex, if different isoforms of the complex exist24,25, they are present 13 

in most isoforms) and attached (temporary attached particles such as assembly cofactors, chaperones and 14 

subunits present in some of the isoforms). 15 

First, we test whether sequestration into multicomponent complexes has any measurable impact on 16 

protein half-life, apart from that of their ACO. We classify mono- and oligomeric proteins into distinct 17 

groups based on their ACO, and compare the respective half-life distributions. For similar ranges of ACO, 18 

oligomeric proteins exhibit significantly longer half-lives than monomeric proteins (Fig. 3a), 19 

demonstrating cooperative stability is another master regulator of protein half-life across the genome20.  20 

How does cooperative stability relate to complex size and involvement of proteins in different 21 

complexes? Earlier we observed weaker 
1 2,ACO Tr  for complexes with multiple subunits. But surprisingly, 22 

participation in larger complexes is not associated with longer half-lives (Kruskal-Wallis (KW) test 23 

0.05p  , which extends Mann-Whitney-U test to ≥2 groups). Rather promiscuity of oligomerization 24 

appears to be a strong modulator of cooperative stability, in a matter that involvement in higher number of 25 

complexes as central particles is associated with longer half-life (KW 
53

10p


 , Fig. 3b). Surprisingly, 26 

promiscuous oligomerization as attached particles have a mild effect in half-life elongation (KW 27 

0.05p  ). We perform two additional analyses to confirm this notion. First, we compare the half-life 28 

distributions of monomeric, central and attached proteins and observe significant differences in a manner 29 
mono attach central

1/2 1/2 1/2T T T  , at similar ranges of ACO (Fig. 3c). Second, we classify the 2487 oligomeric 30 

proteins into three groups: proteins that participate in ≥1 complexes as central particles only (g1), those 31 

that contribute to ≥1 complexes as central and to ≥1 complexes as attached particles (g3) and those that 32 

participate in ≥1 complexes as attached particles only (g3) (Fig. 3d-e). Distributions of half-life differ 33 

significantly across these three groups in a manner 
g1 g2 g3

1/2 1/2 1/2T T T   (KW p < 10−41, Fig. 3f). These results 34 

depict a proteome-wide tendency that central particles accomplish higher cooperative stability than 35 

attached particles upon complex formation.  36 

Cooperative stability of central subunits refers to burial of their short IDRs 37 
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Why do central particles achieve higher cooperative stability than attached particles upon 1 

oligomerization? We first check if this is because central particles exhibit higher ACO than attached 2 

particles. Notably, ACO distributions across g1, g2 and g3 do not differ significantly (KW 0.09p  , Fig. 3 

4a). It is already known that presence of sufficiently long terminal (⁓30 residues) and internal (⁓40 4 

residues) IDRs, that can engage with proteasome, is associated with significantly shorter half-lives12. 5 

Interestingly, a comparison of IDRs across g1, g2 and g3 reveals three key aspects. (i) Lengths of both 6 

terminal and internal IDRs ( IDRL ) differ significantly across the three groups in a manner 7 

g1 g2 g3

IDR IDR IDRL L L   (KW 
3

10p


 , Fig. 4b-d). (ii) Central and attached proteins tend to have terminal 8 

IDRs shorter and longer, respectively, than the cutoff required for direct proteasomal engagement; (iii) 9 

both central and attached proteins exhibit internal disordered regions susceptible to direct proteasomal 10 

engagement (Fig. 4b-d). Since IDRs often get buried upon complex formation26, for crystal structures of 11 

229 oligomeric proteins, we compare the percent of buried residues at terminal and internal IDRs ( IDRB ) 12 

upon oligomerization across the three groups. We find a statistically significant trend 
g1 g2 g3

IDR IDR IDRB B B   13 

for internal IDRs only (KW 0.01p  , Fig. 4e). 14 

These two results suggest that higher cooperative stability of central subunits refer to their (i) significantly 15 

shorter terminal IDRs and higher burial tendency of internal IDRs upon complex formation, compared to 16 

those of attached particles. These attributes make central particles more likely candidates of escaping 17 

proteasomal engagement in the complexed state, compared to attached particles. Association with 18 

multiple complexes as central particles, is likely to elevate this probability of escaping degradation, 19 

explaining why promiscuous oligomerization leads to longer half-lives of central subunits. Cooperative 20 

stability thus acts a versatile and generic biophysical constraint to maintain oligomeric protein half-life 21 

(therefore abundance) according to their requirement in cellular machines. 22 

Complex self-assembly involve subunits with shorter half-lives binding late in the temporal order 23 

