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ABSTRACT 

Genome variant detection is a challenge task in cancer genome analysis. Current software for 

variant detection is very time-consuming and in the same time not accurate enough to satisfy 

the requirements of clinical applications in precision oncology. We developed an all-round 

ultra-fast Genomic Variant Caller (GVC), which can detect Germline and Somatic variants, 

including SNVs and INDELs from genome sequencing data with super high speed and 

accuracy. GVC achieved mean F1-measure of 99.34% and 97.92% for Germline SNVs in 

WGS and WES datasets, respectively. And GVC reached mean F1-measure of 97.34% and 

89.03% for Germline INDELs in WGS and WES datasets, respectively. GVC achieved mean 

F1-measure of 90.79% and 86.3% for Somatic SNVs in WGS and WES datasets, respectively. 

GVC reached mean F1-measure of 76.88% and 68.36% for Somatic INDELs in WGS and 

WES datasets, respectively. GVC outperformed all the other widely used pipelines. GVC 

showed super-fast processing speed, exhibiting 128-fold and 54-fold increase in comparison 

to GATK in WGS and WES datasets processing, respectively. GVC webtool is available from 

GVC Web Tool https://gvc.0cancer.cn. Basing on the accurate GVC algorithm, we also released 

tumor mutation burden (TMB) results of TCGA datasets on GVC Web Tool. 
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INTRODUCTION 

Detection of the Germline and Somatic mutation is key step in characterizing the blood and tissue 

genome. Germline mutations are those DNA sequence changes occur during various stages of 

zygote development exist in all kinds of tissues that can be passed on to offspring. Germline 

mutations occur in tumor suppressor genes or proto-oncogenes predispose an individual to 

develop tumor. Identification of critical cancer-gene variants in tumor samples could better defines 

patient diagnosis and prognosis, and it also presents what targeted therapies must be administered 

to improve the care of selected cancer patients in the personalized-medicine scenario. The 

expanded applications of NGS in oncology include not only prediction of checkpoint inhibitor 

response, quantification of tumor mutational burden and neoantigen burden, but also the 

personalization of cell transfer technologies and cancer vaccines1. 

 

Next generation sequencing (NGS) is by far the most promising technology for de novo mutation 

detection. However two primary obstacles hinder the clinical application of mutation detection via 

NGS. One is the precision of variant calling with NGS data. Mutations are difficult to identify 

accurately due to low occurring frequency, tumor purity and clonality2. The PCAWG (Pan-Cancer 

Analysis of Whole Genomes) project is an international collaboration from ICGC (the 

International Cancer Genome Consortium), investigating patterns of mutation in more than 2,800 

patients with cancer. INDELs results in PCAWG project called by extensively used bioinformatic 

pipelines from Sanger, DKFZ/EMBL and Broad institute represent a low level of consistency at 

42%. In order to achieve a higher variant call accuracy, many algorithm strategies have been 

designed and implemented, including the heuristic approaches (VarScan2, Shimmer, and RADIA 

etc)3-5, joint genotype analysis (SomaticSniper, FaSDsomatic, and SAMtools etc)6,7, joint allele 

frequencies analysis (Strelka, MuTect, and LoFreq etc)8-10, haplotype-based strategy (Platypus, 

FreeBayes, and MuTect2 etc)4, and machine learning methods (MutationSeq, SomaticSeq, and 

SNooPer etc)11-13. Variant calling using machine learning methods is essentially a classification 

problem. Four train classifiers including random forest, Bayesian adaptive regression tree, support 

vector machine, and logistic regression have already been explored in variant detection. However, 
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the overall performance is still not ideal.  

 

The other major obstacle of NGS data processing in clinical application is variant calling speed. 

Technical advances in NGS technologies have reduced both the cost and time required to generate 

a large volume of sequencing data, but variant calling is still such a time-consuming process due 

to the high complexity of the issue and the large volume of the data. In mutation detection, 

widespread used software such as Bcftools14, Varscan4, and GATK15, all run at a very slow speed 

to detect variants, which can hardly satisfy the requirement of clinical applications. It is a great 

challenge to obtain variant calling results efficiently and accurately from massive data. 

 

We developed GVC (genome variant caller), which can detect Germline and Somatic mutations 

with ultra-fast speed and high accuracy. The core algorithm of GVC is integrated with Feature 

Space construction and XGBoost machine learning. XGBboost is a scalable end-to-end tree 

boosting system, and it scales beyond billions of examples using far fewer resources than existing 

systems and exhibits tremendous potential in variant detection. We applied several benchmarking 

datasets including whole genome and whole exon sequencing datasets from ICGC and TCGA to 

evaluate the sensitivity and specificity of GVC in comparison to other widespread used softwares. 

