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Abstract	
Human	neuroscience	 research	 faces	 several	 challenges	with	 regards	 to	 reproducibility.	While	
scientists	 are	 generally	 aware	 that	 data	 sharing	 is	 an	 important	 component	 of	 reproducible	
research,	it	is	not	always	clear	how	to	usefully	share	data	in	a	manner	that	allows	other	labs	to	
understand	and	reproduce	published	findings.	Here	we	describe	a	new	tool,	AFQ-Browser,	that	
builds	an	interactive	website	as	a	companion	to	a	published	diffusion	MRI	study.	Because	AFQ-
browser	 is	portable	--	 it	runs	 in	any	modern	web-browser	--	 it	can	facilitate	transparency	and	
data	 sharing.	 Moreover,	 by	 leveraging	 new	 web-visualization	 technologies	 to	 create	 linked	
views	between	different	dimensions	of	a	diffusion	MRI	dataset	(anatomy,	quantitative	diffusion	
metrics,	 subject	 metadata),	 AFQ-Browser	 facilitates	 exploratory	 data	 analysis,	 fueling	 new	
scientific	discoveries	based	on	previously	published	datasets.	In	an	era	where	Big	Data	is	playing	
an	increasingly	prominent	role	in	scientific	discovery,	so	will	browser-based	tools	for	exploring	
high-dimensional	datasets,	communicating	scientific	discoveries,	sharing	and	aggregating	data	
across	labs,	and	publishing	data	alongside	manuscripts.	
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Introduction	
Fueled	 by	 technical	 advances	 in	 modern	 web	 browsers,	 and	 by	 the	 development	 of	 open-
source	 software	 libraries	 for	 interactive	 visualization,	 browser-based	 data	 visualizations	 have	
been	 playing	 an	 increasingly	 prominent	 role	 in	 communicating	 data	 on	 topics	 ranging	 from	
news	events,	climate	patterns,	election	results,	and	public	health	concerns,	as	well	as	research	
findings	from	a	broad	range	of	scientific	research	disciplines	1.	JavaScript	libraries	like	D3	2	and	
threejs	 3	 rival	 most	 platform-specific	 visualization	 software	 libraries	 in	 terms	 of	 plotting	 and	
rendering	capabilities,	and	support	interactive	data	visualization	and	exploration.		

As	 a	 consequence	 of	 the	 development	 of	 these	 general-purpose	 visualization	 tools,	 many	
scientific	disciplines	have	further	developed	tools	based	on	these	libraries	for	the	visualization	
of	discipline-specific	data	 types	 in	 the	browser.	 In	 the	 field	of	neuroscience	 there	are	 several	
different	 libraries	 devoted	 to	 visualization	 of	 brain	 imaging	 data.	 Examples	 include	
BrainBrowser	 4,	 XTK	 5,	 Mango	 6	 and	 Fiberweb	 7	 which	 provide	 application	 programming	
interfaces	 (APIs)	 for	 programmers	 to	 create	 sophisticated	 applications	 that	 visualize	 three-
dimensional	 brain	 structure	 with	 overlaid	 analysis	 results.	 For	 example,	 using	 BrainBrowser,	
Sherif	and	colleagues	show	that	analysis	of	functional	connectivity	can	be	efficiently	performed	
on	 a	 dataset	 of	 millions	 of	 brain	 maps	 in	 the	 1TB	 MACACC	 dataset	 4.	 A	 browser-based	
visualization	 of	 the	 cortical	 surface	 and	 a	 series	 of	 widgets	 are	 used	 to	 initiate	 server-side	
computations	 that	 return	analysis	 results	 to	 the	browser	 in	 the	 form	of	 a	 light-weight	 three-
dimensional	rendering	of	the	brain.	The	scope	of	the	BrainBrowser	project	is	comprehensive:	It	
includes	functions	to	flexibly	handle	most	commonly	used	data	formats,	and	can	be	adapted	to	
visualize	the	results	of	many	different	types	of	analyses.	Other	tools,	including	XTK,	and	Mango	
also	provide	software	developers	with	substantial	flexibility	to	design	applications	that	interact	
with	remote	data-sets	and	bring	them	to	users	in	their	own	web-browsers.	These	new	tools	are	
ushering	in	an	era	of	Big	Data	in	human	neuroscience,	and	have	laid	the	technical	infrastructure	
for	visualizing	the	breadth	of	commonly	used	medical	imaging	data	types.		

In	the	present	work,	we	leverage	these	technical	developments	towards	a	more	specific	goal:	
To	 build	 a	 graphical	 user	 interface	 (GUI)	 that	 is	 designed	 to	 visualize	 results	 from	 diffusion-
weighted	 magnetic	 resonance	 imaging	 (dMRI)	 studies	 that	 employ	 one	 specific	 analysis	
package,	Automated	Fiber	Quantification	(AFQ)	8.	AFQ	is	an	open-source	toolbox	for	performing	
quantitative	analysis	of	white	matter	fiber	tracts	in	the	human	brain.	AFQ	is	widely	used	across	
clinical	 and	basic	 science	applications	 ranging	 from	brain	development	and	aging	 9–14,	 autism	
spectrum	disorders	 15,16,	major	depressive	disorder	 17,18,	 head	 trauma	 19–21,	 retinal	 disease	 22,	
amyotrophic	 lateral	 sclerosis	 23,	 surgical	 planning	 24,	 and	 dyslexia	 13,25.	 This	 narrow	 focus	 on	
designing	a	web-based	GUI	 that	 is	 integrated	with	a	 specific	analysis	approach,	 rather	 than	a	
general-purpose	visualization	 toolbox,	 confronts	 two	major	 challenges	 in	 the	 study	of	human	
brain	 connectivity:	 (1)	 scientific	 reproducibility	 and	 (2)	 exploration	 of	 high	 dimensional	 data.	
The	intentionally	narrow	focus	makes	it	possible	to	design	a	robust	system	that	can	be	used	by	
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researchers	 without	 technical	 expertise	 in	 JavaScript	 and	 web	 visualization.	 Instead,	 we	
designed	 a	 simple	 command-line	 interface	 (AFQ-Browser)	 to	 allow	 researchers	 to	 rapidly	
visualize	and	explore	data	on	their	own	computers	and	to	publish	results	to	the	web.	

Scientific	 reproducibility:	 Because	 AFQ-browser	 is	 portable	 --	 it	 runs	 in	 any	 modern	 web-
browser	 --	 it	 can	 be	 used	 to	 facilitate	 transparency	 and	 data	 sharing.	 The	 field	 of	 human	
neuroscience	 faces	 several	 specific	 challenges	 with	 regards	 to	 reproducibility.	 Scientists	 are	
generally	aware	that	data	sharing	is	integral	to	reproducible	research,	but	it	is	not	always	clear	
how	 to	 usefully	 share	 data	 in	 a	manner	 that	 allows	other	 labs	 to	 understand	 and	 reproduce	
published	 findings.	 There	 is	 a	 spectrum	 of	 data	 sharing	 practices,	 each	 presenting	 its	 own	
challenges.	