The constituent subunits of macromolecular complexes follow evolutionarily conserved self-assembly 24 

pathways to organize themselves into complex functional machines27–29. A temporal order of subunit 25 

binding dictates that proteins binding early in the assembly order, remain in oligomeric state longer than 26 

those that bind late. Depending on the size of the complex, availability of subunits and cofactors, and 27 

efficiency of structural rearrangements to escape kinetic traps, self-assembly processes can continue from 28 

microseconds to several minutes30,31. This suggests that at least for large complexes, the temporal delay of 29 

subunit association can be long enough for proteasomal degradation rates to matter, resulting shorter 30 

subunit half-lives downward the assembly hierarchy. To test this, by an extensive literature search we 31 

collect the assembly hierarchy of 31 yeast complexes (Data S3) indispensable to central cellular processes 32 

such as replication, transcription, translation, cell cycle and transport. For distinct stages of subunit 33 

binding, we average the half-lives of respective subunits to estimate Spearman rank correlation ( rc ) with 34 

the temporal order. Consistent with our hypothesis, for 17 complexes with ≥3 stages of subunit binding 35 

(including ribosome, DNA and RNA Polymerases, kinetochore) we find 1rc    ( 0.05p  , Fig. 5a). For 36 

18 additional complexes with only 2 stages of subunit binding (including nucleosome, DNA repair 37 

complex, mRNA decapping complex, Mitotic Checkpoint complex) half-life distributions also follow the 38 

same trend. 20S core particle of proteasome is the only exception, and being exception probably refers to 39 

significantly lower (MWU 0.05p  ) ACO of α-subunits (21.8) that assemble prior to β-subunits (26.2). 40 
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Oligomerization with burial of higher proportion of protein surface area leads to longer half-life 1 

Earlier studies on nonredundant heteromeric complexes with experimental binding kinetics data depicted 2 

positive and negative correlations of buried surface area (BSA) with association32 and dissociation33 rates. 3 

In these studies, a 500 Å2 to 3500 Å2 increment of BSA caused 1010-fold elevation of dissociation 4 

constant, that is expected to elevate the mean lifetime of a complex from milliseconds to hours34. These 5 

results suggest that for small dimeric complexes, higher BSA of the two subunits may lead to longer half-6 

lives of the individual subunits. In other words, a positive correlation between BSA and 
1/2

T  can be 7 

expected. Estimating the BSA from crystal structure data (Online Methods), we indeed find this positive 8 

correlation for homo and heterodimers (
1/2,log 0.23BSA Tr  , 0.01p  , Fig. 5b). This relationship applies to 9 

homomers up to dodecamers but not to heteromers any larger than dimers, probably because the temporal 10 

order of homomer dissociation largely follows the decreasing order of BSA28, which is not necessarily true 11 

for heteromeric complexes29. Use of percent of accessible surface area (ASA) buried (12 

% 100ASAb BSA ASA  ) instead of BSA, elevates this correlation to 
1/2

homo

% ,log 0.54ASAb Tr   (
6

10p


 ) for 13 

homo- and 
1/2

hetero

% ,log 0.51ASAb Tr   (
4

10p


 ) for heterodimers (Fig. 5b). 14 

Divergence of topology and of oligomerization promiscuity alters protein half-life in evolution 15 

Structural determinants of protein half-life that we have analyzed so far are irrespective of the architecture 16 

of degradation machinery present in the cellular environment, which raises the question whether such 17 

attributes are exploited to alter protein half-life during evolution. Paralog protein pairs12 (arose from gene 18 

duplication) provide an excellent platform for such comparison between evolutionarily related proteins 19 

evolving under similar conditions. We observe a surprising result that divergence of native topology 20 

following gene duplication leads to altered half-lives of paralog pairs (Fig. 5c). 21 

Gene duplication is often associated with loss and emergence of novel functions35,36. We identify a 22 

molecular signature of such functional diversification for 721 out of 1632 pre-identified yeast paralog 23 

pairs12 in terms of their oligomerization with non-identical sets (overlapping/nonoverlapping) of 24 

macromolecular complexes, which again, efficiently captures altered half-lives of these paralog pairs 25 

(Fig. 5c). Oligomerization with non-identical sets of complexes is associated with average ⁓194 min 26 

variation of half-life, which is substantial, given ⁓140 min average yeast doubling time during 27 

exponential growth37. Thus, altered half-life due to oligomerization with non-identical sets of 28 

macromolecular complexes could have a significant impact on the duration for which a protein can impart 29 

its function and thus affect cellular behavior. 30 

Discussion 31 

How does the intrinsic structural features affect the lifetime of a protein? For over a decade this question 32 

has been of outstanding interest in molecular biology. The mechanistic details of proteasomal function led 33 

to the recognition of two factors to influence protein lifetime in vivo. Those include the presence of 34 

structural motifs promoting ubiquitinoylation38 and the presence of IDRs of sufficient size amenable to 35 

proteasomal engagement12. Our work extends the realm of these intrinsic structural features by 36 

distinguishing native topology of biological proteins and their potential to oligomerize into 37 

multicomponent complexes as master regulators of protein half-life in the cell. It is remarkable how 38 
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simple geometrical considerations and oligomerization information appear to explain much of the 1 

differences in protein half-life over an entire genome, that includes nearly a thousand-fold variation of 2 

half-lives, and an enormous diversity of sequence, structure and function of the proteins compared. 3 

