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ABSTRACT

A key challenge in quantitative ChIP-seq is the normalisation
of data in the presence of genome-wide changes in
occupancy. Analysis-based normalisation methods were
developed for transcriptomic data and these are dependent
on the underlying assumption that total transcription does
not change between conditions. For genome-wide changes
in transcription factor binding, these assumptions do not
hold true. Misapplication of these methods to ChIP-seq
data results in the suppression of the biological signal
or erroneous measurement of differential occupancy. The
challenges in normalisation are confounded by experimental
variability during sample preparation and processing.
Current experimental methodologies do not fully control for
variables that influence DNA recovery.

We present a novel normalisation strategy utilising an
internal standard of unchanged peaks for reference. We
compare our approach to normalisation by total read depth
and two alternative methods that utilise external controls to
study transcription factor binding. We successfully resolve
the key challenges in quantitative ChIP-seq analysis and
demonstrate its application by monitoring the changes in
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Estrogen Receptor-alpha (ER) binding upon fulvestrant-
mediated degradation of ER, which compromises ER binding
genome-wide. Additionally, we developed an adaptable
pipeline to normalise and quantify differential transcription
factor binding genome-wide and generate metrics for
differential binding at individual sites.

INTRODUCTION

ChIP combined with high throughput sequencing (ChIP-seq)
quantifies the relative binding intensity for all interactions of
a protein to genomic DNA for a single condition. However,
comparing relative intensities of binding between samples
and between conditions is an ongoing challenge(1, 2, 3, 4).
Conventionally, correcting for sample-to-sample variability
occurs at the analysis stage, but these methods assume that
experimental variables remain constant between datasets.
In practice, different efficiencies in nuclear extraction,
DNA shearing, and immunoprecipitation present potential
points within a typical ChIP-seq protocol(5) to introduce
experimental variation and error. Controlling for experimental
variables at the point of data analysis is limited because
differential binding is indistinguishable from differential ChIP
efficiency and DNA recovery. Therefore, unless a substantial
number of known binding events remain constant to provide
an internal control, these methods can lead to the suppression
of the biological signal(1, 2, 3). Previously, studies have
aimed to resolve these challenges when analysing genome-
wide changes in histone modifications(1, 2). Similarly, total
genomic occupancy of a Transcription Factor (TF) binding
can vary drastically between conditions. An extreme case is
the binding of nuclear receptors to DNA, which are nearly
absent from DNA when unliganded and can be induced by
their ligand to bind DNA within minutes. To overcome this
limitation, the field has exploited a deficiency in ChIP-seq to
approximate normalisation. In short, the vast majority of reads
resulting from ChIP-seq are outside of true TF binding sites,
so the total read depth is used to approximate normalisation.
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Nonetheless, these do not control for any of the
aforementioned causes of experimental variability which
can be exacerbated by changes in the nuclear concentration
of the target protein. External spike-in controls are proposed
to resolve these challenges in the analysis of histone
modifications(1, 2) but these methods rely on xenogeneic
chromatin (i.e. from a second organism) and the cross-
reactivity of the antibody to the factor of interest(1) in both
organisms or the use of a second species-specific antibody(2).

Here we present a method, termed parallel-factor ChIP,
which utilises a second antibody (anti-CTCF) to provide an
internal control. The process of utilising a second antibody
against the target chromatin avoids the need of a xenogeneic
spike-in and controls for more experimental variables than
previous methods. We present this method alongside the
application of two xenogeneic methods for the analysis of
the nuclear receptor Estrogen Receptor-alpha (ER) binding
after treatment with fulvestrant. Further, we have developed
an adaptable pipeline to apply these strategies and provide
a highly reliable quantitative analysis of differential binding
sites utilising established statistical software packages.

Accurate analysis of ER binding is of key interest as
70% of all breast cancer tumours are classified at ER+(6).
Fulvestrant is a targeted therapeutic to prevent the growth of
these tumours. The mode of action for fulvestrant is to bind
to the ER as an antagonist and to recruit a different set of
cofactors when compared to the native ligand estra-2-diol. The
specfic cofactors promote the degradation of the ER via the
ubiquitination pathway and the proteasome(7). The family of
compounds to which Fulvestrant belongs is called Selective
Estrogen Receptor Degraders or Downregulators (SERDs).
Cellular loss of ER protein results in compromised ER binding
genome-wide and presents a model for which to develop novel
controls and analysis methods for quantitative ChIP-seq.

MATERIALS AND METHODS

Cell Culture
All experimental conditions were conducted in the MCF7
(Human, ATCC) cell line. Spike-in standards were generated
using HC11 (Mouse, ATCC) and S2 (Drosophila, ATCC)
cells. MCF7 were authenticated using STR DNA profiling.

For each individual ChIP pull-down, 4×107 MCF7
cells were cultured across two 15 cm diameter plates in
DMEM (Dulbecco’s Modified Eagle’s Medium, Glibco) with
10% FBS, Glutamine and Penicillin/Streptomycin (Glibco).
Incubators were set to 37 ◦C and to provide a humidified
atmosphere with 5% CO2. The cells were treated with
fulvestrant (final concentration 100 nM, Sigma-Aldrich).
After 48 hours, the cells were washed with ice cold PBS twice
and then fixed by incubating with 15 mL per plate of 1%
formaldehyde in unsupplemented clear media for 10 minutes.
The reaction was stopped by the addition of 1.5 mL of 2.5 M
glycine and the plates were washed twice with ice cold PBS.
Cells were released from each plate using a cell lifter and
1 mL of PBS with protease inhibitors (PI) into a 1.5 mL
microcentrifuge tube. The cells were centrifuged at 8000 rpm
in for 3 minutes at 4 ◦C and the supernatant removed. The
process was repeated for a second wash in 1 mL PBS+PI and
the PBS removed before storing at -80 ◦C.