On	one	end	of	the	spectrum,	raw	data	is	often	unwieldy,	large	and	complex,	and	access	to	it	by	
itself,	 though	 very	 useful	 26,	 does	 not	 guarantee	 reproducibility.	 For	 example,	 reproducing	
results	 from	raw	data	 requires	access	 to	 the	 full	 series	of	 computations	 that	was	used	 in	 the	
analysis	and,	 in	many	cases,	simply	running	these	analyses	requires	substantial	computational	
resources.	Computational	time	and	data	size,	can	present	a	serious	barrier	that	prevents	many	
scientists	 from	 attempting	 to	 reproduce	 a	 published	 finding	 27.	 On	 the	 other	 end	 of	 the	
spectrum,	 tables,	 graphs	 and	 scatter	 plots	 that	 typically	 appear	 in	 journal	 articles	 reflect	 an	
author’s	 interpretation	 of	 the	 data,	 but	 do	 not	 suffice	 for	 meaningful	 reproducibility	 of	 the	
results,	or	exploration	of	alternative	theories.	A	related	issue	is	that	the	analysis	of	raw	medical	
imaging	data	 requires	 substantial	domain	expertise	 --	 knowledge	about	 the	biology,	anatomy	
and	physiology	of	 the	system,	 the	physics	of	 the	experimental	 signal	generation	process,	and	
the	domain-specific	file	formats	used	to	store	the	data.	This	presents	a	barrier	for	researchers	
in	computer	science	and	statistics	to	apply	innovations	in	their	fields	to	the	analysis	of	human	
brain	data	and	to	crosscheck	the	methodological	assumptions	of	published	work.	

Here,	we	propose	that	sharing	dimensionally-reduced	portions	of	dMRI	data,	together	with	rich	
interactive	 data	 visualizations,	 lends	 itself	 not	 only	 to	 replication	 of	 original	 results,	 but	 to	
immediate	and	straight-forward	extensions	of	these	results,	even	in	the	hands	of	researchers	in	
other	disciplines.	Ideally,	this	intermediate	form	of	data	sharing	would	supplement	the	release	
of	 raw	 data,	 but	 also	 might	 be	 appealing	 to	 researchers	 who	 wish	 to	 more	 completely	
communicate	their	findings,	but	are	not	ready	to	release	the	full	collection	of	raw	data	from	an	
ongoing	 study,	 or	 worry	 about	 privacy	 concerns	 associated	 with	 raw	 data.	 AFQ-browser	
automatically	 organizes	 data	 analyzed	 with	 AFQ	 into	 tables	 of	 “tidy”	 data	 28.	 The	 software	
facilitates	 rapid	 publication	 of	 both	 the	 visualization,	 and	 these	 data,	 as	 an	 openly	 available	
website.		

Exploratory	 data	 analysis	 and	 linked	 view	 visualizations:	 Data	 visualization	 and	 exploration	
plays	an	 integral	 role	 in	scientific	 inquiry,	even	beyond	communicating	results	 from	statistical	
tests	of	an	a	priori	hypothesis.	The	statistician	 John	Tukey	coined	 the	 term	“exploratory	data	
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analysis”	 to	 describe	 the	 process	 of	 data	 analysis	 through	 iterative	 processing,	 probing	 and	
visualization	 of	 datasets	 29.	 Tukey	 argued	 for	 a	 sharp	 distinction	 between	 exploratory	 and	
confirmatory	data	analysis	 (or	hypothesis	 testing),	and	posited	 that	scientists	 should	strive	 to	
obtain	 multiple	 datasets	 allowing	 them	 to	 explore	 a	 high-dimensional	 system,	 and	 develop	
hypotheses	through	exploratory	data	analysis,	before	performing	the	formal	statistical	tests	to	
confirm	or	reject	their	hypothesis	based	on	an	independent	dataset.	In	complex	systems,	with	
non-linear	 relationships,	 exploratory	 data	 analysis	 and	 visualization	 can	 be	 essential	 for	
clarifying	patterns	that	might	have	been	obscured	in	a	conventional	statistical	analysis	30.		

High-dimensional	datasets,	 such	as	Tract	Profiles	of	white	matter	 tissue	properties	measured	
with	 dMRI	 8,	 in	 conjunction	 with	 behavioral	 and	 demographic	measures	 in	 large	 samples	 of	
subjects,	 pose	 a	 fundamental	 challenge	 for	 data	 visualization.	 A	 solution	 pioneered	 by	
astronomy,	 genomics	 and	 other	 fields	 that	 were	 early	 to	 embrace	 “Big	 Data”	 was	 the	
development	 of	 tools	 implementing	 linked	 views	 of	 a	 data	 set,	 where	 interaction	 with	 a	
visualization	of	one	dimension	evokes	a	change	in	another	visualization	of	the	same	data	31.	By	
interactively	exploring	the	relationships	among	different	dimensions	of	a	dataset,	a	researcher	
can	develop	an	understanding	of	the	principles	that	characterize	the	system	without	specifying	
an	a	priori	model	of	 the	complex	relationships	 that	are	present	 in	 the	high-dimensional	data.	
Drawing	 inspiration	 from	other	disciplines	 that	have	already	 realized	 the	power	of	 tools	 that	
implement	linked	view	visualization	for	exploring	high-dimensional	data,	we	capitalize	on	new,	
open	 source	 JavaScript	 libraries	 to	 create	 the	 first	 platform-independent	 graphical	 user	
interface	for	exploratory	data	analysis	of	high-dimensional	dMRI	datasets.		

In	summary,	we	present	here	a	software	tool	that	visualizes	results	from	the	analysis	of	dMRI	
data	with	AFQ	and	 facilitates	exploratory	data	analysis	 through	 the	 implementation	of	 linked	
views	 of	 the	 data.	 The	 system	 also	 facilitates	 reproducible	 research	 by	 making	 it	 easy	 for	
researchers	 to	publish	 these	visualizations	and	 the	underlying	data	as	an	 interactive	website.	
The	 publication	 of	 these	 results	 and	 data	 will	 allow	 researchers,	 stakeholders,	 and	 other	
members	 of	 the	 general	 public	 to	 explore	 large,	 important	 datasets	 through	 a	web-browser,	
without	having	to	download	the	data	or	execute	a	complex	and	unwieldy	processing	pipeline.	
By	 satisfying	 the	 need	 for	 both	 exploratory	 data	 analysis	 and	 data	 sharing,	 AFQ-Browser	
support	a	virtuous	cycle	where	public	data	is	increasingly	valuable	and	easy	to	share,	and	there	
are	new	opportunities	to	aggregate	large	datasets	across	laboratories.		

