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Abstract 9 

The plant apoplast is integral to intercellular signalling, transport and plant-pathogen interactions. Plant 10 

pathogens deliver effectors both into the apoplast and inside host cells, but no computational method 11 

currently exists to discriminate between these localizations. We present ApoplastP, the first method for 12 

predicting if an effector or plant protein localizes to the apoplast. ApoplastP uncovers features for apoplastic 13 

localization common to both effectors and plant proteins, namely an enrichment in small amino acids and 14 

cysteines as well as depletion in glutamic acid. ApoplastP predicts apoplastic localization in effectors with 15 

sensitivity of 75% and false positive rate of 5%, improving accuracy of cysteine-rich classifiers by over 16 

13%. ApoplastP does not depend on the presence of a signal peptide and correctly predicts the localization 17 

of unconventionally secreted plant and effector proteins. The secretomes of fungal saprophytes, necrotrophic 18 

pathogens and extracellular pathogens are enriched for predicted apoplastic proteins. Rust pathogen 19 

secretomes have the lowest percentage of apoplastic proteins, but these are highly enriched for predicted 20 

effectors. ApoplastP pioneers apoplastic localization prediction using machine learning. It will facilitate 21 

functional studies and will be valuable for predicting if an effector localizes to the apoplast or if it enters 22 

plant cells. ApoplastP is available at http://apoplastp.csiro.au. 23 

Introduction  24 

Pathogenic microbes such as bacteria, fungi, oomycetes, and nematodes colonize and infect plant cells and 25 

cause devastating diseases and crop losses. The extracellular matrix of plant tissues is known as the apoplast 26 

and is integral to plant physiology, signalling and defence against plant-pathogenic microbes. Initial contact 27 

between plant and pathogens is made in the apoplast and early interactions determine if a pathogen is able to 28 

colonize its host. Plant cell surface localized pattern recognition receptors (PRRs) recognize conserved 29 

pathogen molecules known as pathogen-associated molecular patterns (PAMPs) or microbe-associated 30 

molecular patterns (MAMPs) and launch initial defence responses (Dodds & Rathjen, 2010). Activation of 31 

PRR signalling leads to PAMP-triggered immunity (PTI) with rapid accumulation of antimicrobial 32 
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compounds and proteins such as proteinases, chitinases, glucanases and enzyme inhibitors that damage 1 

pathogen structures and molecules (Lo Presti et al., 2015). In turn, plant pathogens secrete effectors that 2 

alter host-cell structure and function, thereby facilitating infection and/or triggering defence responses 3 

(Kamoun, 2006). Apoplastic effectors can function as enzyme inhibitors, scavenge molecules that trigger 4 

plant immune responses and protect pathogen infection structures such as hyphae from recognition (Lo 5 

Presti et al., 2015). Some pathogens also deliver cytoplasmic effectors into plant cells to target intracellular 6 

processes. Both apoplastic and cytoplasmic effectors can also be recognized by either membrane bound or 7 

intracellular plant receptors to trigger defence responses often known as effector-triggered immunity (ETI) 8 

(Stotz et al., 2014).  9 

Plant pathogens have evolved various strategies to deliver cytoplasmic effectors intracellularly. Biotrophic 10 

and hemibiotrophic pathogens must suppress host defences as they feed on living plant cells, whereas 11 

necrotrophic pathogens feed and grow on dead or dying plant tissue and trigger host cell death as a 12 

colonization strategy. Some pathogens can directly penetrate plant tissue through specialized infection 13 

structures and deliver cytoplasmic effectors into the plant cell. For example, the hemibiotrophic fungal 14 

pathogens Magnaporthe oryzae and Colletotrichum higginsianum enter plant cells through melanized 15 

appressoria, whereas the biotrophic fungal pathogen Ustilago maydis uses non-melanized appressoria to 16 

invade host cells (Giraldo & Valent, 2013). Rust fungi, powdery mildews and oomycetes can form dedicated 17 

feeding structures called haustoria that act as sites of effector delivery to the plant cell cytoplasm (Garnica et 18 

al., 2014). Other fungal pathogens such as Cladosporium fulvum, Zymoseptoria tritici, Leptosphaeria 19 

maculans and Venturia inaequalis colonize plants extracellularly and rely on apoplastic effectors to target 20 

basal apoplastic host defence components (Stotz et al., 2014; Zhong et al., 2017).  21 

The diversity of plant pathogen effectors poses a challenge for their prediction from genomic sequences. 22 

Bacterial cytoplasmic effectors are generally predicted using machine learning methods based on conserved 23 

host delivery mechanisms such as the type III secretion system (McDermott et al., 2011). Cytoplasmic 24 

oomycete effectors are commonly predicted based on the presence of conserved N-terminal sequence motifs, 25 

but this analysis is typically restricted to RxLR or Crinkler effector families (Bhattacharjee et al., 2006). 26 

Effector prediction in fungal pathogens is complicated by the lack of conserved sequence features or motifs. 27 