The topological complexity of the protein fold (represented by ACO) plays a crucial role in determining 4 

the kinetics of protein folding39. We represent the first quantitative sketch of how the same factor acts as a 5 

molecular marker of their mechanical resistance and thereby captures variations of protein half-life. 6 

Further analysis shows that although overall degree of disorder of globular proteins also regulates their 7 

mechanical resistance, ACO plays the major deterministic role (Text S1). The role of long-range contacts 8 

in determining protein’s mechanical resistance was first revealed by comparing the unfolding patterns of 9 

ubiquitin and protein L, those feature similar fold class, but the former requires ⁓70 pN higher force to 10 

unwind21. The terminal segments, by which the two proteins were pulled, make similar number of 11 

contacts with the hydrophobic core of both proteins, but the number of long-range contacts made between 12 

terminal regions of protein L and its hydrophobic core are significantly fewer than those for ubiquitin. 13 

This suggested that protein’s mechanical stability emerges from how the terminal—that is being pulled—14 

is globally and cooperatively stabilized across the structure21. We generalize this concept in terms of a 15 

surprising correlation between mechanical resistance and ACO, that is further informative to capture half-16 

life variations of thousands of proteins across yeast genome. The relationship between ACO and 17 

mechanical resistance may be the missing link to rationalize a wide range of observations regarding force-18 

induced protein remodeling. The observation that native state ACO of β-sheet proteins is significantly 19 

higher than that of α-helix proteins of similar lengths (Text S1), indicates why the latter is mechanically 20 

weaker than the former40,41. Variation of ACO in different domains of multidomain proteins reflects their 21 

mechanical anisotropy (require unequal forces to unwind), and in turn, their directional preference to 22 

proteasomal degradation22. 23 

For oligomeric proteins, sequestration into multimeric complexes itself warrants escaping proteasomal 24 

degradation to some extent17–20, resulting much weaker correlations between half-life and native topology. 25 

This correlation is even more weaker for proteins that remain disordered in monomeric state (Text S1). 26 

The role of cooperative stability to elongate protein lifetime in the complexed state was extrapolated 27 

multiple times in the past17–20, but this notion receives its first genome-scale assessment only in this study. 28 

Results depict that the impact of cooperative stability is generic but versatile. The generic nature is likely 29 

inherent to the fact that sequestration into complexes buries the disordered segments amenable to 30 

proteasomal engagement26, making oligomers more likely candidates of escaping proteasomal 31 

degradation compared to monomers having similar ACO. And the versatility is likely achieved by varying 32 

the temporal window of proteins being in the oligomeric state. This is attained by at least four 33 

mechanisms, (i) promiscuity of oligomerization (elevates the probability of finding the protein in 34 

oligomeric state), (ii) pervasive or temporary attachment with the complexes (central particles are 35 

permanent members of the complex and have longer half-lives than attached particles that are temporary 36 

members), (iii) temporal order of binding in the self-assembly pathway (early binding proteins remain in 37 

oligomeric state longer than late binding proteins) and (v) surface area buried upon binding (larger 38 

surface area ensures slower dissociation and hence longer half-life). This versatility of cooperative 39 

stability is believed to be important for the robustness and evolvability of genetic circuits20. These results 40 

further suggest that complex lifetime should have a strong influence on half-lives of its constituent 41 

subunits, challenging protein biochemists to assess this concept to direct experimental testing. 42 
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We observe that structural divergence upon gene duplication and association with differential set of 1 

macromolecular complexes influence half-lives of paralogue protein pairs. It also suggests a mechanism 2 

for divergence of half-life among orthologous proteins between species. Earlier, evolutionary variations 3 

leading to alteration of disordered regions was suggested to provide a simple evolutionary mechanism for 4 

fine-tuning protein lifetime according to regulatory sub-functionalization of paralogous proteins12. Our 5 

results suggest that fine-tuning protein half-life can also be achieved by harboring genetic variants that 6 

encode proteins with altered structural geometry compared to the wild-types42. Such evolutionary 7 

innovations are believed to manipulate regulatory schemes in genetic circuits to foster evolvability43. 8 

In summary, our results reflect a complex interplay among versatile biophysical constraints associated 9 

with native topology, assembly, and oligomerization of biological macromolecules maintaining protein 10 

half-life in the cell. Native topology and oligomerization of proteins into multimeric complexes are 11 

independent of the architecture of the degradation machinery, and therefore, these factors are expected to 12 

be in effect equivalently in all living organisms. 13 
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 2 

 3 

 4 
Figure 1 Native topology acts as a marker of protein’s mechanical resistance. (a) A schematic representation of 5 
proteasome function. (b) The peak unfolding forces estimated for pulling the termini of 11 globular proteins at 600 6 
nm/s and of 5 proteins at 300 nm/s speeds (G1 set), in Atomic Force Microscopy experiments, are plotted against 7 
their native ACO. (c) The peak unfolding forces estimated in all-atom computer simulation to unwind 11 proteins from 8 