Methods		

The	AFQ-Browser	software	
Automated	Fiber-tract	Quantification	 (AFQ)	 is	 a	 software	package	 for	quantitative	analysis	of	
white	 matter	 fiber	 tracts	 8.	 The	 AFQ	 software	 is	 a	 fully	 automated	 pipeline	 that	 takes	 in	
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diffusion	MRI	data	and	returns	Tract	Profiles	of	diffusion	properties	(or	other	quantitative	MRI	
parameters)	sampled	along	the	trajectory	of	24	major	white	matter	fiber	tracts.	Fiber	tracts	are	
identified	 in	 an	 individual’s	 native	 space,	 and	 the	 diffusion	 properties	 are	 sampled	 at	 points	
along	the	trajectory	of	each	tract,	 thereby	representing	the	data	 for	each	tract	as	a	vector	of	
measurements.	 For	 groups	 of	 subjects,	 data	 for	 a	 tract	 is	 represented	 by	 a	matrix	 of	 values	
where	each	 row	corresponds	 to	a	 subject	and	each	column	corresponds	 to	a	node	along	 the	
tract.	 This	 pipeline	 can	 be	 thought	 of	 as	 a	 dimensionality	 reduction	 technique,	whereby	 the	
data	from	hundreds	of	thousands	of	voxels	gets	summarized	in	terms	of	features	(fiber	tracts)	
that	have	a	known	anatomy,	and	are	important	for	specific	aspects	of	cognitive	function.	Based	
on	 this	 dimensionality	 reduction	 and	 alignment	 into	 the	 individual	 participant’s	 anatomy,	
groups	of	subjects	can	be	compared	in	terms	of	these	features,	individuals	can	be	compared	to	
groups,	 and	 supervised	 and	 unsupervised	 learning	 techniques	 can	 be	 applied	 to	 link	 white	
matter	biology	to	cognition	in	health	and	disease.	But	even	this	lower-dimensional	view	of	the	
diffusion	 data	 can	 become	 unwieldy	 as	 datasets	 grow	 larger,	 and	 as	 there	 is	 an	 increasingly	
complex	 collection	 of	 subject	 meta-data	 characteristics	 (e.g.,	 behavioral	 measures,	
demographics,	 disease	 state,	 etc.)	 that	 might	 be	 linked	 to	 the	 underlying	 biological	
measurements.	 Hence,	 data	 visualization	 that	 allows	 for	 linked	 views	 across	 different	
dimensions	of	the	dataset	is	essential.	

AFQ-Browser	 takes	 the	 output	 of	 the	AFQ	MATLAB	pipeline,	 and	 generates	 a	 browser-based	
visualization	of	the	results.	The	AFQ	MATLAB	analysis	pipeline	produces	a	standard	AFQ	object,	
stored	as	a	MATLAB	.mat/hdf5	file.	This	file	contains	a	structure	array	data-structure,	with	Tract	
Profiles	 for	all	 the	diffusion	properties	that	were	calculated	from	the	dMRI	data,	 for	all	 tracts	
and	subjects.	The	AFQ	file	also	contains	a	field	for	metadata:	Subject	level	characteristics,	such	
as	age,	clinical	diagnosis,	or	scores	on	psychometric	tests	are	saved	into	this	field.	A	command	
line	 function,	 afqbrowser-assemble,	 extracts	 all	 this	 information	 from	 the	 AFQ	 .mat	 file	 and	
writes	out	the	hierarchically	nested	structured	array	as	a	series	of	.csv	and	.json	files,	stored	in	
tidy	 formats	 28.	 This	 command	 line	 application	 then	 organizes	 the	 various	 AFQ-Browser	 files	
into	a	 fully-functioning	AFQ-Browser	website:	A	template	of	HTML	and	JavaScript	scripts,	and	
CSS	styling	are	arranged	into	the	appropriate	folder	structure,	and	the	data	are	placed	in	a	data	
folder	 from	 which	 the	 application	 files	 read	 it	 into	 the	 browser.	 A	 second	 command	 line	
function,	 afqbrowser-run,	 launches	 a	 static	 web-server	 on	 the	 user’s	 computer	 with	 AFQ-
Browser	running	for	this	dataset.	Navigating	a	web	browser	to	the	returned	url	 (defaulting	to	
https://localhost:8080),	will	open	the	visualization.	

Linked	visualization	
The	 browser	 based	GUI	 has	 four	 panels	 (Figure	 1):	 BUNDLE	 LIST;	 (b)	 ANATOMY;	 (c)	 BUNDLE	
DETAILS;	(d)	SUBJECT	METADATA.	The	visualization	is	linked	across	the	panels	in	four	ways.	
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• First,	color	is	used	to	identify	each	fiber	tract	(here	referred	to	as	“Bundle”)	across	the	
Bundle	 List,	 3D	 Brain	 visualization,	 and	 Bundle	 Details	 plots.	 We	 use	 the	 categorical	
Tableau-20	 color	 scheme	 (https://www.tableau.com/about/blog/2016/7/colors-
upgrade-tableau-10-56782).	 Clicking	 on	 a	 tract	 in	 the	 Bundle	 List,	 or	 3D	 Brain,	 will	
highlight	 that	 tract	 in	 both	 panels	 and	 open	 up	 the	 corresponding	 line	 plot	 showing	
diffusion	properties	of	that	tract	for	each	subject.	

• Second,	the	Tract	Profiles	from	each	individual	subject	in	the	Bundle	Details	panels	are	
linked	 to	 their	metadata.	 Selecting	a	Tract	Profile	 (line)	 in	 the	Bundle	Details	plot	will	
highlight	that	subject’s	row	of	the	metadata	table,	and	selecting	a	row	of	the	metadata	
table	will	 highlight	 that	 subjects	 Tract	 Profile	 in	 the	plot.	 A	 subject	 of	 interest	 can	be	
selected	based	on	their	metadata	to	visualize	their	Tract	Profiles	relative	to	the	group	of	
other	subjects,	or	a	Tract	Profile	of	interest	can	be	selected	to	compare	their	metadata	
against	the	group	of	other	subjects.		

• Third,	 columns	 in	 the	Metadata	 table	 are	 linked	 to	mean	 lines	 in	 the	 Bundle	 Details	
plots.	Clicking	a	column	will	sort	the	metadata	table	based	on	the	data	in	that	field,	and	
subjects	will	be	divided	into	N	groups	by	binning	the	data	(the	number	of	groups	can	be	
defined	in	a	control	bar).	Each	bin	will	be	assigned	a	color	and	this	color	will	be	used	for	
the	 rows	 of	 the	 metadata	 table,	 the	 mean	 lines	 in	 the	 Bundle	 Details	 plot,	 and	 the	
individual	subject	lines	in	the	plot.	Each	time	a	new	column	in	the	metadata	is	selected,	
the	 mean	 lines	 are	 updated	 in	 the	 plot,	 and	 the	 rows	 are	 sorted	 and	 colored	
appropriately	 in	 the	metadata	 table.	 This	 feature	 provides	 an	 efficient	 tool	 to	 slice	 a	
large	data	set	across	different	dimensions,	examine	how	different	subject	characteristics	
relate	 to	diffusion	measures,	determine	 subjects	 that	are	outliers	within	a	group,	 and	
determine	how	different	manners	of	grouping	produce	changes	across	different	white	
matter	fiber	tracts.	