User-driven selection of proteins with a small size and a high number of cysteines is commonly used to mine 28 

fungal secretomes for effectors, but suffers from poor accuracy especially for cytoplasmic effectors 29 

(Sperschneider et al., 2015a). Fungal effector prediction can benefit from including evidence of diversifying 30 

selection (Guyon et al., 2014; Sperschneider et al., 2014) or the genomic context of the gene for pathogens 31 

that preferentially harbour effectors in genomic regions with higher evolutionary rates (Raffaele & Kamoun, 32 

2012). Whilst such methods are powerful, they only capture a subset of the effector repertoire as these are 33 

not necessarily universal signals for both apoplastic and cytoplasmic effectors. By contrast, a data-driven 34 

machine learning classifier can learn ‘effector rules’ from positive and negative training examples without 35 
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having to apply user-chosen thresholds, and this was exemplified in the first machine learning classifier for 1 

fungal effector prediction called EffectorP (Sperschneider et al., 2016). However, EffectorP is not able to 2 

distinguish between apoplastic and cytoplasmic fungal effectors.  3 

Machine learning methods can classify proteins by recognising patterns when informative sequence 4 

homologies or motifs are missing, and are thus promising for predicting effectors and their localisation. A 5 

recent method called LOCALIZER has improved prediction ability for targeting signals to plant 6 

chloroplasts, mitochondria and nuclei in effectors (Sperschneider et al., 2017). Signal peptide prediction 7 

tools such as SignalP (Petersen et al., 2011) and Phobius (Kall et al., 2007) as well as plant subcellular 8 

localization predictors such as WoLF PSORT (Horton et al., 2007) or YLoc (Briesemeister et al., 2010) can 9 

predict extracellular localization, but not apoplastic localization specifically. For extracellular pathogens, 10 

accurate prediction of apoplastic effector candidates is important for prioritizing host-recognized Avr 11 

effectors for experimental validation. For intracellular pathogens, effector candidates with a predicted signal 12 

peptide but with non-apoplastic localization are prime candidates for prioritizing Avr effectors for 13 

experimental validation. In oomycetes, the presence of the RxLR motif or the Crinkler domain have been 14 

used as proxies for predicting host-translocation and thus their intracellular localization (Petre & Kamoun, 15 

2014). However, recent evidence suggests that the RxLR motif might play a role in intracellular processing 16 

before secretion (Wawra et al., 2017). No conserved sequence motif with a role in host translocation has 17 

thus far been found for fungal pathogens (Sperschneider et al., 2015a) that can be utilized to predict 18 

cytoplasmic localization for effectors. Taken together, for both plant and pathogen proteins, no 19 

computational method currently exists to determine apoplastic localization despite its importance in plant-20 

pathogen interactions and its value in guiding experimental validation. 21 

Apoplastic proteins can be identified through microscopic analyses or apoplastic proteomics, however both 22 

are technically challenging (Doehlemann & Hemetsberger, 2013; Delaunois et al., 2014). The first challenge 23 

for in planta proteomics is the collection of sufficient apoplastic material without causing cell wall damage 24 

and thus contamination with cytoplasmic proteins. Alternatively, in vitro experiments can limit 25 

contamination with cytoplasmic proteins, but only have partial ability to characterize apoplastic proteins 26 

involved in plant-pathogen interactions (Jung et al., 2008). There is increasing evidence that apoplastic 27 

proteins can be secreted unconventionally (Delaunois et al., 2014) and these cannot be detected in the 28 

apoplastic proteome by signal peptide prediction tools such as SignalP (Emanuelsson et al., 2007). 29 

Currently, the only prediction tool for unconventionally secreted proteins is SecretomeP (Bendtsen et al., 30 

2004a), but it has been trained on mammalian sequences and is not recommended for use on plants or 31 

pathogens (Lonsdale et al., 2016). Taken together, the technical challenges of proteomics and microscopic 32 

analyses as well as the lack of bioinformatics tools for apoplastic localization prediction has limited progress 33 

in our understanding of early plant-pathogen interactions in the apoplast, in the identification of alternative 34 

secretion pathways and in the ability to discriminate between apoplastic and cytoplasmic effectors. 35 
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Description 1 

Training and evaluation of the machine learning classifiers 2 

Literature searches were performed to collect apoplastic and cytoplasmic effectors with experimental 3 

support for both the training and independent test sets (Table 1, FASTA sequences available at 4 

http://apoplastp.csiro.au/data). 5 

As a positive training set, 349 apoplastic plant proteins (retrieved from UniProt: taxonomy: Viridiplantae 6 

locations:(location:apoplast) AND reviewed:yes) as well as 24 apoplastic, experimentally validated effectors 7 

from fungal and oomycete pathogens from the literature (Table 1) were collected. Only sequences > 50 aas 8 

and starting with ‘M’ were considered. The 373 sequences were homology-reduced as follows. First, a 9 

sequence was randomly picked and added to the homology-reduced set if it did not share significant 10 

sequence similarity with another sequence already present in the homology-reduced set. Significant 11 

sequence similarity was assessed using phmmer (Finn et al., 2011) with a bit score threshold of larger than 12 