Results validated that GVC could deliver genome variant caller with high accuracy ultra-fast 

speed. 
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RESULTS AND DISCUSSION 

Overview of the GVC workflow 

As a machine-learning based pipeline, GVC can be divided into two parts (Figure 1), Genome 

Analysis and Training. After cleaning of the raw sequencing data, alignment of the fastq-format 

reads to a reference genome (GRCh37) is carried out by BWA-mem to obtain corresponding 

BAM (Binary Alignment Map) files. GVC takes BAM files as input for either only normal sample 

or matched normal-tumor sample pairs. Features fitted to different applicable scenario are 

extracted automatically. False variants were filtered through machine-learning model to obtain the 

candidate mutations. In the training part of the GVC pipeline, uncertain variants are validated by 

Sanger sequencing or ultra-deep sequencing. Validated variants and datasets are added into the 

iGC database which can be used to train updated machine learning model for better performance. 

Detecting, validation and training compose the core of the GVC workflow, and make it a flexible, 

scalable and customizable. 

[INSERT FIGURE 1 HERE] 

GVC exhibits two main characteristics. Firstly it applied BAM files to extracted features of 

sequencing data, such as read depth, mapping quality, base quality and so on (see method). 

Around 30 Features could be extracted for Somatic variant calling. It is notable that Feature Space 

construction of GVC is a flexible and scalable process according to diverse applied scenarios. For 

example in liquid biopsy sample, GVC added at least 10 features to Feature Space in order to 

eliminate recurrent artifacts and stochastic errors. Secondly GVC is a machine learning-based 

variant caller. Distinguished from other machine-learning based variant callers, GVC applied 

XGBoost classifier as its core algorithm. According to the Feature Space or experimental 

validation, GVC could adjust a set of “ground truth” variants, and retrained the model to get better 

performance. 

It should be pointed out that various library construction methods, diverse sequencing platforms, 

different quality evaluation systems, sequencing depths, and read lengths, all contribute to 

diversity of data features. We suggested that users select appropriate GVC models or train their 
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GVC models with their own data (see method) to achieve better performance. We believe GVC 

has broad application potential due to its scalable Feature Space and customizable data models. 

 

Accuracy of GVC on Germline variant calling 

Two WGS (Whole Genome Sequencing) and four WES (Whole Exome Sequencing) training 

datasets derived from well-studied human sample NA12877 and NA12878 were downloaded from 

Platinum Genomes project. A reference paper16, and k-fold cross validation strategy was used in 

training process (see method and Supplementary Table 1). We assessed the accuracy of GVC’s 

SNVs and INDELs calls against the Genome in a Bottle Consortium (GIAB) truth set derived 

from NA12877 (3,520,925 SNVs and 512,092 INDELs) and NA12878 (3,526,588 SNVs and 

522,924 INDELs). GVC achieved F1-measure of 99.34% and 97.92% for Germline SNVs in 

WGS and WES datasets, respectively. These detection rates exceeded those of Bcftools, GATK 

and Varscan tools (WGS: ≤99.19%, WES: ≤97.57%) (Figure 2A, Supplementary Table 2, 

Supplementary Table 3 and Supplementary Fig. 1). And GVC also reached F1-meature of 97.34% 

and 89.03% for Germline INDELs in WGS and WES datasets, respectively. These detection rates 

exceeded those of Bcftools, GATK and Varscan tools (WGS: ≤95.73%, WES: ≤78.96%) (Figure 

2B, Supplementary Table 2, Supplementary Table 3 and Supplementary Fig. 1). In short, GVC 

obtained excellent performance in Germline variant calling in comparison to other widespread 

used software and pipelines. 

