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Many models of cognition and of neural computations posit the use and estimation of prior 

stimulus statistics1–4: it has long been known that working memory and perception are 

strongly impacted by previous sensory experience, even when that sensory history is 

irrelevant for the current task at hand. Nevertheless, the neural mechanisms and brain 

regions necessary for computing and using such priors are unknown. Here we report that 

the posterior parietal cortex (PPC) is a critical locus for the representation and use of prior 

stimulus information. We trained rats in an auditory Parametric Working Memory 

(PWM) task, and found that rats displayed substantial and readily quantifiable behavioral 

effects of sensory stimulus history, similar to those observed in humans5,6 and monkeys7. 

Earlier proposals that PPC supports working memory8,9 predict that optogenetic silencing 

of the PPC would lead to a behavioral impairment in our working memory task. Contrary 

to this prediction, silencing PPC produced a significant performance improvement. 

Quantitative analyses of behavior revealed that this improvement was due to the selective 

reduction of the effects of prior sensory stimuli. Electrophysiological recordings showed 
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that PPC neurons carried far more information about sensory stimuli of previous trials 

than about stimuli of the current trial. Furthermore, the more information about previous 

trial sensory history in the neural firing rates of a given rat’s PPC, the greater the 

behavioral effect of sensory history in that rat, suggesting a tight link between behavior 

and PPC representations of stimulus history. Our results indicate that the PPC is a central 

component in the processing of sensory stimulus history, and open a window for 

neurobiological investigation of long-standing questions regarding how perception and 

working memory are affected by prior sensory information. 

 

Finding long-term regularities in the environment, and exploiting them, is a critical brain 

function in a complex yet structured world. But little is known about the neural mechanisms 

involved in estimating the regularities, or involved in their impact on memory. The history of 

sensory stimuli is known to affect working memory (WM)10,11, as it does in many other tasks 

involving sensory percepts12,13. One salient example, discovered over a century ago14 and then 

repeatedly observed in human cognition5,14,15 is known as  “contraction bias,” which has been 

conceptualized as an effect in which the representation of a stimulus held in working memory 

shifts towards the center of the distribution of stimuli observed in the past (the “prior 

distribution”). Despite the ubiquity of this phenomenon, and much psychophysical and 

theoretical research into the use and effects of prior stimulus distributions2,3, the neural 

mechanisms of contraction bias have not been identified. 

     Based on previous work using somatosensory stimuli6, and inspired by Parametric Working 

Memory (PWM) tasks in primates7, we developed a computerized protocol to train rats, in high-

throughput facilities, to perform a novel auditory PWM task (behavioral shaping code available 
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at http://brodylab.org/auditory-pwm-task-code). PWM tasks involve the sequential comparison 

of two graded (i.e., analog) stimuli that are separated by a delay period of a few seconds, here 

two auditory pink noise stimuli, ‘sa’ and ‘sb’; rats were rewarded for correctly reporting which of 

the two was the louder stimulus (Fig. 1a). Following16, the set of [sa, sb] pairs used across trials 

in a session was chosen so that neither sa nor sb, taken alone,  

 

Figure 1. Rat performance and contraction bias in an auditory Parametric Working Memory Task. a, 

Schematic of a task trial. Trained rats inserted their nose in a central port until an auditory ‘Go’ signal indicated 

release. During this “nose fixation” period, a 400-ms auditory noise stimulus ‘sa’ was presented, followed by a 

multi-second variable-duration silent delay, then by a second auditory noise stimulus ‘sb’. If the overall loudness of 

sa was greater than that of sb, the subjects were rewarded for poking into the right port after the ‘Go’ signal; if sa<sb, 

they were rewarded for poking left.  b, Stimulus set and performance of an example rat, averaged over sessions and 

delay intervals ranging from 2 to 8 s. The colored boxes represent the set of [sa, sb] pairs used in a session. On each 

trial, a pair was selected at random and presented to the rat. Small purple squares show [sa,sb] pairs used in a subset 
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of sessions to assess performance at psychometric threshold. c, Contraction bias schematic. Presented stimuli (black 

boxes) are thought to produce a percept (grey boxes), and drive behavior, as if the initially presented sa were closer 

to the average stimulus <s> (vertical midline) than its presented value. For some [sa,sb] pairs this will decrease the 

difference between sa and sb, and thus impair performance (Bias-, red) while for others it will have the opposite 

effect (Bias+, green). d, Performance, averaged across n = 21 rats and across all stimuli, as a function of delay 

duration. Error bars represent standard deviation over rat subjects. e, Psychometric curves for one example rat (fits 

to a four-parameter logistic function; see Methods), for three different delay durations. Dashed line shows the 

tangent to the fitted sigmoid at the midpoint, used to calculate the slopes shown in the panel (f). See Extended Data 

Fig. 2 for other 14 rats. f, Midpoint slopes of psychometric curves for each animal, as a function of delay duration. 

Red is the average and standard deviation over rats. Magenta indicates the example rat in (e). 

 

contained sufficient information to solve the task (Fig. 1b). As with any magnitude 

discrimination task, the smaller the difference between sa and sb, the harder the task (Fig. 1c). 

Classical contraction bias5 argues that during the delay interval, the memory of the magnitude of 

sa drifts towards the mean of all stimuli presented in the task (Fig. 1c, vertical line labeled 

“<s>”). Consequently, on those [sa,  sb] pairs in which sa drifts away from the high difficulty sa=sb 

diagonal, the memory of sa would become more distinct from sb and thus contraction bias would 

cause performance to improve (“Bias+” regions with green dashed outline in Fig. 1c). Whereas 

in pairs where sa drifts towards the diagonal, performance would decrease (red “Bias-”, Fig. 1c). 