100. This resulted in a positive training set of 84 proteins (FASTA sequences available at 13 

http://apoplastp.csiro.au/data). 14 

Non-extracellular plant proteins from the UniProt database (chloroplast, cytoplasm, membranes, 15 

mitochondria, nucleus) were used as the negative training set (taxonomy: “Viridiplantae [33090]” and 16 

supported by experimental evidence: chloroplast (“Plastid [SL-0209]”, “Chloroplast [SL-0209]”); cytoplasm 17 

(“Cytoplasm [SL-0086]”); membranes (“membrane”); mitochondria (“Mitochondrion [SL-0173]”); nucleus 18 

(“Nucleus [SL-0191]”)). These 1,950 sequences were homology-reduced and this resulted in a negative 19 

training set of 1,773 proteins. For each protein, the feature vector used the following features calculated with 20 

pepstats (Rice et al., 2000): percentages of amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 21 

W, Y) and percentages of amino acid classes (tiny, small, aliphatic, aromatic, nonpolar, polar, charged, 22 

basic, acidic) in the sequence, total number of cysteines in the sequence, protein net charge, isoelectric point, 23 

grand average of hydropathicity (GRAVY) as well as the protein instability index and protein aromaticity 24 

calculated using ProtParam (Gasteiger et al., 2005). As ProtParam does not allow ambiguous amino acids as 25 

input, we replaced these with randomly selected respective amino acids (B replaced with D or N; Z replaced 26 

with E or Q, X replaced with any amino acid). 27 

Weka 3.8.1 was used to train machine learning classifiers (Frank, 2016). For the Random Forest classifier, 28 

proteins with probability > 0.55 were classified as apoplastic. Weka’s CorrelationAttributeEval + Ranker 29 

method was used to find the most discriminative features for classification.  30 

In the evaluation, a true positive (TP) is an apoplastic protein that is correctly predicted as an apoplastic 31 

protein and a false positive (FP) is a non-apoplastic protein incorrectly predicted as an apoplastic protein. A 32 

true negative (TN) is a non-apoplastic protein that is correctly predicted as a non-apoplastic protein and a 33 
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false negative (FN) is an apoplastic protein incorrectly predicted as a non-apoplastic protein. Sensitivity 1 

(
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
) is defined as the proportion of positives that are correctly identified whereas specificity (

𝑇𝑁

(𝑇𝑁+𝐹𝑃)
) 2 

is the proportion of negatives that are correctly identified. Precision (positive predictive value, PPV) is a 3 

measure which captures the proportion of positive predictions that are true (
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
). Both accuracy 4 

(
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
) and the Matthews Correlation Coefficient MCC (

(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
) were also 5 

used to evaluate the overall performance of the method. The MCC ranges from −1 to 1, with scores of −1 6 

corresponding to predictions in total disagreement with the observations, 0 to random predictions and 1 to 7 

predictions in perfect agreement with the observations. The receiver operating characteristic (ROC) curve is 8 

drawn by plotting sensitivity against (1 – specificity) and the area under the curve (AUC) can be interpreted 9 

as the probability that a classifier will rank a randomly chosen apoplastic protein higher than a randomly 10 

chosen non-apoplastic protein. Therefore, a perfect classifier achieves an AUC of 1.0, whereas a random 11 

classifier achieves an AUC of only 0.5. 12 

For the evaluation, we collected plant and fungal proteins that have been experimentally shown to localize to 13 

the ER, Golgi, vacuole or contain transmembrane domains (taxonomy:"Fungi [4751]" 14 

locations:(location:"Endoplasmic reticulum [SL-0095]" evidence:experimental) AND reviewed:yes; 15 

locations:(location:golgi evidence:experimental) AND reviewed:yes; taxonomy: 16 

locations:(location:"Vacuole [SL-0272]" evidence:experimental) AND reviewed:yes; transmembrane AND 17 

reviewed:yes; taxonomy:"Viridiplantae [33090]" locations:(location:"Endoplasmic reticulum [SL-0095]" 18 

evidence:experimental) AND reviewed:yes; locations:(location:golgi evidence:experimental) AND 19 

reviewed:yes; locations:(location:"Vacuole [SL-0272]" evidence:experimental) AND reviewed:yes; 20 

transmembrane AND reviewed:yes) and do not have the terms ‘extracellular’, ‘secreted’, ‘cytoplasm’ or 21 

‘nucleus’ as additional subcellular localization or ‘extracellular’ in the description of the UniProt entry. We 22 

also collected extracellular mammalian proteins from UniProt (taxonomy:"Mammalia [40674]" 23 

locations:(location:extracellular evidence:experimental)). SignalP 4.1 (Petersen et al., 2011) was run on all 24 

these sets and only proteins that have a predicted signal peptide were kept. 25 

All plots were produced using ggplot2 (Wickham, 2009) and statistical significance was assessed with t-tests 26 

using the ggsignif package (https://cran.r-project.org/web/packages/ggsignif/index.html). Significance 27 

thresholds according to t-test are NS: not significant, * < 0.05, ** < 0.01 and *** < 0.001. 28 