N-terminal at 
7

5 10  nm/s speed are plotted against their native ACO (G2A set). Solid lines indicate linear 9 
regressions. (d) The peak unfolding forces estimated in all-atom computer simulation to unwind 16 proteins from N- 10 

and C-terminal separately at 
6

5 10  nm/s speeds are plotted against their native ACO (G2B set). (e) For titin, green 11 
fluorescent protein and filamin, elevation/demotion of mechanical resistance upon point-mutations is associated with 12 
alike changes of ACO. The three proteins are unfolded at three different speeds, suggesting this pattern is 13 
irrespective of chain-pulling speeds. (f) Proteasome prefers to unwind globular proteins by using the terminal as 14 
initiation site that requires minimum peak unwinding force. For three such experimentally verified cases, where the 15 
two termini are located at two distinct structured domains, ACO associated with the two domains are plotted, along 16 
with highlighting the directional preference of proteasome. (g) The percent of undegraded molecules of barnase and 17 
dihydrofolate reductase (DHFR, from Escherichia coli and mouse) after 200 minutes of incubation with the 18 
proteasome are plotted against their ACO. 19 
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 1 

 2 

 3 

 4 
Figure 2 Native topology captures half-life variations of globular proteins on a genomic scale. (a) For monomeric and 5 
(b) oligomeric proteins with crystal structures covering entire protein lengths, logarithms of half-life values are plotted 6 
against native state ACO. Solid lines signify linear regression. (c) For monomeric and (d) oligomeric proteins with 7 
crystal structures covering ≥ 75% of protein lengths, logarithms of half-life values are plotted against native state 8 
ACO. (e) For crystal and modeled structures of 1110 yeast proteins, their logarithmic half-lives are plotted against 9 
their native state ACO, followed by a linear regression. (f) Four plots depict that for larger complexes, the correlation 10 
between logarithmic half-life and ACO drops. The top panels include the plots for homodimers and homooligomers, 11 
the bottom panels include plots for heterodimers and heterooligomers. 12 
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 1 

 2 

 3 

 4 
Figure 3 Cooperative stability is a master regulator of oligomeric protein half-life. (a) At similar ranges of native state 5 
ACO, half-life distributions of mono- and oligomeric proteins are compared using pairwise Mann-Whitney U-tests. (b) 6 
An example of different isoforms of TRAMP complex and definitions of central and attached subunits. (c) Comparing 7 
half-life distributions of proteins associated with different number of complexes (as central subunits) using pairwise 8 
Mann-Whitney U-tests. (d) At similar ranges of native state ACO, half-life distributions of monomeric, central and 9 
attached proteins are compared using pairwise Mann-Whitney U-tests. (e) A schematic representation of classifying 10 
oligomeric proteins into g1 (participate in ≥1 complexes as central particles only), g2 (contribute to ≥1 complexes as 11 
central and to ≥1 complexes as attached particles) and g3 (participate in ≥1 complexes as attached particles only) 12 
groups. (f) Comparing half-life distributions of proteins across g1, g2 and g3 using pairwise Mann-Whitney U-tests. 13 

 14 

 15 

 16 
Figure 4 Differential cooperative stabilities of core and attached proteins. (a) Comparing ACO distributions of proteins 17 
across g1, g2 an g3 groups using permutation Kruskal-Wallis test. The three distributions do not differ significantly. 18 
Comparing the lengths of (b) N-terminal, (c) internal and (d) C-terminal intrinsically disordered regions of proteins 19 
across g1, g2 an g3 groups using permutation Kruskal-Wallis test. The length cutoff for terminal and internal 20 
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disordered regions for direct proteasomal engagement is 30 and 40 amino acids (ref. 12). (e) Comparing the percent 1 
of internal disordered region burial proteins across g1, g2 an g3 groups using permutation Kruskal-Wallis test. 2 

 3 

 4 
Figure 5 Assembly hierarchy and subunit buried surface area as regulators of protein half-life. (a) The computational 5 
pipeline to investigate whether and how assembly pathways of macromolecular complexes influence half-lives of 6 
different subunits binding in different temporal order. (b) Buried surface area (BSA) and percent of accessible surface 7 
area buried (%ASAb) of homomeric and heterodimeric complex subunits are correlated with subunit half-lives. Solid 8 
lines signify linear regressions in each case. (c) To investigate how structural (differential ACO) and functional 9 
divergence (association with non-identical sets of complexes), we compute three parameters shown in the figure: δT, 10 
δACO and δss. We find the linear regressions between δT and δACO and that between δT, δss. Solid lines signify 11 
linear regressions, dotted blue lines represent 95% prediction bands. 12 
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 1 

 2 

Online Methods  3 

Protein half-Life Data 4 

Here we use the filtered in vivo protein half-life data for Saccharomyces cerevisiae, earlier analyzed by 5 