S2 Cells were grown in T175 flask with Schneiders
Drosophila Medium + 10% FBS at 27 ◦C. Cells were released
by agitation and transferred to a 50 mL falcon tube. The cells
were then pelleted at 1300 rpm for 3 minutes. The media was
removed and the cells resuspended in 7.5 mL PBS. In a fume
hood, cells were crosslinked by the addition of 7.5mL 2%
formaldehyde in unsupplemented clear media. The reaction
was stopped with 3 mL of 1M glycine at 10 minutes. The
suspension of cells was then centrifuged at 2000 × g for
5 minutes. The cells were then washed twice with 1.5 mL
PBS+PI before the PBS+PI was removed and the cells stored
at -80 ◦C.

Untreated HC11 were prepared following the same
procedure as MCF7.

Chromatin Immunoprecipitation (ChIP)
ChIP was performed as previously reported(5) with the
modifications listed below. It should be noted that in both
cases, the levels of xenogeneic spike-in chromatin was used
at higher than the minimum necessary for normalisation
to facilitate additional analysis in this study (Figure S4).
For future experiments, the results of this study should be
reviewed in context of the following discussion section to
establish a suitable level of spike-in for the experiment
undertaken.

For the D. melanogaster chromatin spike-in experiment
(sequencing data: SLX-8047), D. melanogaster and H.
sapiens samples were prepared separately following the
reported protocol until after sonication. At this point, the
MCF7 (experimental) chromatin was combined with the S2
derived chromatin (control) in a ratio of 10:1. Magnetic
protein A beads were prepared as normal for both the target
antibody (100µg, ER, SC-543, lot K0113, Santa Cruz) and
the control antibody (10µL, H2Av, 39715, lot 1341001). The
washed beads were then combined in a ratio of 1:4 for
pulldown. The protocol was then continued as cited.

For the M. musculus chromatin spike-in experiment
(sequencing data: SLX-12998), M. musculus and H. sapiens
cells were prepared separately following the aforementioned
protocol until after sonication. At this point, for each replicate
the chromatin from the experimental samples (4×107 MCF7
cells) was combined with that from a single plate of HC11
cells (2×106 cells). The protocol was continued unmodified
using only the ER antibody and protein A beads.

For experiments containing the CTCF antibody control
(sequencing data: SLX-14229 & SLX-14438): 100 µL
magnetic protein G beads were prepared separately for both
antibodies, CTCF (10µ L, 3418 XP, Cell Signaling) and ER
(100µg, SC-543, lot F1716, Santa Cruz). The beads were then
combined 1:1 giving 200µL of beads. The only exception was
the two CTCF controls (one with and one without Fulvestrant)
where no ER beads were added. These were used to generate
a CTCF consensus peak set. The protocol was continued as
previously reported.

Library Prep
ChIP and input DNA was processed using the Thruplex
Library DNA-seq Kit (Rubicon) according to the
manufacturer’s protocol.
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Sequencing
Sequencing was carried out by the CRUK Cambridge Institute
Genomics Core Factility using a HiSeq 4000, 50bp single end
reads.

Alignment
Previously Egan et al.(2) aligned the reads to the genomes
of the two species separately for the generation of correction
factors. Their method also required the downsampling to the
lowest number of reads. We developed our protocol around
the alignment to a single combined reference genome, either
Drosophila-Human (DmHs) or Mouse-Human (MmHs). The
reference genomes were generated from Hg19 and Mm9
or Dm3. The alignment of the FASTQ format reads was
undertaken with BowTie2 (version 2.3.2). This resolves and
simplifies the challenge of ambiguous alignments between the
two genomes and does not require the removal of reads. Reads
were removed from blacklisted regions using a combined
blacklist before peak calling. Normalisation was carried out
at the point of differential binding analysis.

PeakCalling
The bioinformatic analysis was implemented using R
(version 3.3.2) with a modified version of DiffBind (version
2.5.6, avalible from the AndrewHolding/BrundleDevelopment
repository on GitHub) and DESeq2 (version 1.14.1). Motif
analysis was performed using Homer (v4.9)

For full reproducibility of our results, the source
code and output of the analysis is available from
AndrewHolding/BrundleDevelopment repository on GitHub.
Files greater than 100Mb are not included because of the
GitHub file size limit . All sequence data utilised for this
study is available from the Gene Expression Omnibus
(GSE102882).

Summaries of the analysis applied in this
paper can be found at examples directory in the
AndrewHolding/BrundleDevelopment repository on GitHub
with read counts provided as either a DiffBind object in Rdata
format or as CSV. Example 001 provides documentation on
the normalisation of ER ChIP-seq data using the binding
of CTCF as an internal control. Example 002 provides
documentation on the normalisation of ER ChIP-seq data
using only DESeq2 size factors and no-linear fit. Example
003 provides documentation on the normalisation of ER
ChIP-seq data using D. melanogaster derived chromatin and
H2Av specific antibody.