Secretome predictions, effector predictions and sequence motif searches 29 

The following fungal and oomycete genomes were collected: Hyaloperonospora arabidopsidis (Baxter et 30 

al., 2010); Albugo laibachii (Kemen et al., 2011); Melampsora laricis-populina and Puccinia graminis f. sp. 31 

tritici (Duplessis et al., 2011); Melampsora lini (Nemri et al., 2014); Puccinia triticina (Puccinia Group 32 

Sequencing Project); Puccinia striiformis f. sp. tritici PST-130 (Cantu et al., 2011); Blumeria graminis f. sp. 33 
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hordei (Spanu et al., 2010); Blumeria graminis f. sp. tritici (Wicker et al., 2013); Ustilago maydis (Kämper 1 

et al., 2006); Venturia pirina (Cooke et al., 2014); Venturia inaequalis (Deng et al., 2017); Cladosporium 2 

fulvum (de Wit et al., 2012); Phytophthora infestans (Haas et al., 2009); Phytophthora capsici (Lamour et 3 

al., 2012); Phytophthora sojae and Phytophthora ramorum (Tyler et al., 2006); Fusarium graminearum 4 

(Cuomo et al., 2007), Fusarium oxysporum f. sp. lycopersici and Fusarium oxysporum 47 (Ma et al., 2010); 5 

Leptosphaeria maculans (Rouxel et al., 2011); Magnaporthe oryzae (Dean et al., 2005); Zymoseptoria tritici 6 

(Goodwin et al., 2011); Verticillium dahliae (Klosterman et al., 2011); Colletotrichum higginsianum 7 

(O'Connell et al., 2012); Pythium ultimum (Levesque et al., 2010); Stagonospora nodorum (Hane et al., 8 

2007); Botrytis cinerea and Sclerotinia sclerotiorum (Amselem et al., 2011); Rhizoctonia solani AG8 (Hane 9 

et al., 2014); Pyrenophora tritici-repentis (Manning et al., 2013); Penicillium digitatum (Marcet-Houben et 10 

al., 2012); Laccaria bicolor (Martin et al., 2008); Amanita muscaria, Hebeloma cylindrosporum, Laccaria 11 

amethystina, Paxillus involutus, Paxillus rubicundulus, Piloderma croceum, Pisolithus microcarpus, 12 

Pisolithus tinctorius, Scleroderma citrinum, Sebacina vermifera, Suillus luteus and Tulasnella calospora 13 

(Kohler et al., 2015); Aspergillus flavus (Arnaud et al., 2012); Tremella mesenterica, Coniophora puteana, 14 

Dacryopinax sp., Fomitopsis pinicola, Gloeophyllum trabeum, Wolfiporia cocos, Dichomitus squalens, 15 

Fomitiporia mediterranea, Punctularia strigosozonata, Stereum hirsutum and Trametes versicolor (Floudas 16 

et al., 2012); Rhodotorula graminis (Firrincieli et al., 2015); Batrachochytrium dendrobatidis 17 

(https://www.broadinstitute.org/fungal-genome-initiative/batrachochytrium-genome-project); Ashbya 18 

gossypii (Gattiker et al., 2007); Taphrina deformans (Cisse et al., 2013); Pichia stipitis (Jeffries et al., 19 

2007); Saccharomyces cerevisiae (Goffeau et al., 1996); Hysterium pulicare (Ohm et al., 2012); Coprinus 20 

cinereus (Stajich et al., 2010); Aspergillus oryzae (Machida et al., 2005); Aspergillus niger (Andersen et al., 21 

2011); Neurospora crassa (Galagan et al., 2003); Agaricus bisporus var bisporus (Morin et al., 2012); 22 

Rhodosporidium toruloides (Zhu et al., 2012). Secretome predictions of fungal and oomycete genomes was 23 

done using SignalP 3 (Bendtsen et al., 2004b), TMHMM (Krogh et al., 2001) and TargetP (Emanuelsson et 24 

al., 2000) as described in Sperschneider et al. (2015b). Effector candidates were predicted using EffectorP 25 

1.0 (Sperschneider et al., 2016). MEME motif searches (Bailey et al., 2009) were run on the EffectorP 1.0 26 

predicted apoplastic and non-apoplastic effector candidates after sequence homology reduction. MEME was 27 

run with the parameters –protein –nmotifs 5 –mod oops. 28 

 29 

Puccinia graminis f. sp. tritici (Pgt) 21-0 differential expression analysis 30 

Reads for germinated spores and haustorial tissue (100bp paired-end) were obtained from NCBI BioProject 31 

PRJNA253722 (Upadhyaya et al., 2014). These were adapter-trimmed using trimgalore with default 32 

parameters (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Reads were aligned to the 33 