• Fourth,	 the	 spatial	 dimension	 (x-axis)	of	 the	Bundle	Details	plots	 is	 linked	 to	 the	 fiber	
tracts	in	the	3D	brain	visualization.	Manual	selection	(brushing	32)	of	a	range	of	nodes	in	
the	Bundle	Details	plot,	enabled	by	toggling	on	the	brushable	tracts	feature	in	a	control	
bar,	highlights	the	corresponding	region	of	the	fiber	tract	 in	the	3D	brain.	This	feature	
allows	 a	 user	 to	 link	 statistics,	 group	 differences,	 or	 quantitative	 comparisons	 of	 an	
individual	subject	back	to	their	brain	anatomy.	
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Figure	1:	AFQ-Browser	v1.0.	The	BUNDLES	panel	displays	the	names	of	the	tracts	and	the	colors	
are	 linked	 to	 the	 ANATOMY	 and	 BUNDLE	 DETAILS	 panels.	 Selecting	 a	 tract	 in	 the	 BUNDLES	 or	
ANATOMY	panel	will	display	the	Tract	Profile	in	the	BUNDLE	DETAILS	panel.	Selecting	an	individual	
subject’s	 Tract	 Profile	 will	 highlight	 that	 subject	 in	 the	 SUBJECT	 METADATA	 panel.	 Selecting	 a	
column	of	SUBJECT	METADATA	groups	subjects	based	on	 this	measure.	 In	 the	example,	 subjects	
are	grouped	based	on	age	and	means	and	standard	deviations	are	shown	in	the	BUNDLE	DETAILS	
panel.	

Publishing	data	for	reproducible	science	
A	 single	 command,	afqbrowser-publish,	 packages	 the	entire	website,	 including	both	data	and	
visualization	 into	 a	 git	 repository,	 and	 uploads	 this	 repository	 to	 GitHub.	 This	 script	
automatically	 creates	 a	 website	 with	 this	 data,	 hosted	 on	 the	 repository’s	 “GitHub	 Pages”	
website,	 so	 that	 it	 can	be	 viewed	by	 anyone	 through	 a	web-browser.	 The	published	website	
also	includes	a	link	that	allows	users	to	download	the	.csv	files	that	contain	the	information	that	
is	displayed,	for	additional	computational	exploration	through	other	tools	(e.g.,	by	reading	the	
data	into	scripts	that	implement	machine	learning	algorithms).	The	only	requirement	is	that	the	
user	has	a	GitHub	account	and	afqbrowser-publish	will	 create	 the	public	 repository,	build	 the	
webpage,	and	launch	the	web	server	through	GitHub.	
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Saving	the	browser	state	
Reproducing	results	that	are	generated	by	a	graphical	user	interface	(GUI)	can	be	problematic	
since	figures	are	generated	based	on	a	series	of	user	inputs	(i.e.,	mouse	clicks	and	key	presses).	
To	 solve	 this	problem,	we	have	built	 a	 “save	browser	 state”	 function	 into	AFQ-Browser.	 This	
function	 saves	 a	 settings	 file	 that	 will	 load	 a	 specific	 browser	 state	 when	 AFQ-Browser	 is	
launched.	 Hence,	 a	 discovery	 made	 through	 a	 series	 of	 operations	 in	 the	 GUI	 can	 be	
communicated	without	a	lengthy	description	of	the	series	of	user	inputs.	

Installation	of	AFQ-Browser	
The	 current	 version	 of	 AFQ-Browser	 can	 be	 cloned	 from	 the	 GitHub	 repository:	
https://github.com/YeatmanLab/AFQ-Browser.	The	current	stable	release	can	be	found	on	the	
Python	 Package	 Index	 (https://pypi.python.org/pypi/AFQ-Browser)	 and	 it	 can	 be	 installed,	
together	 with	 all	 of	 its	 dependencies,	 on	 any	 machine	 with	 Python	 and	 the	 pip	 package	
manager	simply	by	calling:	pip	install	AFQ-Browser.	

Results	

Generating	new	discoveries	from	old	datasets		
Publishing	 data	 in	 a	 convenient	 format	 supports	 reproducibility	 and	 fuels	 new	 scientific	
discoveries.	 For	 example,	 examining	 the	 published	 data	 from	 Yeatman,	 Wandell	 and	 Mezer	
(2014)	 14	 in	 a	 running	 instance	 of	 AFQ-Browser	 (http://YeatmanLab.github.io/AFQBrowser-
demo),	 we	 can	 reproduce	 the	 previously	 reported	 finding	 that,	 in	 terms	 of	 mean	 diffusivity	
(MD),	the	arcuate	fasciculus	demonstrates	more	developmental	change	than	the	corticospinal	
tract	(CST).	When	the	sample	is	binned	into	three	age	groups,	both	the	arcuate	and	CST	show	
highly	 significant	changes,	but	 the	magnitude	of	change	between	childhood	and	adulthood	 is	
larger	for	the	arcuate,	than	the	CST	(Figure	2b).	By	switching	the	plot	to	fractional	anisotropy	
(FA)	rather	than	MD,	another	effect,	not	reported	in	the	original	manuscript,	can	be	observed.	
While	the	arcuate	shows	the	expected	pattern	of	results	-	FA	values	increase	with	development	
-	 the	 CST	 shows	 the	 opposite	 pattern	 of	 developmental	 change.	 For	 the	 CST,	 the	 three	 age	
groups	have	equivalent	FA	values	for	the	first	half	of	the	tract,	but	adults	have	lower	FA	values	
than	young	adults	or	children	between	nodes	50	and	80	(Figure	2b).	At	first	this	finding	might	
seem	counter-intuitive:	FA	typically	increases	with	development	as	axons	become	more	densely	
packed	and	myelinated.	But	in	this	case	the	developmental	decline	in	FA	occurs	in	the	centrum	
semiovale,	 a	portion	of	 the	Tract	 Profile	where	 FA	drops	 substantially	 due	 to	 crossing	 fibers.	
The	developmental	decline	 in	FA	 is	 therefore	 likely	 to	 reflect	development	of	 the	 fiber	 tracts	
that	 cross	 through	 this	 portion	 of	 the	 CST,	 rather	 than	 changes	 in	 CST	 axons	 per	 se.	 This	
interpretation	 makes	 sense	 given	 that	 the	 superior	 longitudinal	 fasciculus	 (SLF),	 one	 of	 the	
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tracts	 crossing	 through	 this	 region	of	 the	CST,	 is	 believed	 to	 continue	developing	 into	 young	
adulthood.	This	interpretation	of	the	developmental	changes	in	FA	in	regions	of	crossing	fibers	
offers	 some	 clarity	 to	 other	 reports	 of	 declining	 FA	 values	 in	 the	 young	 adult	 brain,	 but	 also	
requires	a	more	thorough	investigation	in	an	independent	dataset.		