This predicted pattern can be seen in our rat behavior (Fig. 1b, high % correct for Bias + stimuli 

[sa, sb] = [84, 92] and [68, 60], lower % correct for Bias - stimuli [sa, sb] = [60, 68] and [92, 84]). 

The same pattern has been observed in monkeys17 and humans (Extended data Fig 1d-e, 

and5,6,18).  History-dependent effects are likely adaptive in the natural world, where there are 

many long-term regularities. But in our laboratory task, in which each trial is generated 

independently, such history biases lead, on average, to suboptimal performance.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182246doi: bioRxiv preprint 

https://doi.org/10.1101/182246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

Figure 2. Sensory history biases behavior. a,  Left, behavioral bias as a function of previous trial’s stimuli, for 

fixed previous trial response choice and reward. Grey lines are different current trial [sa,sb] pairs, black line is 

average over pairs. Right, Stimulus History Matrix, showing percentage of trials with a left response for all 

combinations of current and previous stimuli. Modulation along the vertical indicates a previous trial effect. b, Same 

format as in (a), data from human subjects engaged in a similar auditory PWM task (n = 11). c, Same format as in 

(a), human tactile data (n = 14). d, The logistic regression model of behavior. Weights on a linear weighted sum of 9 

regressors are used to predict the logarithmic probability ratio log(Pgo Left / Pgo right), with weights fit to best match 

training data, and evaluated on left-out cross-validation data (Methods). Regressors are: average of sensory stimuli 

over the last few tens of trials (but excluding last two trials); each of stimuli sa and sb from each of the last two trials; 
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correct (i.e., “winning”) side on the last trial, which is sufficient to drive a win-stay/lose-shift strategy; current trial 

sa and sb; and an overall side bias. e, Evaluation of a variety of model variants with different regressors on left-out 

cross-validation data (Methods; see Extended Data Fig. 6 for full set of models tested). Model performance is 

quantified in bits/trial (see Methods). Leftmost model: Model with regressors as in panel (d). Moving rightwards, 

regressors progressively removed from the models are: long-term sensory history; each of last two trials’ sensory 

stimuli sa and sb (short-term sensory history); previous trial correct side. Next two models in crimson have the same 

regressors as the first two models, but the weights on the current trial’s sa plus all previous sensory stimuli weights 

are constrained to add to 1, thus removing one free parameter. Best-performing model is the constrained model with 

regressors shown in panel (d). f, Stimulus History Matrix predicted by model with current trial regressors and 

previous trial correct side only is a poor match to the data in (a). See Extended Data Fig. 6c for quantification of 

matrix similarity. g, As in (f), now for a model also including sensory history regressors, as in (d) is a much better 

match to panel (a). h,  Summaries of values of best-fit parameter values over all subjects. Black ticks are best-fit 

values; gray bars span the 95% CIs. Each panel has been divided by task (pink highlight for human auditory task, 

blue highlight for human tactile task) and then sorted based on the parameter value of w0
a (similar ordering is used 

for other panels). Note the comparatively small strength of previous correct side regression weight (see Extended 

Data Fig. 6d for comparison between sensory history versus correct side regression weights). 

The overall performance of our rats was robust and similar across memory delay intervals ranging from 2 s to 12 s 

(Fig. 1d; see Extended Data Fig.1 b-c for performance over the 3 to 4-month long course of learning). In a subset 

of sessions, we included [sa, sb] stimulus pairs that were closely spaced along sa (small purple squares in Fig. 1b), 

and used these to measure the psychometric discrimination threshold (Fig. 1e). This threshold did not vary 

significantly across delays intervals ranging from 2 to 6 seconds (P=0.7, Fig. 1f). 

 

In contrast to the negligible effects induced by varying the memory delay interval (Fig. 

1d,f), we found that a strong effect was induced by the history of sensory experience. As will be 

quantified below, this sensory history effect was stronger than the well-documented influence of 

previous rewards and choices  19–21 (see also Extended Data Fig.1 g-i). Examining only trials in 

which in the immediately previous trial the subject had gone to the right and had received a 
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reward, and therefore holding previous reward and choice fixed, Fig. 2a, left shows that the 

smaller the previous trial’s sa and sb stimuli,  the greater the percentage of leftward choices in the 

current trial  (slope = -3.06 percent per decibel, p < 0.0001, see Extended Data Fig. 5a for 

slopes from leftward biases from n=1,..,7 trials back). This is consistent with a contraction bias 

in which the estimate of <s> is weighted towards recent stimuli18, because small values of recent 

stimuli would then make the current sa more likely to be perceived as small, increasing the 

likelihood of an “sa < sb (go Left)” response. Fig. 2a, right shows the same effect across all 

combinations of current and previous trial stimuli from our standard stimulus set (see Extended 

Data Fig. 3 for Sensory History Matrices for n=1,..,5 trials back, and Extended Data Fig. 4 for 

full set of such trial history matrices, controlled for action and reward). Similar effects were 

found in human versions of the task using auditory (Fig. 2b) or tactile (Fig. 2c) sensory 

modalities. To simultaneously take into account effects across multiple previous trials of the 

history of rewards, choices, and sensory stimuli, we fit logistic regression models with these 

variables as regressors, and compared the performance of a variety of such models on cross-

validation data  (Fig. 2d; Methods and Extended Data Fig. 6). Consistent with human data18, 

short-term (last two trials) sensory history had strong effects on behavior. In addition, our large 

dataset revealed a smaller but nevertheless important effect of longer-term (average of last few 

tens of trials) sensory history (Fig. 2e). In a weighted average, all weights sum to 1. Constraining 

the sum of regression weights on the current trial’s sa stimulus plus weights on previous sensory 

stimuli to be equal to 1, thus effectively removing one parameter from the model, led to the best 

performance on cross-validation data (Fig. 2e, red). This is consistent with the contraction bias 

proposal that sensory history does not add a behavioral bias that is independent of working 

memory, but instead produces a value of sa held in working memory that is a weighted average of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182246doi: bioRxiv preprint 

https://doi.org/10.1101/182246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

the current stimulus and sensory history22–27 (Fig. 2e, see Extended Data Fig. 6 for full set of 

models and comparison between them). Sensory history was critical for accounting for behavior 