Pgt 21-0 genomes using STAR with default parameters (Dobin et al., 2013). FeatureCounts (Liao et al., 34 

2014) was used to obtain a read count matrix. The DESeq2 package was used for differential expression 35 
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analysis of the Pgt 21-0 gene set (Love et al., 2014). Genes showing differential expression (adjusted p-1 

value padj < 0.1) in haustorial tissue versus germinated spores were selected at logFC thresholds of -1.0, 1.0, 2 

-10 and 10. 3 

Results 4 

An enrichment in cysteines is a feature of apoplastic fungal and oomycete effectors, but not of 5 

apoplastic plant proteins 6 

The plant apoplast is a harsh physiological environment rich in degradative proteases (Kamoun, 2006; Lo 7 

Presti et al., 2015) and is likely to impose particular stability constraints on apoplastic proteins. We first 8 

investigated if a small size and high cysteine content, as routinely used as criteria for fungal effector 9 

prediction (Stergiopoulos & de Wit, 2009; Sperschneider et al., 2015a), is sufficient for predicting apoplastic 10 

localization. First, we compared 29 experimentally validated apoplastic fungal effectors to 29 11 

experimentally validated cytoplasmic fungal effectors (Table 1). We observed no significant differences 12 

between the two groups in terms of sequence length, but we found a significantly higher percentage of 13 

cysteines as well as a higher total number of cysteines for apoplastic fungal effectors (Fig. 1A). We then 14 

tested simple classifiers using different thresholds for cysteine content and found that this resulted in high 15 

false positive rates of 19.2% to 43.7%. This suggests that thresholds for cysteine content do not allow for 16 

highly accurate discrimination of apoplastic effectors from cytoplasmic effectors in fungi (Table 2). For 17 

example, a small size and high cysteine content are also found in intracellular fungal effectors such as the 18 

Melampsora lini effectors AvrP123 (117 aas, 11 cysteines) and AvrP4 (95 aas, 7 cysteines). 19 

For 19 experimentally validated apoplastic oomycete effectors and 38 experimentally validated cytoplasmic 20 

oomycete effectors (Table 1), we observed no significant differences in sequence length distribution (Fig. 21 

1B). However, apoplastic oomycete effectors are significantly enriched in cysteines compared to 22 

cytoplasmic oomycete effectors. We tested different thresholds for cysteine content and found that a 23 

threshold of >= four cysteines achieved sensitivity of 69.6% and false positive rate of 8.8%. This suggests 24 

that a simple classifier using a threshold of at least four cysteines in the sequence can predict oomycete 25 

apoplastic effectors more accurately than fungal apoplastic effectors (Table 2). However, there are 26 

exceptions such as the oomycete pathogen Phytophthora sojae that employs an essential apoplastic effector 27 

called PsXEG1 with only two cysteines in its sequence (Ma et al., 2015). 28 

We then compared the distribution of sequence length and cysteine content for 349 apoplastic plant proteins 29 

and 1,950 intracellular plant proteins (see Methods). Apoplastic plant proteins have significantly shorter 30 

sequences and a lower number of cysteines compared to intracellular plant proteins (Fig. 1C). For example, 31 

the intracellular plant proteins MT2C, a metallothioneine-like potein from Oryza sativa subsp. japonica 32 

(UniProt entry A3AZ88) is localized in the cytosol yet has a sequence length of 84 aas and 17 cysteines and 33 

the intracellular transcriptional regulator NFXL2 from Arabidopsis thaliana (UniProt entry Q9FFK8) has 34 
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112 cysteines and sequence length of 883 aas. Taken together, we conclude that neither a small size nor high 1 

cysteine content alone are discriminative features for predicting apoplastic localization of both plant and 2 

effector proteins. In the following, we use machine learning to investigate if additional protein properties 3 

determine if a protein localizes to the plant apoplast. 4 

Training of a machine learning classifier for predicting effector and plant protein localization to the 5 

apoplast 6 

To assess if protein properties can accurately distinguish apoplastic proteins from cytoplasmic proteins for 7 

both effectors and plant proteins, we trained a machine learning classifier (Fig. 2). We combined apoplastic 8 

plant proteins and randomly selected fungal and oomycete effector proteins (Table 1) as positive training 9 

data and intracellular plant proteins as negative training data. Both positive and negative training data were 10 

homology-reduced for training the machine learning classifier (see Methods). We deliberately did not 11 

remove the signal peptides for the secreted, apoplastic proteins in the positive training set because the state-12 

of-the-art signal peptide cleavage site prediction software SignalP (Petersen et al., 2011) does not allow re-13 

use or incorporation of the code into other programs. An alternative to incorporating SignalP automatically 14 

into ApoplastP is a manual removal of e.g. the first 20 aas as the default signal peptide region. However, this 15 

would also remove N-termini of non-secreted proteins and of Golgi-independent secreted proteins lacking a 16 

signal peptide. Requiring users to submit sequences where signal peptides have been taken off requires 17 