[INSERT FIGURE 2 HERE] 

 

Accuracy of GVC on Somatic variant calling 

We downloaded forty WGS breast cancer datasets with matched normal-tumor paired samples 

from the PCAWG (Pan-Cancer Analysis of Whole Genome) project on AWS (Amazon Web 

Services) for GVC WGS Somatic variant training. Ten-fold cross validation strategy was applied 

in training process (see method). We evaluated the accuracy of GVC’s SNVs and INDELs calls 

against the consensus dataset declared by ICGC (see method). GVC obtained mean F1-measure of 
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90.79% for WGS Somatic SNVs. This detection rate exceeded those of MUSE tools as well as 

pipelines from Sanger institution, Broad institution and German Cancer Research Center (DKZF) 

(SNVs: ≤ 88.12%) (Figure 3A and Supplementary Table 5). GVC achieved mean F1-measure of 

76.88% for WGS Somatic INDELs. This detection rate exceeded those of pipelines from Sanger, 

Broad and DKZF (INDELs: ≤75.66%) (Figure 3B and Supplementary Table 6). In order to verify 

the robustness of the WGS Somatic model, we randomly picked 80 Pan-Cancer datasets from 8 

cancer types (10 dataset for each cancer type) for testing. Results showed that the SNVs average 

performance is over 88% and INDLE average performance is over 70%. GVC also achieved 

excellent performances on Pan-Cancer WGS datasets (Supplementary Fig. 2). Taken together, 

GVC exhibits superior performance in WGS Somatic variants calling than other widely used 

software and pipelines. 

[INSERT FIGURE 3 HERE] 

XGBoost (eXtreme Gradient Boosting) algorithm was used for WES SNVs and INDELs model 

training (see method). We obtained around 7,000 WES pan-cancer datasets with matched 

normal-tumor pairs from TCGA (The Cancer Genome Atlas) project on GDC data portal for GVC 

WES Somatic variant training.  

Total 1,000 training data from 11 cancer types and 846 validation data from 16 cancer types were 

used for GVC SNVs model training and validation, respectively (Supplementary Table 7). We 

evaluated the performance of GVC’s SNVs calls against the consensus dataset declared by TCGA 

MC3 (see method). SNVs results showed that GVC outperformed all the other widely used 

softwares. The mean F1-measure of 846 validation datasets was 86.3% in GVC, 65.37% in 

Varscan, 85.61% in MUTECT, 85.3% in MUSE, 72.14% in RADIA and 65.11% in 

SomaticSniper (Figure 4A and Supplementary Table 8). GVC showed excellent performance of 

WES SNVs calling on TCGA Pan-Cancer datasets with mean F1-measure above 86.53% 

(Supplementary Fig. 3A). 

[INSERT FIGURE 4 HERE] 

Total 1,701 training data from 10 cancer types and 649 validation data from 14 cancer types were 
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used for GVC INDELs model training and validation, respectively (Supplementary Table 7). We 

evaluated the performance of GVC’s INDELs calls against the high confidential ANS datasets we 

defined (see method). INDELs calling of GVC also achieved appealing performance. Results 

showed that GVC achieved mean F1-measure of 68.36% for WES Somatic INDELs (Figure 4B 

and Supplementary Table 9). This detection rate exceeded those of Indelocator, Pindel, Varscan 

and Mutect tools (INDELs: ≤ 64.61%). GVC showed excellent performance of WES INDELs 

calling on TCGA pan cancer datasets with mean F1-measure above 73.22% (Supplementary Fig. 

3B). Taken together, GVC showed superior performance in WES Somatic variants calling than 

other widely used softwares. 

TMB (tumor mutation burden), defined as the number of somatic, coding, nonsynonymous 

mutations per megabase of genome examined (mutations/Mb coding region), is an evolving 

biomarker that may be helpful in selecting patients for immunotherapy. Accurate mutation calling 

is a pivotal prerequisite for TMB evaluation. Aforementioned results showed that GVC had 

superior performance in WES Somatic variant calling than other publicly used softwares. We 

further compared the total mutation load (ML) called by GVC with ML called by other MC3 

softwares. It has been shown that GVC had the minimum ML deviation from the consensus MC3 

dataset when comparing with other publicly used softwares (Supplementary Fig. 4). Basing on the 

accurate GVC algorithm, we released the TMB results of TCGA datasets on GVC Web Tool 

(http://gvc.0cancer.cn). 

 

Run time comparison 

Variant detection is a time-consuming process. We compared the running time of GVC with other 

three widely used softwares VARSCAN, Bcftools and GATK in Germline mutation calling. WGS 

(average depth: 50X) and WES (average depth: 90X) datasets of NA12877 and NA12878 were 

used for running time testing, and the main computing resources are 20 cores and 384 memory. 