(Fig. 2f,g): examining the weights in the regression model shows that the weights for sensory 

history terms are larger than those for the rewarded side history term (Fig. 2h; see also Extended 

Data Fig. 6d).  

The PPC has been proposed as critical for working memory (8,9,28  but see 29,30), and we 

therefore examined its role in our working memory task. We injected bilaterally an AAV virus 

that drives expression of the light-activated inhibitory opsin halorhodopsin eNpHR3.0, under the 

CaMKIIa promoter (center of injection located at AP -3.8mm and ML 2.5mm from Bregma, Fig 

3a, Extended Data Fig. 7a). Optical fibers were inserted at the centers of the injection sites to 

deliver laser illumination, and we  inactivated PPC during a randomly-chosen 20% of trials. To 

best probe for any small effects, we included psychometric stimuli (purple squares, Figs. 1b and 

3b). Expecting a performance impairment8, we were surprised to observe instead an 

improvement in psychometric performance in all the animals tested (Fig. 3c). However, the 

effect was not simply an overall performance improvement: looking beyond the psychometric 

stimuli,  
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Figure 3. PPC is specifically necessary for behavioral effect of previous sensory stimuli. a, Schematic indicating 

injection of virus expressing the inhibitory opsin eNpHR3.0  in bilateral PPC and laser stimulation on 20% of 

randomly chosen trials. b. Stimuli used in these optogenetic silencing experiments included both our standard set of 

[sa,sb] pairs (black) as well as stimuli used to measure psychometric performance (purple). Inset at right: 

psychometric performance of an ideal agent. c, Psychometric curves for individual animals for control trials (cyan) 

and trials with PPC inactivated (yellow). In all animals tested, PPC inactivation led to a psychometric curve closer to 

the ideal performance. Right, sham inactivation in rats implanted with optic fibers with no virus expressing 

eNpHR3.0 had no effect (n=2). d, Percent correct averaged across all Bias+ trials or all Bias- trials (see Fig. 1c), 

relative to overall average performance. PPC inactivation eliminates the difference between performance in Bias+ 

trials, versus Bias- trials, or versus the overall average  (laser off: “Bias +” - “Bias -” = 14.29, p < 0.00001; laser on: 

(“Bias +” - “Bias -” = 1.79, p = 0.706; laser off vs laser on: p = 0.0027) e, The bias induced by previous trial sensory 

stimuli is reduced under PPC inactivation (laser off trials:  slope of -4.74, p = 0.0017; laser on trials: slope of -1.36  
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p = 0.42; laser on vs. laser off: p=0.044; equal number of trials for two conditions)  f, PPC inactivation selectively 

reduces the sensory history weights (left panel) in the regression model of Fig. 2d. Error bars show 95% confidence 

interval. Right panel includes sum of all the other  weights for non-sensory-history regressors, which are not 

significantly affected by the inhibition. See Extended Data Fig. 9a for comparison of all individual weights. g, 

Reducing the sensory history weights in the model is sufficient to improve psychometric performance in a manner 

comparable to the experimental data of panel (c). 

 

while performance with respect to control on Bias- trials was indeed improved, performance on 

Bias+ trials was impaired by PPC silencing (Fig. 3d, Extended Data Fig. 9b). Moreover, the 

effect was such that the difference between Bias+ and Bias- trials was eliminated, as was their 

difference with respect to the average performance (Fig. 3d). Similarly, the bias as a function of 

the previous trial’s sensory stimuli was markedly reduced (Fig 3e, laser off: p=0.42; laser on: 

p=0.0017; laser on vs. laser off: p=0.044, see Extended Data Fig. 8 for the impact of inhibition 

on the sensory history matrices). Fitting our regression model separately to the set of laser on 

versus laser off trials, we found that sensory history regression weights were significantly 

reduced when PPC was inactivated (Fig. 3f, Extended Data Fig. 9c), and no other regression 

terms were significantly affected (each individual weight shown in Extended Data Fig. 9a). A 

model in which sensory history effects were reduced to the levels shown in Fig. 3f was sufficient 

to reproduce the improvement in psychometric trials observed experimentally (Fig. 3g). Thus 

PPC silencing appeared to have no impact on working memory but instead induced a specific 

and substantial reduction of sensory history effects. 

To examine whether signatures of sensory history are present in the region whose 

inactivation appears to cancel the effect of history, we conducted extracellular recordings during 

task performance, from a total of 936 units in five animals implanted with microwire arrays, 

targeting PPC. Neurons with a mean firing rate of less than 2Hz were discarded from analyses 
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(see Methods), resulting in total of 361 units analyzed. Again in contrast to expectations of a role 

for PPC in working memory, most cells were similar to the example cell shown in Fig. 4a, in 

that their firing rates during the working memory delay period did not distinguish between 

different values of sa, the stimulus held in memory, and therefore did not carry information about 

it. Instead, robust information about the stimulus pair  appeared approximately 1 second after the 

trial had terminated, during the inter-trial-interval (ITI). We used mutual information (MI; see 

Methods) to quantify the amount of information carried, in neuronal firing rates, about which [sa, 

sb] sensory stimulus pair was presented (Fig. 4b,c; see Extended Data Fig. 10 for MI about 

other task components such as current and previous previous choices or rewards).  During the ITI 

prior to the start of a new trial, a large fraction of PPC neurons  carried significant information 

about the stimuli presented in the previous trial (22% of analyzed neurons, red curve in Fig. 4c). 