Madan Babu and co-workers12. This dataset includes the half-lives of 3273 yeast proteins, originally 6 

measured by Belle et al.1. Belle et al.1 measured protein half-lives by first inhibiting protein synthesis in 7 

exponentially growing yeast cells with the antibiotic cycloheximide and then monitoring the abundance of 8 

each C-terminally TAP-tagged protein in the yeast genome by quantitative Western blotting at three 9 

different time points. 10 

Protein structure data 11 

On 19th April 2017, we downloaded 2853 yeast protein X-ray crystallographic structures from Protein 12 

Data Bank44. Structures included in this dataset comprise only the annotated Saccharomyces cerevisiae 13 

proteins, obtained from the Saccharomyces Genome Database45. This initial dataset is further filtered 14 

based on two criteria: (i) the X-ray resolution is ≤ 3.0 Å and (ii) at least 75% of the primary chain is 15 

present in the electron density map, (iii) for multiple structures of the same protein, satisfying both the 16 

above criteria, we chose the highest-resolution structure. This filtering leaves us with only 267 crystal 17 

structures with ≤ 3.0 Å resolution. This dataset is too small, compared to the proteome-level half-life data 18 

of 3273 yeast proteins. Hence a reliable proteome-wide tendency cannot be expected to be derived by 19 

analyzing these 267 proteins only. Therefore, we also downloaded 5847 modeled yeast proteins from 20 

ModBase46. ModBase is a database of comparative protein structure models, calculated by a standardized 21 

automated comparative protein structure modeling pipeline46. In this pipeline, a structure model of the 22 

protein of interest in build based on one or more template structures having a certain degree of sequence 23 

identity with the protein of interest. A model is considered to be reliable (have a reliable fold assignment) 24 

if it is evaluated within the following thresholds by at least one of these model evaluation criteria46: (i) 25 

MPQS (ModPipe Quality Score) ≥ 1.1, (ii) TSVMod NO35 (estimated native overlap at 3.5 Å) ≥ 40%, 26 

(iii) GA341 (concerns the correct 3D coordinate assignments of the Cα atoms) ≥ 0.7, (iv) E-value 27 

(significance of the alignment between the target and the template by PSI-BLAST47) < 0.0001, and (v) 28 

zDOPE < 0 (for understanding the theoretical development of these parameters, please refer to ref. 46). 29 

We include a model structure in our structure dataset based on the following criteria: (i) the modeled 30 

region covers ≥ 75% of the protein length, (ii) MPQS (ModPipe Quality Score) ≥ 1.1, (iii) TSVMod 31 

NO35 (estimated native overlap at 3.5 Å) ≥ 40%, (iv) GA341 ≥ 0.9, (v) PSI-BLAST E-value between 32 

model and template structures is < 10−8, and (vi) zDOPE < 0. After applying these constraints, we are left 33 

with reliable model structures of 1003 proteins. 34 

Protein intrinsic disorder data 35 

We have used the intrinsic disorder data of 3273 yeast proteins (those with available half-life data), earlier 36 

predicted by Madan Babu and co-workers12. The authors used three complementary methods48–50 for 37 

inferring residue-level disorder tendency of each yeast protein. 38 

Protein mechanical unfolding data 39 
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The mechanical unfolding of globular proteins upon pulling the amino acid chain (similar to that occurs 1 

upon proteasome engagement) has been addressed by Atomic Force Microscopy experiments and by 2 

computer simulations. We have used three datasets in our work (Data S1). The first group (G1) includes 3 

16 proteins unfolded in Atomic Force Microscopy experiments, by pulling the polypeptide chains at 600 4 

nm/s (11 proteins) and 300 nm/s (5 proteins) speeds. This dataset is collected from Brockwell et al.50 and 5 

Sułkowska and Cieplak51. The second group (G2) includes 27 proteins unfolded in all-atom computer 6 

simulations. Eleven proteins (G2A) were pulled from the N-terminal at 
7

5 10 nm/s speed (C-terminal 7 

fixed). This data is also collected from Sułkowska and Cieplak51. Sixteen proteins (G2B) were pulled 8 

from N- and C-terminal separately at 
6

5 10 nm/s speed, keeping the other terminal free, thus allowing the 9 

substrate to rotate and adopt a less obstructive orientation for unfolding (as happens during degradation). 10 

This data is collected from the work of Wojciechowski et al.52. 11 

In addition, we have collected experimental mechanical unfolding data for three proteins, Dictyostelium 12 

discoideum filamin53, yellow and green fluorescent proteins54 and Ig27 domain of titin55, each depicting 13 

alterations of mechanical resistance upon point-mutations in the native protein. This data is used to verify 14 

whether enhancement/reduction of mechanical resistance in these cases are associated with respective 15 

increase/decrease of contact order. 16 

Absolute Contact Order estimation (ACO) 17 

The absolute contact order (ACO) of a protein structure is defined as the average amino acid separation of 18 