The results of GVC in WGS datasets showed 32-fold, 27-fold and 128-fold increase in processing 

speed in comparison to VARSCAN, Bcftools and GATK, respectively (Figure 5A WGS). The 

results of GVC in WES datasets exhibit 36-fold, 42-fold and 54-fold increase in processing speed 
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in comparison to VARSCAN, Bcftools and GATK, respectively (Figure 5A WES). Ten WES 

datasets were randomly used (average depth around 100X) for running time testing in Somatic 

mutation calling. One thread was used to run the software and the main computing resources are 

40 cores and 384G memory. The results of GVC in WES datasets showed 9.6-fold and 5.3-fold 

increase in processing speed in comparison to MUTECT and VARSCAN, respectively (Figure 

5B). Taken together, ultra-fast processing speed and superior performance of GVC on both 

Germline and Somatic variant calling pave the way to its extensive application in both academic 

and clinical scenario. Aforementioned GVC Web Tool (http://gvc.0cancer.cn) was developed for 

users who can freely experience GVC variant calling performance and the compassion of TMB 

between user’s cohort and TCGA cohort. 

[INSERT FIGURE 5 HERE] 
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CONCLUSION 

Rapidly developed NGS technology has made data analyzing a big challenge for both 

researchers and clinicians. How to identify mutations efficiently and accurately is still a big 

problem. Here we exploited GVC, combining Feature Space construction with XGBoost 

machine learning method, to obtain a data-driven training model for Germline and Somatic variant 

calling with ultra-fast speed and high accuracy. Basing on the accurate GVC algorithm, we 

released tumor mutation burden (TMB) results of TCGA datasets on GVC Web Tool 

http://gvc.0cancer.cn. 
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METHODS 

Datasets for Germline mutation 

We used the NA12877 and NA12878 datasets for Germline variant training and testing. They are 

the most studied genome came from Coryell CEPH/UTAH 1463 family. We downloaded the WGS 

data from Platinum Generals Project (Https://www.illumina.com/platinumgenomes.html), where 

the sequencing platform is Illumina Hiseq 2000 and the depth is 50X. In the paper, we chose four 

WES samples, including SRR1611178, SRR1611179, SRR1611183 and SRR1611184, among 

them SRR1611178 and SRR1611179 came from Illumina Hiseq 2000, while others came from 

Illumina Hiseq 2500. 

During Germline model training, we used only the NA12878 data set. We used a high confidential 

set of NA12878 which published by GIAB (Genome in a bottle consortium) to mark the train set. 

We used the rtg-tools which can process complex VCF format files, detect the variation location, 

assess mutants Genome type (heterozygous or homozygous), and evaluate the performance within 

a highly confidential intervals. 

 

Datasets for Somatic mutation 

The PCAWG (Pan-cancer Analysis of Whole Genomes) projects on AWS include more than 2,400 

genomes from 1100 donors, among which have 44 breast normal-tumor paired WGS samples. We 

abandoned four sets of data with low consistency in INDELs consensus, and finally used 40 sets 

of data for model training and testing. 

We selected 40 sets of ICGC breast data, using the consensus published by ICGC. ICGC 

consensus sets are built by variant calling pipelines from four academic organizations which 

respectively are the German Cancer Research Center (DKFZ), the European Molecular Biology 

Laboratory (EMBL) in Heidelberg, the Wellcome Trust Sanger Institute, and the Broad Institute. 

In order to verify the robustness of the WGS Somatic model, we pick eight cancer projects form 

PCAWG, each randomly selects 10 datasets for performance evaluation. 
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ICGC annotates consensus results for different situations, such as PASS, LOWSUPPORT (Not 

called by enough callers in ensemble), OXOGFAIL (Failed OXOG oxidative artifact filter), bSeq 

(Sequencing Bias), bPcr (PCR Bias), GERM1000G (1000Genome variant with insufficient 

somatic evidence), GERMOVLP (Overlaps germline Haplotype call), NORMALPANEL 

(Presence in Panel of Normals), REMAPFAIL (Variant no longer seen under remapping), SEXF 

(Likely artifact or call in PAR region: Y-chromosome variant in female donor). We chose the 

PASS filter label as the SNP “ground truth” set. Unlike the consensus result of SNVs which 

established by four academic pipeline, ICGC’s INDELs consensus result comes from three variant 

calling pipeline, including Sanger, Broad and DKFZ. “LOWSUPPORT” variants called by single 

software would be credible through IGV. So the INDELs “ground truth” set including (1) marked 

as PASS point set; (2) Single software supported and tumor Alt count >=4, normal alt count <=0. 