Pipeline and R packages
A R package containing the functions used for the analysis can
be installed from AndrewHolding/Brundle on GitHub using
the install github found in the Devtools package.

A R package containing two sets (one internal and
one spike-in control) of test data provided as aligned
reads, peak files and samples sheets can be installed from
AndrewHolding/BrundleData on GitHub.

Two complete documented examples of how to undertake
analysis of data using these two packages can be found at
AndrewHolding/Brundle Example on GitHub.

The complete set of scripts for the preprocessing pipeline,
including generation of, indexing and the alignment of reads to
the merged genome, is provided to support the implmentation
of future analysis with Brundle in the preprocessing folder
of AndrewHolding/Brundle Example GitHub. This data set
includes example input data in FastQ format so the complete
preprocessng and analysis pipeline can be tested before use.

All the contents of the Brundle Example repository are also
packaged in a Docker container for easy use. Instructions on
downloading and running the container are available in the
ReadMe.md file.

RESULTS

Commonly applied analytical normalisation methods
highlight the need for experimental quantitative ChIP-seq
controls
Three data-based normalisation strategies, RPM reads in
peaks, RPM total reads, and RPM aligned reads, are
commonly used to normalise ChIP-seq binding between
conditions. We apply these methods to each of the datasets
we generated to highlight their deficiencies. Although the
experimental controls had reads associated with xenogeneic
DNA and non-ER peaks, we exclusively analysed reads that
align to the H. sapiens genome or, in the case of the parallel-
factor ChIP, using data only from ER binding sites. Therefore,
these analyses are representative of a normal, uncontrolled,

Figure 1. Comparison of simple normalisation strategies employed. MA
plots showing the changes in ER binding after 48 hours treatment with 100
nM Fulvestrant. Three simple normalisation methods were applied to this
data and compared to the raw count data. (A) Raw counts. (B) Reads Per
Million (RPM) reads in peaks. (C) RPM aligned reads (D) RPM total reads.
Note that the highlighted peaks remain above zero under all three standard
normalisations.
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ChIP-seq experiment. All datasets gave equivalent results and
conclusions for each of the normalisation strategies, showing
a strong decrease in ER binding upon addition of fulvestrant.
Therefore, only the analysis of the human aligned reads from
our xenogeneic spike-in and IP of ER using the same ER
antibody for control and sample chromatin (SLX-12998) is
discussed below.

We first plotted the average ER peak intensity, as
determined by raw counts and three counts-based
normalisation methods, by the change in ER intensity
upon fulvestrant treatment (Figure 1). These MA plots
showed similar results, with the main difference being a
dampened decrease in ER binding when only reads within
peaks are used to normalise. When MA plots are properly
normalised, the unchanged peaks between conditions should
be distributed with a log fold difference around zero, with
increasing variance as the peak intensity decreases. However,
the distribution of data points in the raw counts MA plot
show that this distribution is shifted up to a y value of
∼1 (Figure 1A). We hypothesised that these are true ER
binding sites that do not change upon fulvestrant treatment
or false-positive peaks. In both cases, the apparent increase
in binding is an artefact of the data processing. As expected,
the apparent fold-change for the increase in ER binding was
most pronounced when the data was normalised with respect
to total number of reads in peaks (Figure 1B) because this
method is reliant on the majority of binding events between
the two experimental conditions remaining constant. For our
system, that assumption is incorrect as the majority of ER
binding events are substantially decreased. Other common
normalisation methods that have been applied to ChIP-seq
data, such as quantile normalisation(8, 9), would result in a
similar systematic error in the final data. Nonetheless, other
more appropriate methods e.g. reads per million (RPM)
total reads, which correct for total library size showed little
improvement for our datasets over the raw number of reads
counts in peaks. The same result was seen if RPM peak
counts were calculated using either aligned (Figure 1C) or
total read counts (Figure 1D). All three strategies for all three
datasets displayed a similar grouping of points above the
axis, incorrectly implying an increase in ER binding to the
chromatin at these sites 48 hours after treatment.

Internal and spike-in normalisation controls
Normalisation using D. melanogaster chromatin and species
specific antibody for H2Av
To overcome the challenges of normalising ChIP-seq data,
Egan et al.(2) combined the extract with xenogeneic
chromatin and a second antibody that is specific to the
spike-in organisms chromatin. This controls for the efficiency
of the immunoprecipitation, if the same ratio of target to
control chromatin is achieved between samples. This work
reported that a reduction in H3K27me3 in response to
inhibition of the EZH2 methyltransferase cannot be detected
by standard normalisation techniques. Instead, the study
was able to demonstrate genomic H3K27me3 reduction by
including D. melanogaster (Dm) derived chromatin and a Dm-
specific histone variant H2Av antibody as spike-in control
for normalisation. However, this method fails to control for

variation in sonication, which could alter fragment length
distributions, or errors in quantifying chromatin concentration.

The challenge in analysing the genome-wide reduction in
H3K27 methylation by ChIP-seq shares many similarities to
quantifying changes in ER binding after fulvestrant treatment.
In particular, both result in a global unidirectional change
in chromatin occupancy due to the specific loss of the
target molecule, which is not compatible with the underlying
assumptions of purely analytical normalisation approaches.