3D contacts56: 19 

1
( , ) i j

i jc

ACO i j s s
n 

    20 

where cn  is the total number of residue-residue contacts, is  and 
js  are the sequence positions of residues 21 

i  and j , and ( , )i j  is the selection criteria that includes i  and j  into analysis only if they are in 22 

contact and if 4i j  . This 4i j   criterion ensures that contacts included in ACO estimation 23 

reflect 3D topology of the proteins, rather than secondary structures. We defined a residue contact 24 

between a pair of residues when the distance between any two atoms from the residue pair is less than the 25 

sum of their van der Waals radii plus 0.5 Å cut-off distance57. 26 

Accessible and buried surface area calculation 27 

The Surface Racer program58 is used to calculate the solvent accessible and buried surface areas of the 28 

proteins, with probe radius taken to be 1.4 Å, which resembles the radius of one water molecule. We 29 

calculated the solvent accessible surface area (ASA) of the two interacting partners separately (in their 30 

complexed conformation) and in associated state. If the ASA of the two partners are A1 and A2 and of 31 

their associated structure is A3, then buried surface area (BSA) is defined as (A1+A2−A3)/2. 32 

Proteome-wide screening for macromolecular complexes 33 

For a proteome-wide screening of yeast macromolecular complexes, we begin with downloading the 34 

previously published dataset of 491 yeast complexes by Gavin et al.24 and 412 complexes included in the 35 
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Complex Portal of the IntAct Molecular Interaction Database25. The database presented by Gavin et al.24 1 

was the first proteome-wide screening for macromolecular machines in yeast, using tandem-affinity-2 

purification method coupled to mass spectrometry (TAP–MS) to all 6,466 ORFs of Saccharomyces 3 

cerevisiae. Entries in Complex Portal25 are based on manual curation of widespread experimental data 4 

depicting direct physical association between complex subunits, such as affinity chromatography, 5 

chromatin immunoprecipitation, coimmunoprecipitation, two hybrid fragment pooling, tandem affinity 6 

purification, electron microscopy and x-ray crystallography. We (i) carefully compare the entries in these 7 

two databases, (ii) further curate the information therein (regarding the existence of the complex and its 8 

subunit composition) based on extensive protein-by-protein literature search of published experimental 9 

data and (iii) add new complexes in the set (along with subunit composition information) accordingly. We 10 

particularly look for reports concerning (i) different isoforms of a given complex and (ii) its temporary 11 

attached particles, such as chaperons and assembly co-factors. Homology-based predicted complexes are 12 

disregarded and only experimentally verified complexes are considered. We finally identify 80 13 

homomeric and 805 heteromeric complexes. Data S2 includes the association information of different 14 

proteins with different macromolecular complexes along with literature reference. 15 

Using this data, first for any given complex, we classify the subunits into two groups: (i) functional 16 

subunits present in the matured complex (if different isoforms exist they are present in most of the 17 

isoforms) are called central, the remaining (ii) temporary attached proteins such as assembly cofactors 18 

and subunits present only in some of the isoforms of a complex are called attached particles. 19 

In addition to subunit composition, we further look for literature evidence concerning self-assembly of 20 

macromolecular complexes. By an extensive literature search we collect the assembly hierarchy of 35 21 

yeast complexes (Data S3) indispensable to central cellular processes such as replication, transcription, 22 

translation, cell cycle and transport. 23 

Yeast paralogue data 24 

Yeast paralog pairs were obtained from the work of van der Lee et al.12; authors generated the paralogue 25 

set by an all-against-all sequence comparison using BLASTClust47. They added more divergent paralogs 26 

from the yeast whole-genome duplication event61. 27 

Statistical Analysis 28 

All the statistical analyses are performed using in-house Python scripts and PAST software package62. 29 
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Data S1 1 

Group G1. Dataset of proteins unfolded in Atomic Force Microscopy experiments. The Protein Data 2 

Bank (PDB) code is listed if the corresponding structure of the protein is available in PDB. Fmax represent 3 

the peak unfolding force required to unwind the corresponding protein, vp is the chain pulling speed. 4 

Literature reference for each protein is provided. 5 

Protein PDB Fmax (pN) vp (nm/s) Reference 

α-spectrin 1U4Q 30 300 1, 2 

α-spectrin R16 1AJ3 54 300 3 

α-spectrin13−18, 18−21 1U4Q 26 300 1, 2, 4 

β-spectrin1−4 1S35 27 300 1, 2, 5 

α-actin1−4 1HCI 38 300 2, 4 

lipoyl domain of aceF 2K7V 15 600 6 

C2A 1DQV 60 600 7 

T4 lysozyme 1B6I 64 600 8 
10FNIII 1FNF 74 600 9, 10 

Calmodulin 1CFC 80 600 7 
13FNIIII27 1FNH 89 600 10 

TNFN 1TEN 113 600 11 
1FNIIII27 1OWW 120 600 10 
12FNIII13FNIII 1FNH 124 600 10 

I27 1TIT 127 600 12 

FNIII 2N1K 220 600 10 

 6 
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Group G2A. Dataset of proteins unfolded in Computer simulations by pulling the N-terminal, while 1 

keeping the other terminal fixed. The Protein Data Bank (PDB) code is listed if the corresponding 2 

structure of the protein is available in PDB. Fmax represent the peak unfolding force required to unwind 3 

the corresponding protein, vp is the chain pulling speed. Literature reference for each protein is provided. 4 