We use the “ground truth” set to mark training data and evaluate predictive results. 

Around 7,000 pan-cancer datasets with matched normal-tumor pairs from TCGA were employed 

for WES Somatic variant training with XGBoost (eXtreme Gradient Boosting) algorithm. Total 

1,000 training data from 11 cancer types and 846 validation data from 16 cancer types were used 

for GVC SNVs model training and validation, respectively, and total 1,701 training data from 10 

cancer types and 649 validation data from 14 cancer types were used for GVC INDELs model 

training and validation, respectively. 

 

Measure method 

The following 4 measures were used to estimate classifier performances:  

(1) Sensitivity (or Recall or true positive rate) measures the proportion of the known Somatic 

variants those are correctly predicted as those and is defined as TP/ (TP + FN), where TP is true 

positive and FN is false negative.  

(2) Precision is a fraction of the correctly called Somatic mutations to all variants that are labeled 

as Somatic by the classifier and is defined as TP/ (TP + FP), where FP is false positive. 

(3) F1-measure is the harmonic mean of precision and recall: 2 × (Precision × Recall)/ (Precision 
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+ Recall).  

(4) Area under ROC curve (AUC) denotes the probability that a classifier assigns a higher score to 

the positive instance than a randomly chosen negative sample. It measures the general ability of 

the classifier to separate the positive and negative classes. The best performing classifier for each 

cancer dataset was selected based on AUC and F1-measure. 

 

Feature construction 

GVC extracts feature information from BAM file to assemble feature vector space, which includes: 

(1) the quality statistics information, such as the mapping quality and base quality; (2) some 

number statistics, such as mismatch number, read depth, read number with different start point, 

read strand, mutant frequency; (3) the distance information, such as the distance from variant point 

to read end; (4) Database Library, such as dbSNP, COSMIC and 1000G frequency; (5) Features 

are constructed according to other SNP software such as GATK and Samtools，such as Consensus 

base, SNP quality, root mean square mapping quality and Phred-scaled p-value and Somatic score; 

(6) Other statistic, such as Fisher test. 

 

Training method 

Large amount of training set leads to large memory consumption and long training time. 

Meanwhile, too many negative loci will affect the accuracy of the model. So we did the 

pretreatment: In Germline training, satisfying the condition that read_depth >= 10, Mutant read 

number >= 2, baseQ >= 20 and mapQ >= 20 are chose as the candidate set. In WGS Somatic 

training, the training set must satisfy the condition that read_depth >= 10, Mutant read number >= 

2, normal frequency <= 10%, baseQ >= 20 and mapQ >= 20. In the training step, we adopted 

XGBoost method, a machine learning algorithm based on gradient big regression tree. In order to 

make full use of the data, we adopted the k-fold cross validation training strategy. 

And for WES Somatic training, XGBoost used the maximum threshold of trees 5,000, and the 
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depth of the tree 3. During model construction, 80% and 20% of the datasets were randomly 

utilized for model training and inner validation, respectively. And the training model was finally 

tested for its performance in separate testing datasets. 
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SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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FIGURE LEGENDS 

 

Figure 1｜Overview of the GVC pipeline. GVC pipeline can be divided into two main 

procedures, (i) GVC takes sorted BAM as input files and constructs feature vectors in order to 

pick out confident variants, (ii) GVC elevates model accuracy by continuously adding validated 

data. 

 

Figure 2｜Germline variant calling performances of Bcftools, GATK4, Varscan and GVC on 

NA12878 and NA12877. (A) Comparison of the performances between GVC and commonly used 

SNP calling softwares on WGS and WES data. ERR194146 and ERR194147 are the WGS data of 

NA12877 and NA12878, respectively. SRR1611178, SRR1611179, SRR1611183 and 

SRR1611184 are all WES data of NA12878. (B) Comparison of the performances between GVC 

and commonly used INDELs calling softwares on WGS and WES data. ERR194146 and 

ERR194147 are the WGS data of NA12877 and NA12878, respectively. SRR1611178, 

SRR1611179, SRR1611183 and SRR1611184 are all WES data of NA12878. 

 

Figure 3｜WGS Somatic variant calling performances of GVC and other softwares and 

pipelines on 40 WGS breast cancer dataset from ICGC. (A) Comparison of the performances 

between GVC and widely used SNVs calling softwares (MUSE) and pipelines from Sanger, 

DKFZ/EMBL and Broad institutions. (B) Comparison of the performances between GVC and 

widely used INDELs calling pipelines from Sanger, DKFZ/EMBL and Broad institutions. 