We applied this method of normalisation to fulvestrant-
depleted ER samples using xenogeneic D. melanogaster
chromatin and an H2Av antibody. We aligned our reads to
a combined H. sapiens/D. melanogaster (HsDm) genome.
We separated peaks by their genomic identity, resulting in
both Hs peaks (experimental) and Dm peaks (control). Figure
2A shows a similar distribution to Figure 1C, including
the off-centre putative unchanged ER binding events (Figure
2A, within red triangle) as highlighted in Figure 1A.
Overlaying the peak information from the D. melanogaster
peaks indicated that they overlapped along the same y-
axis value (Figure 2B) as the ER binding events (Figure
2A) that were concluded previously as being unchanged, or
possibly false positive peaks. We then applied a linear fit
to Dm log2(fold-change) values for each binding site. The
coefficients generated from the linear regression were then
used to adjust the log2(fold-change) of all data points (Figure
2C). The normalisation of the data resulted in a reduced
number of increased ER binding events at 48 hours. The
remaining loci of increased binding resulted from the higher
variation at lower intensities.

Normalisation utilising the cross-reactivity of an ER antibody
and mouse chromatin as a spike-in control
A challenge with the use of spike-in Dm chromatin to provide
a standard for Hs ChIP-seq experiments is that tight control
is required on both the amounts of antibody and the amount
of chromatin used. This is complicated as the amount of
Hs chromatin may not be constant between experimental
conditions. In an attempt to reduce the number of variables
that can result in experimental error, we developed a similar
method to that of Bonhoure et al(3). Their study utilised
the cross-reactivity of a Pol II antibody against Hs control
chromatin and sample chromatin from Mus musculus (Mm).
The ER antibody utilised in this study is known to have cross-
reactivity between the Hs and Mm homologues of the ER. We
therefore expected that the inclusion of Mm chromatin would
provide a series of control data points that would not alter
between conditions. To visualise and provide a preliminary
analysis of the data, we applied the same strategy as we
developed for our Dm spike-in experiment.

We found that Mm genomic ER peaks were greatly
increased after treatment with Fulvestrant (Figure 3A).

We compared the level of Hs and Mm reads between
samples and found the ratio consistent between samples
(Figure S1). Therefore, poor sample balancing could not cause
the results presented in Figure 3.

These results highlight a problem with using a constant
antibody and a xenogeneic source of chromatin for
normalisation. We propose that the ER antibody has lower
affinity for mouse ER, compared to human ER. Therefore,
we conclude that the increase in Mm reads from ER binding
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sites results from a reduction in competition with human
ER for the same antibody, because fulvestrant is degrading
human ER. These challenges are likely to be less of a
concern when applying this method to a more conserved target
and this explains why there has been previous success in
applying this strategy to the analysis of histones(2) and RNA
Polymerase(3).

Normalisation using a second control antibody to provide an
internal control

A key reason for utilising the cross-reactivity of antibodies
between organisms to provide a normalisation standard was
the potential to reduce the number of sources for experimental
variation. For the same reason, we developed the use of a
second antibody as an experimental control, parallel-factor
ChIP, to normalise signal. The advantages of using a second

antibody over a spike-in control is that the target:control
antibody ratio can be maintained for all samples by producing
a single stock solution. For concurrent experiments, a single
stock of antibody bound beads can be prepared and used
for all samples with minimal variation. It is critical to
identify a DNA-binding protein for the control whose genomic
distribution and intensities are not affected by the treatment.
For the analysis of ER binding, we chose CTCF as our control
antibody. While CTCF is affected by compounds that target
ER, the effects of these changes have been documented at only
a small fraction of the total number of sites(10), a result that
was subsequently replicated in our own analysis (Figure 4 and
Figure 8b).

To confirm that the effects seen in Figure 4 were consistent
across the genome, we compared the clustering of the
CTCF and the ER peaks with respect to the treatment with

Figure 2. MA plots showing ER binding before and after treatment with fulvestrant including matched Dm H2av spike-in control. (A) Reads corrected
to total aligned reads showed the same off-centre peak density as observed in Figure 1. Putative unchanged ER binding sites are within the red triangle. (B)
Overlaying the MA plot combining the changes in chromatin binding of Hs ER (black) and Dm H2Av (blue). Dm peaks overlay the off-centre peak density. (C)
Utilising the Dm H2Av binding events as a ground truth for 0-fold change, a linear fit to the log-fold change is generated and the fit is applied to adjust the Hs ER
binding events.

Figure 3. MA plots showing the addition of Mm derived chromatin spike-in to the ChIP-seq analysis of MCF7 before and after treatment with
fulvestrant. (A) MA plot after scaling factor based normalisation shows same characteristic grouping of peaks off axis. (B) ER binding in Mm samples shows
considerable increase in binding after treatment of the MCF7 cell line with fulvestrant. (C) Attempting to fit a correction factor to the data results in a significant
distortion.
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Figure 4. CTCF peak height remains constant while ER peaks change
upon treatment with fulvestrant. As the binding of CTCF at the 3 control
peaks (right) will remain constant in all 3 conditions (see also Figure 7B), the
data is scaled to CTCF peak height. After 100 nM fulvestrant treatment for 48
hours, ER binding (left) shows a reduction in binding at the RARA gene (red)
when compared to control (blue). The CTCF peaks can be confirmed against
a CTCF only ChIP-seq experiment (purple).