scripting skills for parsing the outputs of SignalP, especially for versions prior to SignalP 4.1 that are the 18 

most sensitive for effector signal peptide prediction (Sperschneider et al., 2015b). We later show that the 19 

inclusion of the signal peptide region in the positive training data has minimal effect on the performance of 20 

the machine learning classifier. 21 

The homology-reduced negative training data are significantly larger than the homology-reduced positive 22 

training data (1,773 proteins compared to 84 proteins) and therefore, randomly selected smaller sets from the 23 

negative training data were chosen in the training of the classifier (100 sets generated for each of the ratios 24 

between the number of positive and negative training examples of 1:3, 1:4, 1:5, resulting in 300 negative 25 

sets varying in size from 252 to 420 proteins). For each protein, a feature vector was calculated using amino 26 

acid frequencies, amino acid class frequencies, number of cysteines, protein net charge, isoelectric point, 27 

grand average of hydrophobicity (GRAVY), protein instability index and aromaticity. We assessed the 28 

average performance of various machine learning classifiers and found that overall, the Random Forest 29 

classifier performed best (data not shown). We chose the best Random Forest model ranked in terms of 30 

AUC (area under the ROC curve) amongst all 300 trained models as the classifier called ApoplastP (ratio 31 

1:4). In 10-fold cross-validation, ApoplastP achieves sensitivity of 58.3%, specificity of 98.2%, PPV of 32 

89.1%, MCC of 0.67 and AUC of 0.951. As the 10-fold cross-validation is predominantly evaluated on plant 33 

proteins, we also directly compared the performance of ApoplastP to the simple classifiers based on cysteine 34 
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thresholds from the previous section. On the set of effectors that share no overlap with the training data, 1 

ApoplastP improves accuracy by 12.5% for fungi and by 13.7% for oomycetes (Table 3).  2 

We selected the six most discriminative features that separate non-apoplastic from apoplastic proteins as 3 

predicted by WEKA and plotted their distribution in the positive and training sequence data. Overall, 4 

apoplastic proteins appear to be enriched in small amino acids, tiny amino acids and cysteines as well as 5 

depleted in glutamic acid, charged amino acids and acidic amino acids (Fig. 3). The enrichment and 6 

depletion analysis confirms that apoplastic localization is not a feature of a high cysteine content alone and 7 

that machine learning is sensitive to discovering compositional patterns of apoplastic proteins. 8 

The signal that separates apoplastic proteins from non-apoplastic proteins is not related to the 9 

presence of a signal peptide 10 

As the positive training set consists of protein sequences with signal peptides and the negative training set 11 

consists of protein sequences without a signal peptide, we first assessed if ApoplastP is biased towards 12 

recognizing properties relating to secretion alone. Thus, we tested ApoplastP on secreted proteins (including 13 

their signal peptides) that do not reside in the plant apoplast. The first set we used is cytoplasmic effectors as 14 

these are secreted but enter the plant cell and act intracellularly (Table 1).  ApoplastP correctly predicts all 15 

38 experimentally validated cytoplasmic oomycete effectors (RXLR effectors and Crinklers) as non-16 

apoplastic. For the 29 experimentally validated cytoplasmic fungal effectors, ApoplastP returns three false 17 

positives (10.3% false positive rate), all from Magnaporthe oryzae (AvrPiz-t, Avr-Pii, Avr-Pik). AvrPiz-t 18 

and Avr-Pik are part of the MAX (Magnaporthe Avrs and ToxB like) effector family of sequence-unrelated 19 

but structurally conserved fungal effectors (de Guillen et al., 2015). The MAX effector family member 20 

ToxB is an effector that is secreted into the apoplast and acts extracellularly (Figueroa et al., 2015) and the 21 

similarity on the structure level to the intracellular effector AvrPiz-t and Avr-Pik could explain their 22 

prediction as apoplastic. Taken together, we estimate that ApoplastP has a false positive rate of 4.4% on 23 

cytoplasmic effectors, as compared to 1.8% in 10-fold cross-validation on intracellular plant proteins. The 24 

removal of the first 20 aas as the default signal peptide region has no impact on the false positive rate for 25 

this set (Table 4). ApoplastP also has a low false positive rate of 0.8% on 358 RXLR effector candidates 26 