Protein PDB Fmax (pN) vp (nm/s) Reference 
I1 oxidized 1GCG 2397 5x107 1 

I1 reduced 1GCG 2090 5x107 1 

I27 1TIT 2479 5x107 2 

I27 1TIT 2040 5x107 2, 3 
7FNIII 1FNF 1638 5x107 4, 5 
10FNIII 1FNF 1580 5x107 4, 5, 6 

Bovine 1V9E 3000 5x107 7 

Cad1 1EDH 1850 5x107 5 

Cad2 1EDH 1970 5x107 5 

Cell adhesion VCAM1 1VSC 2050 5x107 5 

Cell adhesion VCAM2 1VSC 1620 5x107 5 
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Group G2B. Dataset of proteins unfolded in Computer simulations by pulling N- and C-terminal 1 

separately, while keeping the other terminal free. The Protein Data Bank (PDB) code is listed if the 2 

corresponding structure of the protein is available in PDB. Fmax represent the peak unfolding force 3 

required to unwind the corresponding protein, vp is the chain pulling speed. Literature reference for each 4 

protein is provided. 5 

Protein PDB Fmax (N-terminal) 

(pN) 

Fmax (C-terminal) 

(pN) 

vp (nm/s) Reference 

Cohesin 1AOH 495 407 5x106 1 

Green fluorescent protein 1GFL 253 253 5x106 1 
Nudix 1VCD 440 385 5x106 1 
Cytolysin 1O72 286 341 5x106 1 
Cytolysin 1GWY 308 341 5x106 1 
Purine nucleoside phosphorylase 1ODI 352 374 5x106 1 
Lectin 1Y2X 319 286 5x106 1 
Lutheran glycoprotein 2PF6 297 407 5x106 1 
Purine nucleosidase phosphorylase 1OTX 297 341 5x106 1 
ADP-ribose pyrophosphatase 2DSD 352 286 5x106 1 
Purine nucleoside phosphorylase 1NW4 319 363 5x106 1 
Dihydrofolate reductase 1U71 275 253 5x106 1 
I27 domain of titin 1TIT 264 286 5x106 1 
Ribonuclease H 1RIL 363 231 5x106 1 
Barnase 1BNR 209 176 5x106 1 
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 10 

Proteins with experimental evidence concerning altered mechanical resistance upon point 11 
mutations 12 

Protein variant Fmax (pN) vp (nm/s) Reference 

Titin (I27) 204 600 1 

Titin (Y9P-I27 mutant) 266 600 1 

Dictyostelium discoideum filamin 73 100 2 

Dictyostelium discoideum filamin 

((Gly)5 insertion at pos. 33) 

56 100 2 

Green fluorescent protein (GFP) 100 400 3 

Yellow fluorescent protein (YFP) 

(S65G, V68L, Q69K, S72A, T203Y mutations in GFP) 

200 400 3 
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Data S2 and Data S3 1 

Available upon personal request to the authors. 2 
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Text S1 1 

Protein’s mechanical resistance correlates with their fraction of disordered residues as well 2 

It is a well-established fact that presence of disordered regions is associated with weaker mechanical 3 

resistance of biological proteins and proteasomes exploit this attribute by preferring the disordered 4 

termini of substrate proteins as initiation sites of forced unwinding1. Since the percent of disordered 5 

residues (PDR) present within a protein can be considered as a measure of their overall stability2,3, we aim 6 

to find a quantitative sketch of how PDR correlates with protein’s mechanical resistance. We estimate the 7 

PDR of proteins included in G1, G2A and G2B datasets using DISOPRED3 algorithm4 and obtain 8 

statistically significant negative correlations with peak unfolding forces. 9 

Linear regression for G1 group: 10 

 11 

Linear regression for G2A group: 12 

 13 

Linear regression for G2B group: 14 
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 1 

The correlation between PDR and mechanical resistance is basically quantitatively presents the already 2 

established concept that proteins with higher degree of disorderness would unfold easily. Though this 3 

issue has been repetitively tested and validated in multiple experiments, a simple mathematical sketch has 4 

been missing until now. 5 

ACO, not PDR, is the major determinant of protein’s mechanical resistance 6 

In the main text, we have shown that higher ACO is associated with higher mechanical resistance of 7 

substrate proteins. Here we observe another striking fact that overall degree of disorderness, measured as 8 