A smaller fraction of cells continued to code the previous trial’s stimuli into the start of the new 

trial (blue curve in Fig. 4c). We computed the fraction of neurons with significant MI about the 

previous trial’s stimuli, both during the ITI (Fig 4d) as well as during the current trial (Fig 4e), 

and compared this to the strength of the rat’s sensory history behavioral bias (Fig 4f, Extended 

Data Fig. 10e). During the new trial, but not during the ITI, these two measures were perfectly 

correlated  (Fig 4g, Spearman’s rank correlation r=1, p<0.01 during current trial; r=0.3, p=0.68 

during ITI; p<0.00001 ITI vs. full current trial from Steiger’s Z-test). This suggests first, a tight 

link between sensory history representations in PPC and sensory history behavioral biases, and 

second, that the PPC sensory history representation is used during or shortly after the 

presentation of the new trial’s sa (Fig. 4h), consistent with the idea that contraction bias is an 

effect on the representation of sa. 
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Parametric working memory tasks, with their readily quantifiable behavior, are well-

suited to investigating the effect of sensory history on perception and behavior. Rodent versions 

of these tasks, combined with semi-automated training as used here, are an efficient platform for 

causal and cellular-resolution investigation of the neural mechanisms involved. Our work 

provides this platform, and using it,  

 

 

Fig. 4. PPC neurons carry more information about previous trial sensory stimuli than about current trial 

sensory stimuli, and it predicts behavioral bias. a, Firing rate of an example neuron in response to different 
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values of sa. Only trials in which the animal responded to the left after the Go cue and was rewarded are shown in 

this panel, and for clarity only trials with 6 s delay interval are shown. b, Population analysis. Each row represents 

one neuron, and shows, as a function of time, the Mutual Information (MI) between the cell’s firing rate and the 

sensory stimulus pair [sa,sb]. Data from trials with delay intervals ranging from 2 to 6 s were used. The left and right 

parts of the plot are aligned to the start of sa and the start of sb, respectively. Only MI values that are significantly 

larger than the shuffled distribution (p < 0.005) are included, non-significant values are blanked out in dark blue. To 

control for reward and side choice, MI values were calculated using only trials with fixed choice and reward, and 

only then averaged across the different, separately calculated reward and choice groups. c, Summary of the 

population analysis, showing percentage of cells with significant coding of stimuli presented on trial i (in red), or on 

trial i-1 (in blue).  d, Percent of cells with significant MI about the previous trial, for each of the five recorded 

animal, calculated over a 5.3 seconds period during the ITI prior to the start of the new trial. Horizontal dashed line 

shows % of cells expected by chance from the shuffled data.  e, As in d, but data is from the 5.3 seconds duration of 

the new trial. f, Behavioral bias for individual animals, calculated as the relative  sensory history weights (to weights 

for sa and sb regressors of trial i) from the best model fit. g, Data from panel (f) plotted against data from panel (e), 

Spearman’s rank correlation r = 1.0, p<0.01. h. Calculation as in panels d-g, but using narrower 2 s-long time 

windows. The high neuron-behavior correlation appears concurrently with the presentation of the new trial’s sa.  

 

revealed the PPC as an essential node in both the representation and causal effects of sensory 

stimulus history. This opens a critical window towards a cellular resolution understanding of 

long-standing questions about how sensory stimulus history affects working memory and 

perception. Important issues that can now be addressed include precisely how sensory history 

representations in PPC interact with current stimulus representations so as to modulate 

perception,  how sensory history information reaches PPC, and which other brain regions 

connected to PPC are also essential nodes of the relevant circuit. 
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Methods 

 

Rat Subjects. A total of 30 male Long–Evans rats (Rattus norvegicus) between the ages of 6 and 

24 months were used for this study. Of these, 25 were used for behavioral assessments, 5 rats 

were used for neural recordings, and 5 for optogenetic inactivations. All statistical tests were 

made between groups with similar sample sizes. Investigators were not blinded to experimental 

groups during data collection or analysis. Animal use procedures were approved by the Princeton 

University Institutional Animal Care and Use Committee and carried out in accordance with 

National Institutes of Health standards. 

 

Human Subjects (auditory).  11 human subjects (8 males and 3 females, ages 22-40) were 

tested and all gave their informed consent. Participants were paid to be part of the study and were 

naive to the main conclusions of the study. The consent procedure and the rest of the protocol 

were approved by the Princeton University Institutional Review Board. 
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Human Subjects (tactile). 14 human subjects (8 males and 6 females, ages 22–35) were tested. 

Protocols conformed to international norms and were approved by the Ethics Committee of the 

International School for Advanced Studies. Subjects signed informed consent.  

 

Rat Behavior. We developed a computerized protocol to train rats, in high-throughput facilities, 

to perform an auditory delayed comparison task, adapted from a tactile version6. All trainings 

happen in three-port operant conditioning chambers, where ports are arranged side-by-side along 

one wall, and with two speakers, placed above the right and left nose ports. Figure 1a shows the 

task structure. A visible LED in the center port signals the availability of each trial. Rat subjects 

initiate a trial by inserting their nose into the center port that causes the center LED to turn off. 