 

Figure 4｜WES Somatic variant calling performances of GVC and publicly used softwares 

on TCGA datasets. (A) WES Somatic SNVs calling performances of GVC and publicly used 

softwares on TCGA datasets. (B) WES Somatic INDELs calling performances of GVC and 

publicly used softwares on TCGA datasets. 

 

Figure 5｜Run time comparisons between GVC and widely used softwares. (A) Comparison 
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of the run time of Germline variant calling between GVC and widely used softwares. (B) 

Comparison of the run time of Somatic variant calling between GVC and widely used softwares. 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary Figure 1｜ROC curves for method comparison. Data used to construct these 

ROC curves were obtained from Bcftools (purple), GAKT4 (red), Varscan (blue) and GVC 

(green). ROC curve is built by rtg-tools. 

 

Supplementary Figure 2｜Robustness of GVC WGS Somatic model.. Using breast cancer 

training model to predict Pan-Cancer datasets (80 datasets from 8 cancer type) from PCAWG 

Project. 

 

Supplementary Figure 3｜The performance of GVC on TCGA pan cancer datasets. (A) The 

performance of GVC of WES SNVs calling on TCGA pan cancer datasets. (B)The performance of 

GVC of WES INDELs calling on TCGA pan cancer datasets. 

 

Supplementary Figure 4｜Mutation load (ML) deviation of GVC and other publicly used 

softwares from the consensus MC3 datasets. ML deviation numbers between ML of softwares 

and ML of MC3 were calculated. And Log10 (|ML_deviation_num| + 0.01) was used for density 

plot. 
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Table S4 Scripts used in Germline variant calling of GATK, Bcftools and Varscan. 

Step1 Alignment: 

bwa mem -t 32 -M -R "@RG\tID:Seq01\tSM:Seq01\tPL:ILLUMINA" ref.fa fq1 fq2 > out.sam 

gatk SortSam -SO coordinate -I output.sam -O output.sorted.bam 

Step2 Mark duplicates 

gatk MarkDuplicates -I output.sorted.bam -O output.marked.bam -M output.marked.metrics 

samtools index -@ 32 output.marked.bam 

Step3 Public software calling   

3-1: GATK pipeline 

gatk BaseRecalibrator -R ref.fa -I output.marked.bam --known-sites dbsnp_138.hg19.vcf.gz 

--known-sites Mills_and_1000G_gold_standard.indels.hg19.sites.vcf.gz -O output.recal.table 

gatk ApplyBQSR -R ref.fa -I output.marked.bam -bqsr output.recal.table -O output.bqsr.bam 

gatk HaplotypeCaller -R ref.fa -I output.bqsr.bam -D dbsnp_138.hg19.vcf.gz -O 

output.germline_variants.vcf 

gatk VariantRecalibrator -R ref.fa -V $str.germline_variants.vcf \ 

-resource hapmap,known=false,training=true,truth=true,prior=15.0:hapmap_3.3.hg19.sites.vcf.gz 

-resource 

omni,known=false,training=true,truth=false,prior=11.0:1000G_omni2.5.hg19.sites.vcf.gz 

-resource 

1000G,known=false,training=true,truth=false,prior=10.0:1000G_phase1.snps.high_confidence.hg

19.sites.vcf.gz -resource 

dbsnp,known=true,training=false,truth=false,prior=2.0:dbsnp_138.hg19.vcf.gz -an DP -an QD -an 

FS -an MQRankSum -mode SNP -O output.raw.SNPs.recal.vcf -tranches-file 

output.raw.SNPs.tranches   

gatk ApplyVQSR -R ref.fa -V output.germline_variants.vcf -mode SNP -recal-file 

output.raw.SNPs.recal.vcf -tranches-file output.raw.SNPs.tranches -O output.recal.SNPs.vcf 

3-2: bcftools pipeline 

samtools mpileup -f ref.fa -g output.marked.bam | bcftools call -cv > output.bcf.vcf 
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3-3: varscan pipeline 

samtools mpileup -f ref.fa output.marked.bam | java -jar varscan.jar mpileup2snp --variants 

--output-vcf > output.varscan.snp.vcf 

samtools mpileup -f ref.fa output.marked.bam | java -jar varscan.jar mpileup2indel --variants 

--output-vcf > output.varscan.indel.vcf 
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