Fulvestrant. Initial clustering was weakly correlated with
that of the treatment condition (Figure S2A). Clustering
specifically to CTCF derived peak data (Figure S2B) resulted
in a loss of grouping by treatment, while clustering specifically
ER-derived peak data (Figure S2C) led to a clearer separation
by treatment.

Having separated the ER and CTCF binding events, we
plotted them separately on an MA plot (Figure 5A and B).
As previously shown for Dm spike-in control, we applied a
global fit to the log2-fold change between the two conditions
correcting the bias in fold-change between conditions in
ER binding (Figure 5C). Taken together, we show that

performing a parallel ChIP-seq experiment with an unrelated
and unchanged factor is an alternative and complementary
method to account for extreme genomic changes in factor
occupancy.

Pipeline and Quantitative Analysis
Normalisation implementation using DESeq2 and Size
Factors
DESeq2 was initially developed for the analysis of RNA-
seq data(11). It provides a method to establish significant
differential gene expression between two samples by
modelling the counts with a negative binomial distribution.
Given the similarities in ChIP-seq and RNA-seq, primarily
that they are both based on the same high throughput
sequencing technologies, DESeq2 has been successfully
adapted to ChIP-seq analysis to establish differential intensity
analysis of histone modifications.

We successfully integrated our datasets with DESeq2
by providing two matrices: one for the reads counts
from peaks detected in our experimental sample, and a
second for our control. The initial analysis using DESeq2
estimateSizeFactors() on the Hs aligned reads showed a
large distortion of the signal (Figure 6A). The distortion is
expected as the default analysis of DESeq2 is designed for
an RNA-seq library where total transcription is assumed to
not change between conditions and ∼100% of counts are
signal (in contrast, the ChIP-seq signal is often contributed
by less than 5% of reads). Since the H2Av peaks will not
change intensity, we used the read counts in these H2Av
control peaks as a size factors parameter estimate for the
experimental data. As expected, the spike-in control size
factors corrected the majority of the bias in the sample analysis
(Figure 6B). Overlaying the ER treatment analysis onto the
H2Av Drosophila control showed that the counts in H2Av
peaks showed minimal changes. To aid with the analysis,
we have provided the series of functions to count peaks and
normalise using DESeq2 as an R package.

Figure 5. MA plots showing ER binding before and after treatment with fulvestrant including matched CTCF control. (A) Reads corrected to total
aligned reads showed the same off-centre peak density as observed with all that was not-normalised with an internal spike-in control. (B) Overlaying the MA plot
combining the changes in chromatin binding of ER (black) and CTCF (grey). CTCF peaks overlay the off-centre peak density. (C) Utilising the CTCF binding
events as a ground truth for 0-fold change, a linear fit to the log-fold change is generated (blue line). The fit is then also applied to the ER binding events.
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Figure 6. Normalisation of ER binding external spike implemented using DESeq2. Highlighted data points are considered significant fold-changes with a
FDR = 0.01. (A) Initial analysis of the ER binding with default parameters shows an equal increase and decrease in ER binding. The distribution seen is not
reflective of the documented response of ER on treatment of fulvestrant. (B) Estimating the DESeq2 size factors from the sample spike-in corrects the distortion
in the results. (C) Overlaying the two datasets shows that the read counts in H2Av peaks from the D. melanogaster spike-in (dark grey) remain constant.

Figure 7. Normalisation of ER binding internal CTCF control. Highlighted data points are considered significant fold-changes with a FDR = 0.01. (A) Initial
analysis with default DESeq2 parameters gives similar distortion as seen in Figure 6A. (B) Correction using the CTCF peaks to provide an internal control allows
for the data to be corrected. (C) Overlaying the ER and CTCF datapoints shows that, similar to the H2Av/Drosophila spike-in, CTCF (dark grey) remains mostly
constant. Only a small percentage of CTCF sites are differentially bound (<0.2%) as previously noted in the literature.

We processed the CTCF internal control data in the same
manner, using the counts with CTCF peaks to adjust the size
factors parameter. The analysis of the raw data displayed the
same initial bias as seen with the Dm/H2Av spike in data
(Figure 7A). We normalised the data using the counts within
CTCF peaks to estimate the DESeq2 size factors (Figure 7B).
Overlaying the control and target peaks (Figure 7C) showed
that of the CTCF binding events, only a low percentage of sites
change between samples, which is consistent with previous
reports in the literature(10).

H2Av and CTCF provide a set of unchanged reference peaks
for normalisation
For CTCF to work as an internal control, the binding of
the factor must show minimal changes between the two
conditions. Using the CTCF locations established from two

CTCF replicates that did not include any ER antibody, it is
possible to implement a differential binding analysis of only
the control regions, as we did for H2Av binding for the Dm
ChIP control. Comparison of the two control datasets (Figure
8) displayed a lower variance and a lower maximum fold-
change for H2Av compared to the CTCF control binding
regions. In contrast, the CTCF dataset provides a much greater
number of data points for normalisation as a result of relative
size of the human and Drosophila genomes. None of the H2Av
sites in the Drosophila genome showed a significant change
in occupancy. Of the CTCF peaks, 0.01% were considered
significantly upregulated, and 0.18% downregulated at an
FDR of 0.01 (Figure 8B). We confirmed the differential bound
CTCF sites were consistent with the previously characterised
proximal binding of ER and CTCF(10) by motif analysis.
Sequences of the differentially bound CTCF sites gave strong
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Figure 8. Comparison of the control regions used to normalise ER
analysis before and after treatment. Dots highlighted in red are significant
(FDR = 0.01). (A) H2Av occupancy of the Drosophila genome shows no
significant changes before and after treatment. (B) The majority of CTCF
peaks show no significant change in the number reads (>99.8% of sites)
before and after treatment. (C) Motif Analysis of differentially bound CTCF
loci. Motifs matching binding sites for CTCF and ER (ERE) were found
by de novo analysis. (D) Example site of ER and CTCF proximal binding
site (Chr9:97,545,000-97,546,000). Due to the DNA fragment length, the
peaks overlap. Top/Ctrl is the combined ER & CTCF ChIP before treatment.
Middle/ICI is the combined ER & CTCF ChIP after fulvestrant treatment.
Bottom/CTCF is CTCF ChIP only. Blue/yellow blocks under tracks represent
the presence of ER/CTCF motifs respectively.