Rats must keep their nose in the center port (“fixation” period) until an auditory “go” cue signals 

the end of fixation. Only after the “go” cue, subjects can withdraw and orient to one of the side 

pokes in order to receive water reward. During the fixation period, two auditory stimuli, ‘sa’ and 

‘sb’, separated by a variable delay, are played for 400 ms. There are short delay periods of 250 

ms inserted before ‘sa’  and after ‘sb’. Stimuli consist of broadband noise (2K-20K Hz), 

generated as a series of Sound Pressure Level (SPL) values sampled from a zero-mean normal 

distribution. Overall mean intensity of sounds vary from 60-92 dB. Rats should judge which of sa 

and sb had greater SPL standard deviation. If sa > sb then the correct action is to poke in the right 

side poke in order to collect reward, and if  sa < sb rats have to orient to the left side poke. Trial 

durations are independently varied on a trial-by-trial basis, by varying the delay interval between 

the two stimuli, that can be as short as 2 s or as long as 12 s. Rats progressed through a series of 

shaping stages, before the final version of the delayed comparison task, in which they learned to 
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1) associate light in center poke with availability of trials 2) associate sounds with reward  3) 

maintain their nose in the center poke until they hear an auditory “go” signal and 4) compare the 

two sa and sb stimuli.  

 

Human Auditory Behavior. Similar auditory stimuli to those used for rats were used in the 

human version of the task. In this experiment, subjects received on each trial a pair of sounds 

played from the earphone. First sound was presented together with a green square on the left 

side. Then there was a delay period, indicated by “WAIT!” on the screen, then the second sound 

was presented together with a red square on the right side. Subjects, at the end of the second 

stimulus after the go cue, were required to compare the two sounds and decide which one was 

louder, then indicate their choice by pressing a key with their right or left hand. Written feedback 

about the correctness of their response was provided on the screen. 

 

Human Tactile Behavior. Human subjects performed the tactile version of the task. The details 

of this task have been previously described and the behavior has been characterized6.  Briefly, at 

each trial two noisy vibration stimuli, interleaved with a variable delay interval, were delivered 

to the subject’s fingertip. Subjects viewed a computer monitor and wore headphones that 

presented acoustic noise and eliminated ambient sounds. To start a trial, the subject pressed the 

keyboard up arrow with the right hand. This triggered presentation of the two stimuli. After a 

post-stimulus delay, a blue panel illuminated on the monitor, and the subject pressed the left or 

right arrow on the keyboard, signifying selection of the first or the second stimulus, respectively. 

They received feedback (correct/incorrect) on each trial through the monitor. Human 

experiments were controlled using LabVIEW software (National Instruments, Austin, Texas).  
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Stimulus Set. If the first stimulus, sa were fixed across all trials and only the second stimulus sb 

changed, subjects might solve the task by ignoring the first stimulus and applying a constant 

threshold to the second stimulus. Likewise, if the second stimulus were fixed, subjects might 

apply a constant threshold on the first stimulus. To prevent such alternative strategies, it is 

necessary to vary both sa and sb, and use a set of stimuli composed of pairs of sa and sb which 

guarantees that across trials the same value of SPL standard deviation is randomly presented for 

the first stimulus or the second stimulus. Figure 1b represents such stimulus set. A minimum of 8 

pairs of stimuli span a wide range of SPL standard deviation values (Figure 1b). Using this 

stimulus set, if the subject were to ignore either of “sa” or “sb”, then the maximum performance 

would be 63%. The mean amplitudes of stimuli were evenly distributed in a logarithmic scale 

(linear in dB). The diagonal line represents sa = sb; all stimulus pairs on one side of the diagonal 

were associated with the same action, and all have the same ratio of sa to sb. For each trial, one of 

these 8 pairs of stimuli is randomly selected to determine sa and sb.  

 

Psychometric curves 

Psychometric plots (as shown in Fig. 1e and Fig. 3c) show the probability of the subject 

responding leftward as a function of the difference between sa and sb when sb is fixed. The fits 

were to a 4-parameter logistic function of the form  
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Where is the left endpoint, us the right endpoint, is the bias, and  is the slope. Fits 

were non-linear least square regression done using the nlinfit.m function from Matlab2013.  

 

Regression Model of Behavior 

Semi-automated training facilitated the generation of a behavioral data set comprising 468,165 

trials from 25 animals, which in turn enabled statistical characterization of the decision-making 

process. In order to quantify rats’ behavior we carried out an analysis to “weigh” the 

contributions of sa , sb, of the current trial and several trials in the past, as well as the history of 

choice and reward to the animal’s choice, as follows. From the data originating in a single 

training session, for each [sa , sb] stimulus pair, we fit animal choice with a logistic regression 

model. This model allows linear combinations of sa  and sb and other desired factors. The linear 

combination is then mapped nonlinearly into the animal choice i.e. probability of trials in which 

the subject judged sa  > sb, through a logistic function as:  

  

Where 

   

Where and  are the sb and sb regressors, respectively, from  trials back.  is the 

correct side on trial : left = +1, right = -1. This regressor captures win-stay/lose-switch 

strategy.  is the baseline regressor that captures the overall (stimulus-independent) bias of the 

subject in calling sa > sb (for instance, a bias against turning right, the side associated with the 
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judgment sa > sa). The absolute values of all the regressors are normalized between 0 and 1. We 

used the loglikelihood as the cost function: 

 

The model was fit using a gradient descent algorithm to minimize the negative log likelihood 

function cost function. We used the “sqp” algorithm of fmincon function from Matlab 2013. 