	
Figure	2:	Development	of	the	corticospinal	tract,	arcuate	fasciculus	and	cingulum.	Tract	Profiles	
of	Mean	Diffusivity	 (top)	 and	 Fractional	 Anisotropy	 (bottom)	 are	 shown	 for	 the	 left	 hemisphere	
corticospinal	 tract	 (CST,	 orange),	 arcuate	 fasciculus	 (blue)	 and	 cingulum	 (green).	 Splitting	 the	
group	by	age,	and	selecting	3	bins,	displays	mean	 lines	 three	groups:	8-15	 (red),	15-30	 (purple),	
30-50	(blue).	For	the	CST,	there	is	a	region	that	shows	a	decrease	in	FA	with	development,	and	this	
location	of	 the	tract	 is	highlighted	on	the	plot	using	the	“brushable	tracts”	feature	 (shaded	gray	
box).	 The	 linked	view	 in	 the	anatomy	displays	 the	portion	of	 the	CST	 that	 is	brushed	 in	 the	plot	
demonstrating	that	this	effect	occurs	in	the	anatomical	portion	of	the	CST	known	as	the	centrum	
semiovale,	 adjacent	 to	 the	 arcuate	 fasciculus.	 This	 linked	 visualization	 provides	 a	 connection	
between	 the	 data	 plots	 and	 the	 3D	 Anatomy.	 Data	 and	 MATLAB	 code	 available	 at	
https://github.com/YeatmanLab/AFQ-Browser_data	 (see	 Figure2_Development.m)	 and	 running	
AFQ-Browser	instance	at:	https://YeatmanLab.github.io/AFQBrowser-demo/)	

Localizing	white	matter	lesions	in	patients	with	multiple	sclerosis	
Multiple	 Sclerosis	 (MS)	 is	 a	 degenerative	 disease	 of	 the	 white	 matter	 characterized	 by	
progressive	loss	of	myelin.	Even	though	measures	such	as	MD	and	FA	are	not	specific	to	myelin,	
dMRI	is	still	a	promising	technique	for	detecting	and	monitoring	white	matter	lesions	in	MS	and	
quantifying	 results	 from	drug	 trials	 targeting	 remyelination	 33.	DMRI	 is	 sensitive	 to	aspects	of	
the	 disease	 that	 are	 not	 detectable	 with	 conventional	 imaging	 methods	 (T1,	 T2,	 FLAIR).	
Quantitative	 comparisons	 between	 MS	 patients	 and	 healthy	 control	 subjects	 have	
demonstrated	differences	 in	diffusion	properties	within	 “normal	 appearing	white	matter”,	 or	
regions	that	do	not	show	obvious	lesions	on	a	conventional	MRI	image.	In	longitudinal	studies,	
these	 regions	 with	 diffusion	 differences	 are	 likely	 to	 progress	 into	 lesions,	 indicating	 the	
sensitivity	of	dMRI	for	detecting	early	signs	of	the	disease	and	monitoring	the	benefit	of	drugs	
that	aim	to	prevent	the	demyelination	process	33–36.		
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One	of	 the	 challenges	 for	 incorporating	dMRI	 into	 clinical	practice	 is	 the	 lack	of	user-friendly	
methods	 for	 visualizing	 results	 in	 a	 quantitative	 manner.	 For	 clinical	 applications,	 group	
comparisons	 have	 limited	 utility,	 because	 ultimately	 the	 goal	 is	 to	 detect	 abnormalities	 and	
make	diagnoses	at	the	level	of	the	individual.	For	example,	in	the	data	previously	published	by	
Yeatman,	Wandell,	Mezer	and	colleagues	14,37,	mean	diffusivity	(MD),	radial	diffusivity	(RD),	and	
fractional	anisotropy	(FA)	values	are	significantly	different	in	MS	patients	compared	to	controls	
for	most	tracts	in	the	brain	(https://jyeatman.github.io/AFQ-Browser-MSexample/).	MD	and	RD	
show	much	greater	 sensitivity	 to	group	differences	 than	FA:	Figure	3	 show	group	means	and	
standard	 errors	 for	MD,	 RD	 and	 FA	 along	 the	 corticospinal	 tract,	 posterior	 callosum,	 inferior	
longitudinal	fasciculus	and	arcuate	fasciculus.		

	
Figure	 3:	Group	 comparison	 between	multiple	 sclerosis	 patients	 and	 healthy	 control	 subjects.	
We	 observe	 highly	 significant	 (p<0.001)	 group	 differences	 in	 diffusion	 measures	 across	 many	
tracts.	 Mean	 diffusivity	 (top	 panel)	 and	 radial	 diffusivity	 (middle	 panel)	 show	 larger	 group	
differences	than	fractional	anisotropy	(bottom	panel).	Mean	values	+/-	1	standard	error	are	shown	
for	 control	 subjects	 in	 red	 and	 multiple	 sclerosis	 (MS)	 patients	 in	 blue.	 (see	
Figure3_4_MultipleSclerosis.m	and	https://jyeatman.github.io/AFQ-Browser-MSexample/)	
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Group	comparisons	demonstrate	the	sensitivity	of	the	measure	to	the	disease	but	don’t	provide	
diagnostic	 information	 about	 individual	 patients:	 each	 individual	 has	 tissue	 abnormalities	 in	
different	 parts	 of	 the	brain,	with	 some	 tracts	 showing	diffusivity	 values	 in	 the	normal	 range,	
others	showing	normal	appearing	white	matter	on	a	T1,	but	abnormalities	in	terms	of	diffusion	
metrics,	and	other	tracts	displaying	major	lesions.	AFQ-Browser	provides	a	simple	and	intuitive	
method	to	quantitatively	compare	an	individual’s	white	matter	tissue	properties	to	normative	
data	 from	 healthy	 brains	 by	 plotting	 each	 individual’s	 Tract	 Profile	 in	 comparison	 to	 the	
normative	 distribution	 of	 healthy	 brains	 (means	 and	 standard	 deviations,	 Figure	 4).	 Such	 a	
comparison	 can	 localize	 lesions	 to	 specific	 locations	 on	 a	 tract	 and	 quantify	 the	 extent	 of	
damage.	Clinical	data	is	a	prime	example	of	the	utility	of	linked	visualization:	the	links	between	
quantitative	plots	of	diffusion	measures,	tract	anatomy,	and	subject	metadata	make	it	possible	
to	quickly	 find	a	subject	with	a	 lesion,	determine	the	 location	of	the	 lesion	and	associate	this	
information	 with	 clinical	 symptoms.	 While	 not	 as	 specific	 to	 myelin	 as	 other	 quantitative	
measurements	such	as	R1	14,38–41,	we	find	that	MD	and	RD	are	highly	sensitive	to	MS	lesions.	For	
example	the	lesion	shown	in	Figure	8	of	14	can	be	detected	based	on	MD	values	that	are	5.6	SD	
away	 from	 the	norms,	with	a	 larger	 lesion	 in	 the	 left	 compared	 to	 the	 right	occipital	 callosal	
connections	 (Figure	 4,	 subject_020).	 In	 this	 lesion,	 RD	 values	 are	 slightly	 more	 sensitive	
showing	 a	 z-score	 of	 6.2	 and	 FA	 values	 are	 slightly	 less	 sensitive,	 with	 a	 z-score	 of	 -3.3	
compared	to	healthy	controls	(Figure	4).	For	this	patient,	the	large	lesion	on	the	ILF	was	more	
than	 10	 SD	 greater	 than	 the	 controls	 in	 terms	 of	MD	 and	 RD.	 As	more	 clinical	 datasets	 are	
aggregated	in	public	repositories	there	will	be	new	opportunities	to	explore	the	sensitivity	and	
specificity	of	this	type	of	individual	comparison.	