(HMM model, Win et al. (2007)).  27 

We then used non-apoplastic fungal, plant and mammalian proteins with a predicted signal peptide to further 28 

assess the false positive rate of ApoplastP. Proteins with a predicted signal peptide are not necessarily 29 

released to the extracellular space, but can be retained in the endoplasmic reticulum (ER) or Golgi apparatus, 30 

be directed to the lysosome or vacuole, contain transmembrane helices or a GPI-anchor that anchors it to the 31 

outer face of the plasma membrane. We took plant and fungal proteins that have been experimentally shown 32 

to localize to the ER, Golgi, vacuole or contain transmembrane domains, yet also have a predicted signal 33 

peptide. Plant GPI-anchored proteins can be anchored to the apoplastic face of the membranes and those 34 
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from pathogens have been found to interact with host cells and can be required for virulence, therefore we 1 

did not include them.  We also took extracellular mammalian proteins with a predicted signal peptide as a 2 

negative test set. Overall, ApoplastP has a false positive rate of 6% on all 1,217 plant, fungal and 3 

mammalian non-apoplastic proteins with a predicted signal peptide (Table 5). We observed the highest false 4 

positive rate (16.1%) on the set of plant proteins localized to the vacuole. The five mis-predicted plant 5 

proteins are annotated; three endochitinases, a hevein-like preproprotein with putative antimicrobial 6 

activities and a glycine-rich protein. The three endochitinases in particular are annotated in UniProt as 7 

involved in defense against chitin-containing fungal pathogens, which indicates that the localization to the 8 

vacuole is either a mis-annotation or that they are indeed apoplastic proteins that are directed to the vacuole 9 

for storage and released upon infection. The set of ER-localized fungal proteins also has a high false positive 10 

rate of 14.1% and 8 out of 10 mis-predicted proteins are annotated as uncharacterized proteins from 11 

Schizosaccharomyces pombe. The removal of the first 20 aas as the default signal peptide region increases 12 

the false positive rate to 8.0% on the overall set. 13 

Secreted proteins conventionally carry a signal peptide and enter the ER/Golgi pathway before being 14 

released to the extracellular space. Unconventional secretion of proteins lacking a signal peptide has also 15 

been reported and is commonly induced by stress (Rabouille, 2017). However, experimental identification of 16 

leaderless secretion is technically challenging and currently, there is only one example in plants of a protein 17 

with a positive immunolocalization in the apoplast, namely a lectin from sunflower (Helianthus annuus) 18 

(Pinedo et al., 2012). For this particular study by Pinedo et al. (2012), ApoplastP predicts only 1 out of 14 19 

proteins identified from extracellular fluid as apoplastic, namely the apoplast-localized lectin. (Table 6). The 20 

other 13 proteins are annotated as a golgi-membrane localized hexosyltransferase, a cytochrome p450 21 

protein, a mitochondrial pentatricopeptide protein, a splicing factor Sc35 protein, an amidase protein, a 22 

mitochondrial maturase protein, a mutator like-transposase, an LEA protein, a membrane-localized heat 23 

shock protein, a transcription factor, an embryonic DC-8 protein, a WEB family protein and a protein kinase 24 

protein, which indicates their likely localization to membranes or the plant intracellular space. 25 

Unconventionally secreted proteins from fungi include the Cts1 endochitinase from Ustilago maydis with a 26 

putative apoplastic localization and this is also predicted as apoplastic by ApoplastP. The isochorismatase 27 

effectors PsIsc1 and VdIsc1 from Phytophthora sojae and Verticillium dahliae, respectively, (Liu et al., 28 

2014) as well as the Blumeria graminis f. sp. hordei effectors Avr-k1 and Avr-a10 are thought to be 29 

unconventionally secreted, although localized to the plant cytoplasm. ApoplastP correctly predicts these four 30 

secreted cytoplasmic effectors as non-apoplastic. Finally, we applied ApoplastP to the full Arabidopsis 31 

thaliana proteome and 1,938 of 27,426 proteins (7.1%) are predicted as apoplastic. SignalP 4.1 predicts a 32 

signal peptide for 60.2% of the 1,938 putative apoplastic proteins.  33 

Lastly, we used RNA sequencing data for germinated spores (urediniospores) and haustorial tissue from the 34 

wheat stem rust fungus Puccinia graminis f. sp. tritici 21-0 (Upadhyaya et al., 2014) and performed 35 
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differential expression analysis. For genes with high up-regulation in haustoria that encode secreted proteins, 1 

ApoplastP predicts only 9.1% as apoplastic (Table 7). This is consistent with the haustorial structure in rust 2 

fungi, in which the extra-haustorial matrix is thought to be separated from the plant apoplast by a neckband 3 

and the role of haustoria as the main site of cytoplasmic effector delivery (Voegele & Mendgen, 2003; 4 

Garnica et al., 2014). In contrast, a simple classifier using a threshold of at least four cysteines as a criterion 5 

for apoplastic localization returns 30.9% of secreted proteins that are encoded by genes with high up-6 

regulation in haustoria as apoplastic. This confirms the high false positive rate of cysteine-rich classifiers for 7 

apoplastic localization prediction observed in the previous sections. 8 

ApoplastP correctly identifies 75% of apoplastic effectors in independent test sets 9 

We used an independent test set of 32 apoplastic effectors from fungi, oomycetes and nematodes to assess 10 

the true positive rate (correctly identified apoplastic proteins) of ApoplastP. We found that ApoplastP 11 

delivers a high true positive rate of 75% on the experimentally validated apoplastic effectors, but does not 12 

identify 8 effectors (AvrLm1, PstSCR1, CfTom1, EPI10, OPEL, Crt-1, HYP-3 and CLE-1) as apoplastic 13 