Weights were calculated using L2-regularization to prevent over-fitting. The hyperparameter 

value (lambda) was selected independently for each rat using evidence optimization, based on 5-

fold cross-validation. Different variants of the model, that systematically studies relevance  of 

various sensory and reward history factors, are discussed in the Extended Data Fig. 6.   

Model comparison and cross-validation  

All models were fit separately for each individual rat (n = 25), using 200 runs of 5-fold cross-

validation. For each run we calculated the log likelihood of the test dataset given the best-fit 

parameters on the training set (Logl). We also calculated the log likelihood of the test dataset for 

the mean value of %Left (the experimentally-measured fraction of trials in which the animal 

went left). This gives us a null log likelihood reference value (Logl0). In order to quantify the 

efficiency of each model we defined the “cross-validated bit/trial” (CV-bit/trial) as the trial-

averaged excess likelihood of the model compared to the null model31: 
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For each model, we first chose the right regularization value (lambda) that would maximize the 

CV-bit/trial. To compare different models we calculated the median value of CV-bit/trial across 

10000 fits for each subject.  

 

To compare models with different number of parameters, we used two common metrics known 

as the Bayesian and Akaike Information Criterion (BIC and AIC). They are defined as: 

 

 

Where Logl is the maximum log likelihood of the model with k parameters on n data points.  

 

Optogenetic virus injection and fibre implantation 

For optogenetic perturbation experiments, the general surgery techniques and fiber etching 

follow previous reports 32, except that we began construction with a standard off the shelf 50/125 

µm LC-LC duplex fibre cable (http://www.fibercables.com), instead of the usual FC-FC duplex 

fiber cables. The cable jacket, strengthening fibres, and outer plastic coating (typically white or 

orange) were fully removed leaving 1 cm of fibre optic cable and inner plastic coating (typically 

clear) intact. Then 2 mm of the fibre tip (with final layer of plastic coating still attached) was 

submerged in 48% hydrofluoric acid topped with mineral oil for 85 min, followed by water for 5 

min (submerging 5 mm), and acetone for 2 min (to soften the plastic). The plastic coating was 

then gently cut with a razor and pulled off with tweezers to reveal a 1 mm sharp-etched fibre tip. 

Enough plastic was removed, depending on the depth of the targeted site, to ensure that only the 

glass fibre optic would be inserted into the brain.  
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For viral injection, 2 µl of adeno-associated virus (AAV) (AAV5-CaMKIIα-eNpHR3.0-eYFP), 

that drives expression of the light-activated inhibitory opsin halorhodopsin eNpHR3.0, under the 

CaMKIIa promoter, coupled to eYFP, was lightly dyed with fast green powder and front loaded 

into a glass pipette mounted to a Nanoject (Drummond Scientific) prefilled with mineral oil. The 

pipette tip was manually cut to ~30 µm diameter. Five closely spaced injection tracts were used 

with each animal. For the central injection tract, one injections of 23 nl were made every 100 µm 

in depth starting 100 µm below brain surface for PPC for 1.5 mm. Four additional injection tracts 

were completed, using procedures identical to the central tract, one 500 µm anterior, posterior, 

medial and lateral from the central tract. Each injection was followed by a 10 s pause, with 1 min 

following the final injection in a tract before the pipette was removed. A total of 1.5 µl of virus 

was injected over a 30-min period consisting of ~160 separate injections. A chemically 

sharpened fibre optic (50 µm core, 125 µm cladding) was then lowered down the central 

injection tract to a depth of 1 mm. The craniotomy was filled with kwik-sil (World Precision 

Instruments), allowed to set for 10 min, and the fibre optic was secured to the skull with C&B 

Metabond and dental acrylic. Dental acrylic covered all the incision site and allowed only the LC 

connector to protrude. Halorhodopsin expression was allowed to develop for 6 weeks before 

behavioural testing began. 

Optogenetic perturbation 

The animal’s implant was connected to a 1-m patch cable attached to a single fibre rotary joint 

(Princetel) mounted on the ceiling of the behavioural chamber. This was connected to a 200 mW, 

532 nm laser (OEM Laser Systems) operating at 25 mW, which was triggered with a 5 V 

transistor–transistor logic (TTL) pulse. Laser illumination occurred on a random 20% of trials. 
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See Extended Data Fig. 7 for physiological confirmation of optogenetic inactivation effects in 

an anesthetized animal. 

 

Recordings 

5 animals were operated to implant microwire arrays in their left or right PPC (n=2 in rPPC, n=3 

in lPPC, see Extended Data Fig. 7 for histological localization of electrodes). The target region 

was accessed by craniotomy, using standard stereotaxic technique  (centered 3.8 mm posterior to 

bregma and 2.5 mm lateral to the midline). Dura mater was removed over the entire craniotomy 

with a small syringe needle. The remaining pia mater, even if usually not considered to be 

resistant to penetration, nevertheless presents a barrier to the entry of the microelectrode arrays, 

due to high-density arrangement of electrodes in multi-channel electrode arrays. The term 

dimpling is commonly used to describe the situation where the electrodes are pushing the brain 

cortex in without penetrating. Obviously, the more electrodes there are in an array, the more 

pronounced this effect becomes. In addition to potentially injuring the brain tissue, dimpling is 

obviously a source of error in the determination of depth measurements. Ideally, if dimpling 

could be eliminated, the electrodes would move in relation to the pial surface, allowing effective 

and accurate electrode placement. After the craniotomy is made, and the dura is carefully 

removed over the entire craniotomy, a petroleum-based ointment such as bacitracin ointment or 

sterile petroleum jelly is applied to the exact site of electrode implantation. The cyanoacrylate 

adhesive is then applied to the zone of the pia surrounding the penetration area. This procedure 

fastens the pia mater to the overlying bone and the resulting surface tension prevents the brain 

from compressing under the advancing electrodes. Once the polymerization of cyanoacrylate 

adhesive happened, over a period of few minutes, the petroleum ointment at the target site is 
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removed, and the 32 electrode microwire array (Tucker-Davis Technologies (TDT), Alachua FL) 

was inserted by slowly advancing a Narashige micromanipulator. After inserting the array(s), the 

remaining exposed cortex was covered with biocompatible silicon (kwik-sil, World Precision 

Instruments), and the microwire array was secured to the skull with C&B Metabond and dental 

acrylic. 