enrichment for known ERE and CTCF binding motifs (Figure
8C), both with q-values much smaller than 0.0001. Inspection
of these sites (Figure 8 D) confirmed proximal binding at these
locations. These only account for a small percentage (<0.2%)
of the CTCF binding locations, therefore CTCF sites as a
whole meet the assumption that the average fold-change in
CTCF binding between the two conditions equals 1 (i.e. an
average log-fold change of 0 in the MA plots). As long as
the vast majority of control peaks do not change, they can be
used to normalise the peaks that change with the experimental
conditions.

Integration with DiffBind using Corrected Size Factors
DiffBind(12) is an established R package to provide a pipeline
to quantitatively measure differential binding from ChIP-
seq data. Similar to our strategy, DiffBind is implemented
using RNA-seq analysis tools, including DESeq2, but has
many advantages that make it convenient for ChIP-seq
analysis. A key feature of DiffBind is that, to calculate size

Figure 9. Comparison of DiffBind output before and after applying the
corrected size factors from our pipeline generated from Drosophila spike-
in control. (A) Analysis of ER binding before and after treatment with
fulvestrant demonstrates that DiffBinds default normalisation strategy is more
effective than the DESeq2 default (Fig 6A), but demonstrates a bias between
samples. (B) Applying the correct size factors from our DESeq2 pipeline
reduces the bias in the analysis (Data: SLX-8047).

factors, it utilises the total library size from the sequence
data provided in a sample sheet (e.g. BAM files) rather
than the estimateSizeFactors function provided by DESeq2.
Nonetheless, while improved, the analysis of the raw data by
DiffBind is incomplete with the putative unchanging peaks
showing a greater than 0 log-fold change (Figure 9).

Utilising a modified version of DiffBind package, we
were able to extract the count matrix, apply the size factors
calculated by our DESeq2 pipeline, and then reinsert these
into the DiffBind object. To prevent DiffBind from applying
further normalisation data, the relative read counts in the
DiffBind object were set to 1. The final output was similar
to that achieved by our implementation (Figure 9B).

Establishing a normalisation coefficient by linear
regression of control peak counts
In our implementation, DESeq2 generates the size factor
estimates through the summation of all reads within the peaks.
Inherently, a summation has a bias to the peaks with the largest
read count. We therefore hypothesised that the normalisation
process could be improved by calculating the sample bias
through the application of linear regression. We plot the read
count in each CTCF peak of one condition against the other
(Figure 10) and then apply a linear model to the data. The
advantage over summation is that this step gives equal weight
to each point. Any systematic bias will be represented by
the gradient of resultant fit deviating from a value of 1.
Our normalisation coefficient is defined as the constant by
which we need to scale the count data for each CTCF peak
from the treated samples to correct this systematic bias (and
thereby setting the gradient of the linear fit equal to 1). This
normalisation coefficient is then applied in the same manner
to ER count data. The correct data is then re-inserted into
the DiffBind object for analysis. The only caveat to this
method is because DiffBind is programmed to correct by total
library size, our pipeline then includes a second factor, named
the correction factor in our code, to ensure that part of the
normalisation is not applied twice.
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Figure 10. Comparison of Mean Counts in CTCF peaks before and after
treatment. If the samples have no systematic bias before and after treatment
then the linear fit would be expected to have a gradient of 1. Here, we establish
that the gradient is < 1, implying a systematic bias between samples. The read
counts in the treated samples peaks are corrected (blue), removing the bias,
and resulting in a new gradient of 1.

Comparison of size factors and linear modelling to
establish normalisation
To compare methods, we applied normalisation by total
library size, normalisation using size factors generated by
DESeq2 from the CTCF binding events, and then used linear
regression to establish the normalisation coefficient, defined
and generated as described above. These methods were all
applied to the same initial dataset (Figure 11). The use of
the linear regression based method was found to be most
successful (Figure 11C) showing a 10.2% increase in the
number of sites found as differentially bound (FDR < 0.05)
compared to normalisation by library size alone (Figure
11A). Our alternative method based on DESeq2 size factors

(Figure 11B) gave an increase of 1.4% when compared to
normalisation by library size alone (Figure 11).

Comparison of absolute fold-change from parallel-factor
ChIP and xenogeneic spike-in
In principle, if both the internal control using CTCF binding
events and the use of the spike-in Dm/H2Av control are
accurate, the normalised fold-change for each genomic loci
should be equal. We tested this by matching peaks between the
two experiments (taking the nearest peak by genomic location)
and plotting the fold-change of one normalised experimental
result against the other (Figure S3). As predicted, the datasets
gave a result near parity (linear fit of gradient = 0.96)
and strong statistical evidence from the correlation (Pearson
correlation tending to 0).