	
Figure	4:	 Localizing	 lesions	 in	an	 individual’s	brain.	 Individual	MS	patients	 (light	blue	 lines)	are	
plotted	 against	 the	 normal	 distribution	 (mean	 +/-1	 1	 standard	 deviation)	 of	 values	 in	 healthy	
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control	 subjects.	Lesions	and	diffuse	abnormalities	can	be	detected	 in	 individuals	based	on	 large	
deviations	from	the	control	subjects.	The	darker	blue	line	is	data	from	the	patient	shown	in	Figure	
8	 of	 Yeatman,	Wandell	 and	Mezer,	 2014.	 By	 plotting	 standard	 deviations	 rather	 than	 standard	
errors,	 the	 large	 (>1SD)	difference	between	MS	patients	and	control	subjects	 is	apparent,	as	are	
the	 large	 deviations	 of	 specific	 patients	 from	 the	 normal	 distribution.	 (see	
Figure3_4_MultipleSclerosis.m	and		https://jyeatman.github.io/AFQ-Browser-MSexample/)	

Detecting	degeneration	of	the	corticospinal	tract	in	amyotrophic	lateral	
sclerosis	(ALS)	
Amyotrophic	 lateral	 sclerosis	 (ALS)	 is	 a	 neurodegenerative	 disease	 in	 which	 progressive	
degeneration	of	upper	and	lower	motor	neurons	leads	to	atrophy,	weakness	and	loss	of	muscle	
control.	The	time-course	of	disease	progression	varies	substantially	across	patients,	with	some	
showing	 rapid	 degeneration	 and	 other	 showing	 a	 sporadic	 or	 gradual	 decline.	 Due	 to	 the	
heterogeneous	presentation	of	clinical	symptoms	in	ALS,	early	diagnosis	can	be	challenging	and	
the	 disease	 can	 go	 undetected	 in	 many	 patients	 until	 they	 present	 with	 severe	 symptoms.	
Hence,	 the	 development	 of	 quantitative	 and	 automated	 methods	 for	 diagnosis	 and	 disease	
monitoring	has	been	a	major	focus	within	clinical	neuroimaging	research.	Diffusion	MRI,	holds	
promise	as	a	tool	to	detect	the	early	stages	of	neural	degeneration	and	corroborate	behavioral	
assessments.	 Group	 analyses	 have	 consistently	 demonstrated	 significant	 reductions	 in	 FA,	
increases	in	RD	and	increases	in	MD	in	the	corticospinal	tract	23,42.		Group	comparisons	provide	
information	about	the	average	pattern	of	disease	progression	but	ultimately	the	goal	of	clinical	
neuroimaging	research	is	to	develop	techniques	that	have	sufficient	sensitivity	and	specificity	to	
be	applicable	at	the	individual	level.	A	recent	study	used	AFQ	and	a	random	forest	classifier	to	
develop	 an	 automated	 diagnosis	 system	 to	 classify	 subjects	 as	 healthy	 or	 diseased	 based	 on	
dMRI	measures	 23.	They	achieved	80%	classification	accuracy	 (cross-validated)	based	on	Tract	
Profiles	 of	 the	 corticospinal	 tract	 and	 reported	 that	 FA	 and	 RD	 at	 the	 level	 of	 the	 cerebral	
peduncle	 and	 posterior	 limb	 of	 the	 internal	 capsule	 were	 the	 most	 informative	 diffusion	
properties.	 These	 effects	 can	be	 visualized	 in	AFQ	browser	 by	 binning	 the	 subjects	 based	on	
disease	diagnosis	(https://yeatmanlab.github.io/Sarica_2017/,	Figure	5).	As	reported	by	Sarica	
et.	al,	the	mean	RD	and	FA	values	in	this	region	of	the	CST	are	more	than	1SD	different	in	ALS	
patients	 compared	 to	 controls	 (node	 40,	 arrow	 Figure	 5).	 Even	 though	 a	 multivariate	
classification	 strategy	 (random	 forests)	 is	 used	 to	 achieve	 good	 diagnostic	 accuracy,	
visualization	of	individual	Tract	Profiles	demonstrates	that	a	majority	of	patients	(75%)	deviated	
by	more	than	1SD	from	control	values	within	the	right	CST	at	the	level	of	the	cerebral	peduncle.	

The	goal	of	most	clinical	neuroimaging	studies	is	to	detect	regions	of	the	brain	that	are	affected	
by	the	disease.	While	not	a	central	focus	of	clinical	research,	there	is	also	scientific	importance	
to	clearly	establishing	regions	of	 the	brain	that	are	not	affected	by	the	disease.	Based	on	the	
previously	published	data	in	Sarica	et	al.	23,	we	can	investigate	the	specificity	of	the	effects	to	
the	 CST	 and	 determine	 whether	 there	 are	 there	 are	 any	 tracts	 that	 can	 be	 established	 as	
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control	regions	not	affected	by	the	disease.	We	find	that	the	CST	 is	the	only	tract	that	shows	
large	 (>1SD)	 differences	 between	 patients	 and	 controls	 in	 terms	 of	 RD	 and	 FA	 values.	While	
there	are	a	few	regions	that	show	small	differences	(depending	on	the	statistical	threshold),	the	
specificity	of	the	effects	to	the	CST	 is	striking.	For	example,	many	tracts	 including	the	forceps	
major	and	forceps	minor	of	the	corpus	callosum,	and	the	left	and	right	inferior	fronto-occipital	
fasciculus	 show	nearly	 identical	distributions	of	 values	between	patients	and	controls	 (Figure	
5).		