 

During the 10 days of recovery time, rats had unlimited access to water and food. Recording 

sessions in the apparatus began thereafter. Extracellular activity of PPC was manually sorted into 

single units and multiunits, based on the spike waveform and the refractory period observed in 

interspike interval histogram, using spike3 software, and verified later using a MATLAB-based 

software, UltraMegaSort 2000. In total 936 single or multiunits were recorded in PPC of 5 rats. 

Only neurons with overall firing rate within the session was at least 2 Hz were included in the 

analysis. These neurons summed to total of 361.  

 

Neural Analysis 

Mutual Information. In order to quantify the type and amount of information that PPC neurons 

carry about various task parameters we computed Shannon’s Mutual Information 33. In this 

formulation, the amount of information which can be extracted from the firing rate of a neuron 

R, about the task-related parameter X can be computed as: 

 

  

Where P(r|x) is the conditional probability of observing a neuronal response r given the 

presentation of the task parameter x, P(r) is the marginal probability of occurrence of neuronal 
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response r among all possible responses, and P(x) is the probability of task parameter x. 

Information measured in this way quantifies how well an ideal observer can discriminate 

between members of a stimulus set based on the neuronal responses of a single trial 34. For each 

trial, neuronal response was defined as the rate of spiking during time windows of 100 ms. The 

conditional probability in the above formula is not known a priori and must be estimated 

empirically from a limited number, N, of experimental trials for each stimulus. Limited sampling 

of response probabilities can lead to an upward bias in the estimate of mutual information 35. In 

order to correct for the bias, we used combination of two techniques. First we estimated and 

corrected the bias based on Quadratic Extrapolation (QE) method 36, that assumes the bias can be 

accurately approximated as second order expansions in 1/N. Then we used bootstrap procedure 

that consists of many rounds of pairing stimuli and responses at random in order to destroy all 

the information that the responses carry about the stimulus. Due to limited data sampling, the 

information computed using the bootstrapped responses may still be positive. The average value 

of the bootstrapped information was then used to estimate the residual bias of the information 

calculation, and was subtracted out. Moreover, the distribution of bootstrapped information 

values were used to build a non-parametric test of whether the corrected information computed 

using QE method is significantly different from zero37. 

 

 

Code and data availability. 

All software used for behavioral training is available on the Brody lab website at 

http://brodylab.org/auditory-pwm-task-code. Software used for data analysis, as well as raw and 

processed data, are available from the authors upon reasonable request. 
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Extended Data Fig. 1, Full stimulus set - Learning curve - Mean performance - Reward bias 

a, Each stimulus is made of a series of Sound Pressure Level (SPL) values sampled from a zero-mean normal 

distribution, and standard-deviation value of s. For each trial, SPL values are randomly drawn and therefore due to 

sampling statistics, the actual standard deviation value of the stimulus always differed slightly from its designated 

value. The coordinates of each small box represent the actual joint values of [sa,sb] for one sample training session. 

b, Individual gray lines shows learning curves presented as the change in % correct over months of training, for N = 

25 rats. Average rat (black line) reaches 70% of performance after 90 sessions. c, Learning curve presented as the 

ratio of the best fit weights for the second stimulus, sb, to the first stimulus, sa, using the model described in Figure 

2e (3-parameter, “No history” version). d, Rat auditory working memory performance, data from 21 rat subjects 

(total of 468,165 trials) are separated by [sa,sb] pair but averaged across subjects and over different delay durations 
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(2-8 sec). e, Human auditory working memory performance. For human, interstimulus delay varied randomly from 2 

s to 6 s. (11 subjects, 12623 trials). f, Human tactile working memory performance. Similar to panel “e” but for 

humans engaged in the tactile version of the task. In this task, interstimulus delay varied randomly from 2 s to 8 s. 

Data from 14 human subjects (total of 4694 trials) are pooled together. g,  Reward history bias. Y-axis shows the 

difference of performance on “turn right” trials, when the “k” trials back was rewarded either on the left or right. 

Data from n = 21. Errorbars show 95% confidence interval. h-i, similar to (g) for human auditory (h) and tactile (i) 

PWM task. 
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Extended Data Fig. 2, Psychometric figures, individual rats 

Psychometric curves (fits to a four-parameter logistic function for one 15 rats; see Methods), for three different 

delay durations. 
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Extended Data Fig. 3, Sensory History matrix, from 1 to 5 trials back 

a, Stimulus history matrix, as described in Figure 2b, when %left is shown given any combination of the stimuli in 

current trial (x-axis) and n-trials back (y-axis), n = 1,2,3,4,5. Data from N = 21 rats, composing total of 381,612 

trials is used in this analysis. b, Similar to panel “a”, for human auditory task. c, Similar to panel “a”, for human 

tactile task. 
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Extended Data Fig. 4, Sensory History matrix, controlled for Reward and Choice 

Similar to Extended Figure 2, except that in this plot only trials for which the previous trial was a “turn right” trial 

and the animal was rewarded are included. Therefore, modulation by previous trial cannot be due to “action” or 