Distribution of high-intensity low-fold change peaks
A subset of high-intensity low-fold change peaks, i.e. those
at the narrow end of the triangle in Figure 2A, were absent
in the MA plots of samples generated with the parallel
pulldown of CTCF and ER (Figure 2A and 5A). To address
potential concerns arising from the differences in these
putative unchanged ER binding sites, we repeated the above
comparison using a consensus set of 10,000 high-confidence
ER binding sites (as established by MACS2(13)) in place
of the nearest neighbour algorithm previously employed. On
overlaying the data analysed with the consensus peak set,
we established the same high-intensity low-fold change sites
in both datasets (Figure 12A). Repeating our comparison of
locus-specific fold-change data between the two normalisation
methods, but this time using the consensus peak set, supported
our previous analysis (Figure 12B). As before, we found near
parity between the methods (linear fit of gradient = 0.94) and
a correlation of r = 0.77, with a similar p-value (tending to 0).

On further analysis, the genomic locations of these high-
intensity low-fold change peaks were found to have been
removed as CTCF binding sites in the filtering step of
the internal normalisation preprocessing. Nonetheless, their

Figure 11. Comparison of DiffBind results before and after our two methods of normalisation. (A) Normalisation to Library Size, (B) Applying the corrected
size factors from our DESeq2 pipeline generated from CTCF internal control. (C) Applying correction using linear regression of CTCF peaks between conditions
to normalise data. The result is a 10.2% increase in the number of loci detected as significantly changed ER binding.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2017. ; https://doi.org/10.1101/182261doi: bioRxiv preprint 

https://doi.org/10.1101/182261
http://creativecommons.org/licenses/by-nc-nd/4.0/


“QuantChIP” — 2017/9/11 — 9:52 — page 10 — #10i
i

i
i

i
i

i
i

10 Journal Name, 2017, Vol. ??, No. ??

Figure 12. Comparison of normalisation methods using consensus peak
set. (A) The analysis for the CTCF normalised (blue) and H2Av normalised
(green) dataset using an ER consensus peak set of 10,000 peaks were
formatted as an MA plot and overlaid. This recovered the low-fold change
higher-intensity peaks that were not visible in Figure 5A and both datasets
showed a similar distribution. (B) Comparison of fold-change values for
individual ER binding sites between two datasets showed that the inclusion
of these sites did not appear to affect the correlation (r = 0.77).

inclusion in the consensus data showed good correlation
between the two methods, implying that the CTCF binding
event at these locations did not interfere with analysis of the
ER sites.

Simulating the level of xenogeneic chromatin spike-in for
normalisation
To establish the most efficient normalisation strategy, spike-in
samples were prepared with higher levels of Dm chromatin
than previously described(2). This provided an opportunity
to computationally titrate the number of reads against the Hs
chromatin.

To systematically compute different levels of spike-in reads,
we calculated the percentage of total number of reads aligned
to the Dm genome across all samples and downsampled
Dm reads equally across all samples. All MA plots showed
considerable improvement (Figures S4A, B and C, top) over
correction based on total number of reads (Figure 5A).
We found that, while the information used to generate the
normalisation coefficient was significantly reduced in quality
from 1% (Figure S4A, bottom) compared to 5% (Figure S4B,
bottom), the final corrected data was similar. A caveat of
using only a very low level of reads (e.g. 1%) from the Dm
chromatin is that peak calling will not be successful; however,
in these cases, the peak locations established in our study, or
other studies, can be used in place of peak calling.

DISCUSSION

We have described and benchmarked a reproducible
quantitative normalisation strategy using internal ChIP-seq
controls. We applied this technique to normalise TF binding
and applied statistical analysis at the level of individual
binding sites, which was lacking from previous spike-in
methodologies. We demonstrate that a parallel-factor control
antibody is a reliable alternative to the use of cross-
reactivity(1) against a second species or a second species-
specific antibody(2) as a method of normalising ChIP-seq
data. Further, we have validated both methods in the context

to ER binding, and more broadly supported their application
to transcription factors in general.

Our method showed considerably better performance than
utilising a xenogeneic spike-in combined with cross reactivity
of the target antibody in the context of ER binding. Utilising
the cross-reactivity of the antibody displayed significant
distortion within our data set. This method resulted in skewed
murine-ER peak intensities due to variable competition
between the ER from the respective species upon ER-
degradation. Intriguingly, a similar challenge was previously
reported when normalising the changes of H3K27me3
occupancy when originally applying the Drosophila and H2Av
spike-in control(2).