	
Figure	5:	Amyotrophic	lateral	sclerosis	patients	show	isolated	degeneration	of	the	corticospinal	
tract.	 (a)	Means	and	standard	deviations	of	FA	and	RD	values	are	shown	for	ALS	patients	 (blue)	
and	control	subjects	(red).	 Individual	patients	are	displayed	as	 light	blue	lines	for	the	CST.	At	the	
level	 of	 the	 cerebral	 peduncle,	 patients	 differ	 from	 controls	 by	more	 than	 1	 standard	 deviation	
(black	arrow).	No	other	tracts	show	this	large	effect.	(b)	Means	and	standard	errors	are	shown	for	
ALS	and	control	subjects	to	indicate	regions	of	significant	group	differences.	Group	differences	are	
relatively	specific	to	the	CST.	(See	Figure5_ALS.m	and	https://YeatmanLab.github.io/Sarica_2017/)	
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Removing	barriers	for	interdisciplinary	collaboration:	Informed	features	
shared	as	“tidy	data”	
Statistics,	machine	learning,	and	data	science	are	making	impressive	strides	in	the	development	
of	general-purpose	methods	for	the	interpretation	of	data	across	a	variety	of	scientific	fields	43.	
One	of	the	current	barriers	to	a	broader	application	of	these	methods	is	the	extraction	of	useful	
analysis	 features	 from	 unstructured	 data	 sets	 that	 contain	 large,	 heterogeneous,	 noisy	
measurements,	 saved	 in	 obscure	 domain-specific	 or	 proprietary	 formats,	 that	 require	 special	
software,	 and	 arcane	 preprocessing	 steps.	 Brain	 imaging	 data	 is	 a	 paradigmatic	 case	 of	 this	
state	 of	 affairs:	 measurements	 are	 typically	 large,	 on	 the	 order	 of	 several	 gigabytes	 per	
individual,	signal-to-noise	ratio	is	low,	and	differences	in	3D	brain	structure	between	individuals	
make	naive	image	processing	of	the	original	measurement	fraught.	One	of	the	major	strengths	
of	 the	 AFQ	 approach	 is	 that	 it	 extracts	 features	 from	 brain	 imaging	 data	 based	 on	 domain-
specific	 knowledge:	 quantitative	 measurements	 of	 tissue	 properties	 for	 well-defined	
anatomical	segments	of	the	white	matter	connections	in	an	individual’s	brain	that	contain	the	
major	tracts.	This	reduces	the	dimensionality	of	the	data	substantially,	while	still	retaining	rich,	
complex	information	about	an	individual’s	neuroanatomy.		

AFQ-Browser	provides	these	domain-relevant	features	in	a	format	that	will	be	familiar	to	many	
machine	learning	and	statistics	practitioners:	Tables	with	observations	as	rows,	and	variables	as	
columns.	This	format,	known	as	“tidy	data”	28	is	the	universal	exchange	format	of	data	science.	
The	 data	 are	 converted	 by	 the	 AFQ-Browser	 software	 and	 stored	 in	 ubiquitous	 text-based	
formats:	CSV	and	 JSON	 files.	 Separate	 tables	are	available	 for	node-by-node	estimates	of	 the	
diffusion	 properties	 along	 the	 length	 of	 the	 fiber	 groups,	 and	 for	 the	 subject	metadata,	 and	
these	 tables	 can	 be	 merged	 in	 an	 unambiguous	 manner	 through	 a	 shared	 subject	 ID	
variable.	 	These	 files	 can	be	 read	using	 the	 standard	data	 science	 tool-box:	Software	 libraries	
such	as	the	Python	pandas	library	44,	or	using	the	R	statistical	language	45.	Once	data	are	read	
into	 tables,	 data	 processing	 and	 visualization	 with	 tools	 such	 as	 Seaborn	
(https://seaborn.pydata.org/)	 or	 ggplot	 (http://ggplot.yhathq.com/)	 are	 also	 straightforward.	
Furthermore,	 very	 few	 steps	 are	 required	 to	 apply	machine	 learning	 techniques	 to	 the	 data,	
using	tools	such	as	the	scikit-learn	library	46,	and	results	such	as	classifier	weights	can	be	easily	
interpreted	with	respect	to	known	brain	anatomy.	An	example	of	such	an	analysis	is	presented	
in	Figure	6,	using	the	same	data	as	in	Figure	5.		

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182402doi: bioRxiv preprint 

https://doi.org/10.1101/182402
http://creativecommons.org/licenses/by/4.0/


AFQ-Browser								15	

	  
Figure	6:	Classification	of	ALS	patients	based	on	FA	in	the	corticospinal	tracts.	The	Tract	Profiles	
in	 the	 two	CSTs	 are	 submitted	 to	 a	 Principal	 Components	Analysis	 --	 the	 first	 two	PCs	 form	 the	
dimensions	 of	 this	 plot	 (accounting	 for	 about	 50%	 of	 the	 variance	 in	 the	 data).	 The	 data	 is	
separately	 used	 to	 train	 a	 support	 vector	 machine	 classifier,	 with	 a	 polynomial	 kernel.	 	The	
classification	boundary	is	shown	here	in	the	space	of	first	two	PCs.	This	classifier	performs	at	88%	
accuracy	 (cross-validated)	 in	 discriminating	 patients	 from	 controls.	 The	 Jupyter	 Notebook	
containing	 all	 steps	 of	 the	 analysis	 is	 shared	 here:	 https://github.com/yeatmanlab/AFQ-
Browser_data/blob/master/AFQ-Browser_ALSexample/Figure6.ipynb	

Discussion	
We	have	developed	a	new	visualization	tool	for	the	quantitative	analysis	of	diffusion	MRI	data	
in	 the	web	browser.	The	goals	of	 this	work	were,	 first,	 to	support	scientific	 reproducibility	by	
removing	 barriers	 to	 public	 data	 release	 and,	 second,	 to	 capitalize	 on	 new	 technologies	 for	
linked	visualization	that	 facilitate	exploratory	data	analysis.	AFQ-Browser	makes	 it	possible	 to	
create	 an	 interactive	 website	 of	 companion	 data	 for	 a	 manuscript	 with	 a	 single	 command	
(afqbrowser-publish).	While,	ultimately,	we	advocate	for	releasing	all	the	raw	data	and	analysis	
code	 associated	 with	 published	 work	 26,	 we	 also	 maintain	 that	 releasing	 derived	 measures	
(Tract	 Profiles)	 is	 a	 major	 step	 in	 the	 right	 direction	 and	 will	 allay	 the	 concerns	 that	 many	
scientists	 feel	about	giving	up	control	of	difficult	to	collect	data	sets.	 Ideally,	 this	practice	will	
serve	as	a	stepping-stone	to	further	data	and	code	sharing.		

An	additional	benefit	of	releasing	derived	measures	 is	that	readers	of	a	manuscript	can	easily	
explore	dimensions	of	the	data	that	were	not	reported	in	the	publication.	For	example,	it	is	not	
feasible	to	report	results	for	every	possible	diffusion	metric	and	it	is	common	for	a	manuscript	
to	focus	on	a	single	metric.	In	our	previous	work	14	we	only	reported	modeling	results	for	MD,	
R1	and	MTV.	A	 reader	 that	 is	 left	wondering	whether	other	metrics	 (e.g.,	RD	and	AD)	would	
show	the	same	pattern	of	results	can	now	quickly	answer	this	question	through	the	companion	
website	 (http://yeatmanlab.github.io/AFQBrowser-demo).	 Not	 only	 is	 a	 companion	 website	
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more	feasible	than	a	supplement	that	 includes	every	potential	analysis,	through	AFQ-Browser	
researchers	can	extend	published	work	and	make	new	discoveries.	For	example,	we	have	made	
three	observations,	 that	 extend	 the	 findings	 reported	 in	published	datasets:	 (1)	 In	 regions	of	
crossing	 fibers	 there	 are	 developmental	 declines	 in	 FA	 (Figure	 2);	 (2)	 MS	 lesions	 can	 be	
detected	in	an	individual,	and	localized	on	a	tract,	based	on	RD	or	MD	but	not	FA	(Figure	4);	(3)	
White	matter	degeneration	in	ALS	is	highly	specific	to	the	corticospinal	tract	and	many	cortical	
association	 tracts	 are	 largely	 unaffected	 by	 the	 disease	 (Figure	 5).	 While	 each	 of	 these	
discoveries	 is	only	an	 incremental	contribution	to	what	was	reported	 in	the	original	work,	we	
contend	that	having	datasets	openly	available	online,	with	tools	that	facilitate	data	exploration,	
will	fuel	important	new	discoveries	in	human	neuroscience.	