“reward” history.  
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Extended Data Fig. 5, Estimating optimal window of < s >  

a, Slopes from linear fit to the %leftward bias from n-back trials (n=1:7, as in Fig. 2a where n=1 was used), and also 

< s > which is a window of 17 trials, from n=4 to n=20, in gray. Errorbars show 95% confidence intervals. Data 

from n = 25 rats. b, For each rat the optimal exponential window over the past trials was estimated such that it 

would maximize the cross-validation bit/trial measurement. Two models are compared here: green shows the 

distribution of taus from a model that has 5 regressors to account for the sensory history - first and second stimulus 

from the 2 trials back and a separate exponential window over the remaining past trials (Fig 2d). In orange, instead, 

only one regressor which is a single exponential window over all the past trials accounts for the sensory history. In 

the single-exponential model, the best fit value of tau comes out very small, practically as if only past 1 or 2 trials 

back are inducing most of the effect. c, The 5-parameter model of sensory history outperforms the single-

exponential model.   
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Extended Fig. 6, Model comparison 

a, Model comparisons, 200 runs of 5-fold cross validation were done, on data from each rat, in order to find the best 

fit parameters and to compare different model fits using the “Cross-Validated Bit/Trial” quantity defined as the 

relative value of the log likelihood of each model, to the null log likelihood, normalized in log2. Removing one 

parameter by constraining the regression weights on the current trial’s sa stimulus plus the weights on previous 

sensory stimuli to add to 1 (constrained model, in crimson) improved performance on cross-validated data compared 

to the unconstrained model (in black). c, to compare the Sensory History Matrix from the real data to the ones 

predicted from the best model fits, Frobenious distance norm was used, defined as the square root of the sum of the 

absolute squares of the difference between elements of two matrices. Frobenious distance is a measure of similarity 

and the smaller the value, the more similar the two matrices. d, examining the weights in the regression model #9, 
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which is determined to be the best model, shows that the weights for sensory history terms are larger than those for 

the rewarded side history term.  

 

 

Extended Data Fig. 7 

a, Physiological confirmation of optogenetic inactivation effect in an anesthetized animal. Left, acute extracellular 

activity of an example cell in the PPC, expressing eNpHR3.0, is shown in response to light stimulation. Laser 

illumination period (8 s) is marked by the light green bar. Right, raster-plot for 32 trials, for variable durations of 

light stimulation. b, histological localization of electrodes targeting PPC. The inset shows example of electrode 

locations in a coronal slice at AP=3.48 from Bregma. In all cases, the electrode and fiber placements in PPC were 

within between 2.8 and 4 mm anterior to Bregma and between 2 and 3.5 mm lateral to the midline.  
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Extended Data Fig. 8, Optogenetics - PPC inhibition reduces leftward bias due to past sensory stimuli 

a,  Sensory History Matrix, and leftward biases due to past sensory stimuli, similar to Figure 2a-c, but now for three 

types of trials: “laser off” trials (two leftmost panels) which consist of trials with no PPC inactivation on either 

“current” or “previous” trial; “laser on” trials (two middle panels) which consist of trials with PPC inactivation on 

“current” trial; “laser off after laser on” trials (two rightmost panels) which consist of trials immediately after the 

“laser on” trials. This last set controls for number of trials, as it contains equal number of trials to “laser on” 

condition. Modulation along the vertical indicates a previous trial effect behavioral bias as a function of previous 

trial’s stimuli, for trials for which animals went Left, and were rewarded, therefore history of reward and choice is 

held fixed. Grey lines are different current trial [sa,sb] pairs, black line is average over pairs. b, similar to (a) for 

trials for which animals went Right and were rewarded. c, similar to (a) for all combinations of current and previous 

stimuli. 
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Extended Data Fig. 9, Optogenetics - Best fit parameters for non-sensory-history weights, Data distribution 

for Fig3d-f 

a, Best fit parameter values for non-"sensory history" weights, from the 9-parameter model (short-term, Sens history 

model, constrained version, figure 2d-e). Except for the “sensory history”, none of the other weights were 

significantly affected by optogenetic inactivation of PPC. Errorbars show standard deviation of the mean. b-c, 

similar to Fig. 3d-f, with all data points overlaid on the bar-plots. 
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Extended Data Fig. 10, Mutual Information 

a, Sensory-history coding, 1 trial back, population analysis, each row represents the time course of significant 

values of Mutual Information (MI) between cell’s firing rate and the stimulus pair [sa,sb] presented on the previous 

trial. Data from all trials with variable delay duration (minimum of 2 sec) was pooled and plots are aligned to the 

beginning of sa. Data from n=5 animals, and only cells with significant values of MI values are included. When 

estimating the MI, spurious information values can be caused by the inherent correlations between task parameters, 

like sensory stimuli and choice. To overcome this, conditional MI was calculated when only trials with same 

previous choice and reward status were considered, and sensory inputs were the only variable: Left panel, on the 

previous trial animals went right and were rewarded. Right panel, on the previous trial animals went left and were 

rewarded. b, Sensory-history coding, 1 trial back, % of cells with significant coding of stimuli presented on the 

previous trial (trial i-1), aligned to the start of trial i. Only trials with delay interval of larger 4 seconds are included 

in this analysis. c, Sensory-history coding, two trials back, % of cells with significant coding of stimuli presented 

two trials in the past trial (trial i-2), aligned to the start of trial i. d, % of cells with significant coding of animal’s 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182246doi: bioRxiv preprint 

https://doi.org/10.1101/182246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

37 

choice and reward status, on both current trial (solid lines) and previous trial (dashed lines), when time is aligned to 

the current trial. e, Similar to Fig. 4f, with all data points overlaid on the bar-plots.  
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