Using an internal parallel-factor control showed
comparable performance to using a second antibody and
xenogeneic chromatin as a spike-in control, but there are
many advantages to using a second antibody (CTCF) that
IPs a protein within the same extract. Primarily, the parallel-
factor ChIP controls for the greatest number of steps in the
process and gives fewer opportunities for variation being
introduced into the sample preparation. In particular, stocks
of the antibody mixture can be much more tightly controlled
between experiments than xenogeneic chromatin spike-ins.
Stocks can be kept over periods of time between experiments.
In contrast, the addition of xenogeneic chromatin relies on
the precision that the concentration of the chromatin of both
the experimental samples and the spike-in can be established
reliably and must be added to each sample individually. As
chromatin is routinely crosslinked for ChIP-seq, the resultant
mixture of protein and DNA makes accurate quantification
of DNA challenging without purification, which presents
another challenge for the use of xenogeneic spike-in methods.
The potential concerns for parallel-factor normalisation is
that it may lead to the masking of a subset of sites (Figure
2A and 5A); however, these are only a minority of the ER
binding sites and we have shown that their inclusion using a
ER consensus peak set does not negatively impact the analysis
(Figure S4). Although we cannot accurately quantify changes
at this minority of ER binding proximal to CTCF sites upon
fulvestrant treatment, the inclusion of an ER-alone ChIP-seq
+/- fulvestrant would resolve this issue. Since relative binding
intensities are comparable within a ChIP-seq experiment,
the known absolute changes in ER binding measured by
parallel-factor ChIP at non-CTCF proximal peaks can be
used as a reference to quantify changes in CTCF-proximal
ER peaks in the ER-alone ChIP-seq(14). Finally, in terms of
more general adoption of the method, the challenges of using
CTCF binding to provide control data disappear for the large
number of TFs that do not interact with CTCF. Depending
on the particular needs of a study, we understand the choice
of strategy may change, which is why we have provided a
complete pipeline for both methods. Nonetheless, we believe
the evidence we have presented demonstrates that the use
of parallel-factor ChIP provides the most easily and reliably
deployed solution for quantitative ChIP-seq normalisation.

Our strategy also provides a distinct advantage over ChIP-
qPCR. While qPCR provides a very accurate measure of
the amount of DNA present and methods exist to control
against other regions of the genome, it does not account
for variability in the efficiency of the immunoprecipitation
step. Normalisation of ChIP-qPCR data also presents its
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own challenges(15). Our method by utilising two antibodies
against the same species means that the reads from CTCF
binding regions can control for both biases in sample loading
and, more importantly, for the overall efficiency of the
pulldown. Interestingly, while our method could be adapted
to ChIP-qPCR, the number of controls would be limited by
the number of qPCR primer sets, thereby reducing the power
of the method.

The ability to confirm if the majority CTCF binding is
unchanged (Figure 5B) without the need to generate further
data, provides a reliable QC step for the method. Moreover, it
is trivial to blacklist a set of ER-proximal CTCF sites, if there
is a concern about their impact on normalisation.

For the experiments within our study, we aimed for a
higher level of spike-in than previously reported to measure
the efficiency of the spike-in. By randomly removing the
xenogeneic reads in the Dm/H2Av controlled sample, we were
able to show that with only 1% of reads coming from the
spike-in, we achieved similar results in normalising the ER
binding as at higher levels of spike-in. While the number
of reads at 1% spike-in will not be enough to undertake
reliable peak calling, standard peak locations can be used. Our
analysis suggests only a very small number of spike-in reads
are needed to produce robust datasets. Due to the nature of the
experiment, it was not possible to apply the same simulation to
the CTCF antibody control. We expect, though, that the only
constraint on the level of CTCF antibody is that it must be in
excess of CTCF.

Most importantly, we have developed the preprocessing
and analysis tools to integrate both normalisation strategies,
xenogeneic dual antibody ChIP and parallel-factor ChIP, into
well-established quantitative ChIP-seq analysis methods(11).
By providing an open and reproducible pipeline, we permit
others the ability to measure absolute fold-change of
transcription factor binding and further develop and refine
both the in-parallel control ChIP and xenogeneic spike-
in normalisation methods we describe. We expect future
studies of ER and similar transcription factors that undergo
rapid and genome-wide changes will find the methods we
present essential to accurately characterise biological effects.
Our analysis tools, combined with the benefits and relative
simplicity of parallel-factor ChIP to normalise ChIP-seq
data, have provided a fundamental resource for quantitative
transcription factor analysis.
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Figure S1. Distribution of reads for Mm chromatin spike-in normalisation strategy. Comparison of mouse chromatin between samples showed no systematic
bias in the sample preparation. Bar plots (left axis) represent the fraction of total aligned reads. The dot plot represents the total aligned reads (right axis) for each
sample.
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Figure S2. Cluster of samples before and after ER and CTCF peak extractions shows the effect of fulvestrant on ER peaks drive clustering of the raw
data. (A) Clustering of the ChIP-seq peak sets before peak extraction shows that the fulvestrant treatment is significant enough to result in sample grouping. (B)
Extraction of only the CTCF alters the clusters and the heatmap shows no strong pattern. (C) Extraction of only the ER peaks greatly increases the clustering by
treatment demonstrating a clear separation of signal.

Figure S3. Comparison of fold-change values for ER binding sites between two datasets. Y-axis is after internal normalisation to CTCF binding sites, x-axis
is the use of H2Av binding on spike-in D. melanogaster chromatin. Binding sites were equated between datasets by taking the nearest peak. Ratio of fold-changes
is approximately 1 and the datasets correlate with a high degree of confidence.
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Figure S4. Comparison of normalisation efficiency at 1%, 5% and 50% control sample reads. Control reads from D. melanogaster chromatin were
calculated as a fraction across all samples. Reads were then randomly removed from each sample to give a simulated spike-in of (A) 1%, (B) 5% and (C) 50%
reads for normalisation. The overall effect of reducing the level of spike-in on normalisation appears minimal down to 1%. .
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