Democratizing	web-based	visualization		
We	are	not	the	first	to	create	interactive	web-based	visualizations	to	accompany	a	manuscript.	
For	 example,	 the	 Allen	 Brain	 Institute	 has	 built	 a	 powerful	 GUI	 to	 explore	 large,	multimodal	
genomics	 and	 physiology	 datasets	 (http://casestudies.brain-map.org/celltax).	 Friederici	 and	
colleagues	built	an	interactive	brain	viewer	to	accompany	a	review	paper	on	the	neuroanatomy	
of	 language	 47	 so	 that	 readers	 could	 explore	 anatomy	 in	 a	 more	 detailed	 manner	 than	 is	
possible	 in	 a	 static	 figure	 (http://onpub.cbs.mpg.de/index.html).	 The	 BigBrain	 project	 48	 has	
released	a	high	resolution	atlas	of	 the	human	brain	histology	that	can	be	navigated	based	on	
custom	WebGL	code	 (https://bigbrain.loris.ca).	Huth	and	colleagues	used	pyCortex	 49	 to	build	
an	interactive	website	to	accompany	recent	work	50	on	the	structure	of	semantic	maps	in	the	
human	 brain	 (http://gallantlab.org/huth2016/).	 There	 are	 numerous	 examples	 of	 beautiful	
interactive	 websites	 that	 labs	 have	 designed	 to	 accompany	 key	 studies,	 and	 interact	 with	
landmark	datasets.	However,	these	major	achievements	in	browser-visualization	are	isolated	to	
a	few	labs	with	high	technical	capabilities	and	the	willingness	to	invest	the	time	and	resources	
required	to	design	a	custom	website	 for	a	publication.	AFQ-Browser	 fills	an	 important	gap	by	
removing	 these	 constraints:	 a	 website	 can	 be	 published	 by	 running	 a	 single	 command	
(afqbrowser-publish)	in	a	software	package	that	can	be	installed	automatically	on	any	machine	
with	Python	(pip	install	AFQ-Browser),	and	the	website	is	hosted	for	free	through	GitHub	Pages.	
Thus,	even	labs	with	minimal	resources	and	technical	capabilities	can	communicate	important	
scientific	findings	in	an	interactive	format.	

Is	exploratory	data	analysis	at	odds	with	hypothesis	testing?		
Should	we	worry	 that	we	 are	 supporting	 scientific	 transparency	 at	 the	 expense	 of	 artificially	
diminishing	 p-values?	 Traditionally,	 the	 field	 of	 cognitive	 neuroscience	 has	 approached	 data	
analysis	with	the	goal	of	testing	specific	hypotheses.	Thus,	experiments	and	data	collection	are	
designed	with	a	hypothesis	in	mind,	and	data	analysis	involves	computing	statistics	to	formally	
test	this	hypothesis.	In	hypothesis-driven	science,	data	visualization	is	often	viewed	as	separate	
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from	the	scientific	 investigation.	However,	with	new	imaging	techniques,	and	 large-scale	data	
collection	efforts,	the	field	of	human	neuroscience	sits	at	a	transition	point,	where	data	mining	
is	becoming	appreciated	as	an	increasingly	important	component	of	scientific	discovery.	Other	
scientific	fields	such	as	astronomy	and	genomics	that	have	embraced	Big	Data,	have	discovered	
the	 critical	 role	 that	data	 visualization	 can	play	 in	developing	new	 theories	 31.	As	 the	 field	of	
human	 neuroscience	 transitions	 to	 an	 era	 of	 Big	 Data,	 tools	 like	 AFQ-Browser	 will	 become	
increasingly	important	as	a	way	for	scientists	to	interact	with	large	datasets.	As	datasets	grow,	
so	 will	 the	 importance	 of	 tools	 that	 can	 operate	 in	 the	 same	 manner	 on	 data	 stored	 on	 a	
personal	computer	 in	a	 laboratory,	or	on	remote	datasets	stored	in	the	cloud.	Browser-based	
GUIs	can	fill	this	growing	need.	

However,	we	might	 also	worry	 that	 in	 developing	 tools	 like	AFQ-Browser,	we	 are	 supporting	
reproducibility	and	data	mining	at	the	expense	of	“p-hacking”	51–53.	This	is	a	valid	concern	and	
highlights	the	need	for	our	standards	on	scientific	rigor	to	evolve	with	the	changing	landscape	
of	Big	Data.	For	example,	a	lab	might	typically	only	conduct	a	limited	number	of	statistical	tests	
and,	 ideally,	would	 correct	p-values	 for	each	 statistical	 test	 that	was	performed	 (not	 just	 the	
tests	 that	were	reported	 in	the	manuscript).	But	exploratory	data	analysis	 involves	examining	
many	 possible	 processing	 pipelines	 and	 relationships	 between	 variables	 in	 a	 system	 29.	 The	
strength	of	 tools	 like	AFQ-Browser	 is	 the	ease	of	exploring	 large	datasets	 to	 identify	 relevant	
dimensions,	and	make	data-driven	discoveries	that	suggest	a	new	hypothesis	to	test	 in	future	
work.	Data	exploration	is	a	critical	component	of	hypothesis	generation,	and	data	mining	tools	
should	not	be	discarded	over	worries	of	p-hacking.	But	 thoughtful	 consideration	of	 statistical	
concerns	is	also	paramount.	Drawing	a	distinction	between	exploratory	and	confirmatory	data	
analysis	 allays	 concerns	 over	 biased	 p-values	 by	 defining	 the	 central	 role	 of	 replication	 in	
scientific	 discovery.	 An	 observation	 that	 emerges	 from	 exploratory	 data	 analysis	 should	 be	
confirmed	 in	 an	 independent	 dataset.	 As	 more	 datasets	 become	 publicly	 available,	
confirmatory	 data	 analysis	 and	 independent	 replication	will	 become	 standard	 practice.	 Tools	
like	 AFQ-Browser	 facilitate	 this	 goal	 of	 aggregating	 many	 independent	 datasets.	 Finally,	 Big	
Data	 should	 not	 be	 viewed	 as	 a	 replacement	 for	 small	 and	 careful,	 hypothesis	 driven	
investigations	 within	 a	 single	 laboratory.	 The	 field	 should	 strive	 for	 a	 balance	 between	 the	
innovative	data-driven	discoveries	that	can	emerge	from	large	public	datasets,	and	the	careful,	
targeted	 scientific	 investigations	 that	 a	 lab	 can	 undertake	 to	 definitively	 test	 a	 specific	
hypothesis.	
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