PDR, contributes to protein’s mechanical resistance as well. 9 

If ACO and disorder both determine mechanical resistance, what are their unique contributions (if the 10 

other is absent) to the correlation with mechanical resistance? We have calculated the partial correlations 11 

of ACO and PDR with mechanical resistance to answer this question. If both A and B correlate with C, 12 

partial correlation between A and C excludes the effect of B to estimate A’s unique contribution. 13 

Results for G1 set (* signifies correlation p value < 0.05) 14 

Original Pearson correlations Partial correlations 
 ACO PDR  ACO PDR 

ACO   ACO   

PDR −0.40  PDR −0.12  

Fm 0.95* −0.76* Fm 0.88* −0.54* 

 15 

Results for G2A set (* signifies correlation p value < 0.05) 16 

Original Pearson correlations Partial correlations 

 ACO PDR  ACO PDR 

ACO   ACO   

PDR −0.37  PDR −0.09  

Fm 0.74* −0.60* Fm 0.68* −0.47 

 17 

 18 

 19 
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Results for G2B set (* signifies correlation p value < 0.05) 1 

Original Pearson correlations Partial correlations 
 ACO PDR  ACO PDR 

ACO   ACO   

PDR −0.53*  PDR −0.18  

Fm 0.89* −0.52* Fm 0.85* −0.21 

 2 

The partial correlation between ACO and PDR vanishes when we exclude the effect of mechanical 3 

resistance. This proves the correlation between ACO and PDR is merely an indirect correlation. The 4 

fascinating observation is that, even after excluding the effect of PDR, there is only a little reduction of 5 

the correlation between mechanical resistance and ACO. Conversely, if we exclude the effect of ACO, the 6 

correlation between mechanical resistance and PDR drops severely. This clearly dictates that at least for 7 

small globular proteins ACO is the major deterministic factor of mechanical resistance, while PDR has a 8 

minor effect. This result may be a result of the fact that proteins included in these datasets are all globular 9 

proteins with a few disordered residues at their termini. Disorder may play much stronger roles in proteins 10 

with longer disordered segments. 11 

 12 

 13 

Complex subunits, that remain structured in monomeric state, depict stronger correlations 14 
between ACO and half-life 15 

Gunasekaran et al.5 showed that a simple plot (Nussinov plot) of length-normalized Buried Surface Area 16 

(BSA/L) versus length-normalized Accessible Surface Area (ASA/L) of complex subunits (at complexed 17 

state) can tell us whether a subunit of interest remains unstructured or structured at monomeric state. We 18 

exploit this concept to infer the disorder/order status of complex subunits with resolved crystal structures 19 

at monomeric state (see Online Methods). 20 

 21 

Using this plot, we estimate the correlations between half-life and absolute contact order (ACO) for 22 

subunits (i) those that remain unstructured and (ii) structured in monomeric state. 23 

Linear regressions for homo- and heteromeric subunits that remain disordered in monomeric state: 24 
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 1 

Linear regressions for homo- and heteromeric subunits that remain structured in monomeric state: 2 

 3 

Nussinov plot leads us to some very interesting conclusions. First, ACO is a much stronger regulator of 4 

half-life for oligomeric proteins that remain structured in monomeric states as well, compared to those 5 

that remain disordered at monomeric state. It is a well-known fact that oligomeric proteins degrade much 6 

faster in monomeric state. So, for proteins that remain structured prior to degradation, ACO stands as a 7 

marker of mechanical resistance and thus affects half-life. For proteins, that become unstructured at 8 

monomeric state, one cannot expect a correlation between complexed state ACO and half-life. 9 

 10 

Stronger correlations between BSA and half-life is obtained for complex subunits that remain 11 
structured in monomeric state, compared to those that remain disordered 12 

In the main text, we have shown that BSA acts as a marker of dissociation rate of complex subunits. 13 

Because oligomeric proteins degrade much faster in monomeric state, proteins that dissociate slowly from 14 

complexes, have longer half-life. We now ask whether this relationship depends on the fact that some 15 

oligomeric proteins remain structured and others remain disordered in monomeric state. 16 

Linear regressions between BSA and half-life for homo- and heteromeric complex subunits that remain 17 

disordered in monomeric state: 18 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Linear regressions between BSA and half-life for homo- and heteromeric complex subunits that remain 12 

structured in monomeric state: 13 
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 1 

Nussinov plot again leads us to some very interesting conclusions. Proteins that obtain stable 3D structure 2 

only after binding depict weaker dependency with BSA. Just as we noticed in the main text, the 3 

correlation gets improved when we consider percent of ASA buried (%ASAb) instead of BSA. It has been 4 

previously shown that proteins with higher disorderness can even get degraded directly from complexes, 5 

if proteasomes can access their segments that remain disordered even in complexed state. This probability 6 

of proteasomal engagement is expected to be much weaker for proteins that are remain ordered even in 7 

monomeric state, explaining the BSA dependency. 8 

 9 

 10 
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