(Table 8).  14 

We then tested ApoplastP on 923 apoplastic proteins from both plant and pathogens that were determined 15 

using proteomics (Table 9). Apoplastic proteomics is prone to false positives due to the potential for cell 16 

damage that can lead to contamination of the sample with cytoplasmic proteins (Delaunois et al., 2014). 17 

Therefore, we tested ApoplastP using both the apoplastic proteome set as well as on only the 480 proteins in 18 

these sets that have a predicted signal peptide using SignalP 4.1 (Petersen et al., 2011). We observed the 19 

lowest number of predicted apoplastic proteins (23.8%) in the Magnaporthe oryzae apoplastic proteome 20 

during rice infection (Kim et al., 2013) and the highest number of predicted apoplastic proteins (80%) in the 21 

apoplastic proteome of Nicotiana benthamiana leaves (Goulet et al., 2010), with an average prediction rate 22 

on all proteomics sets of 33%. Applying ApoplastP to only the proteins with a predicted signal peptide 23 

increases the prediction rate to an average of 55.2%. In the previous section we showed that ApoplastP 24 

correctly predicts the localization of six unconventionally secreted proteins and despite this being a small 25 

test set, it could indicate that the proteomics sets do indeed contain substantial contamination from 26 

cytoplasmic proteins or cell wall proteins. 27 

The secretomes of saprophytic fungi, necrotrophic plant pathogens and extracellular fungal 28 

pathogens are enriched for predicted apoplastic proteins 29 

We applied ApoplastP to the predicted secretomes of published fungal and oomycete genomes (see 30 

Methods) and plotted the percentages of predicted apoplastic proteins (Fig. 4A). Overall, the proportions of 31 

predicted apoplastic proteins in secretomes correspond well with the extracellular and intracellular 32 

colonization strategies of the fungal and oomycete pathogens that were tested. The highest proportions of 33 

predicted apoplastic proteins were recorded for the secretomes of the wood rotting saprophyte Dichomitus 34 
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squalens (57.3%), the white rot saprophytes Punctularia strigosozonata (57.3%) and Stereum hirsutum 1 

(57.2%), followed by the broad host range necrotrophic fungal pathogens Sclerotinia sclerotiorum (55.8%) 2 

and Botrytis cinerea (55.7%). The lowest proportions of predicted apoplastic proteins were recorded for the 3 

secretomes of the obligate biotrophic oomycete pathogens Albugo laibachii (10%) and Hyaloperonospora 4 

arabidopsidis (15.2%), the plant-pathogenic yeast Ashbya gossypii (18.1%), the animal pathogen 5 

Batrachochytrium dendrobatidis (20%) and the obligate biotrophic fungal pathogens Blumeria graminis f. 6 

sp. tritici (22.9%) and B. graminis f. sp. hordei (23.1%). In the following, we labelled Venturia pirina, V. 7 

inaequalis, C. fulvum, L. maculans and Z. tritici as apoplastic fungal pathogens and removed L. maculans 8 

and Z. tritici from the set of hemibiotrophic fungal pathogens. We then compared groups containing at least 9 

two species to fungal saprophytes. Compared to fungal saprophytes, the percentage of predicted apoplastic 10 

proteins in the secretome is significantly lower for obligate biotrophic pathogens, hemibiotrophic pathogens 11 

and fungal plant symbionts, but not for apoplastic fungal pathogens or necrotrophic fungal pathogens (Fig. 12 

4B).  13 

Apoplastic proteins are highly enriched for predicted fungal effectors in rust pathogens 14 

Next, we assessed the proportion of predicted apoplastic and non-apoplastic effector proteins using 15 

EffectorP (Sperschneider et al., 2016). We did not apply EffectorP to the oomycete secretomes as it is 16 

designed specifically for fungal secretomes. The highest percentages of predicted effectors in the apoplastic 17 

protein set was recorded for the rust pathogens Puccinia striiformis f. sp. tritici PST-130 (61.2%), Puccinia 18 

graminis f. sp. tritici (61.6%) and Melampsora laricis-populina (58.7%), whereas the lowest percentages 19 

were recorded for the fungal saprophytes Pichia stipitis (8.4%), Hysterium pulicare (8.9%) and Wolfiporia 20 

cocos (9%). We compared the percentages of predicted effectors in the apoplastic set to predicted effectors 21 

in the non-apoplastic set (Fig. 5). Amongst pathogenic fungi, we found significant differences only for the 22 

rust pathogens, with an average of 52.1% apoplastic proteins predicted as effectors, whereas only 33.5% of 23 

non-apoplastic secreted proteins are predicted as effectors. An outlier in this set is Melampsora lini, which 24 

has only 25.7% apoplastic proteins predicted as effectors. Taken together, this indicates that the prediction 25 

abilities of EffectorP and ApoplastP are distinct, and that whilst the percentage of apoplastic proteins in rust 26 

pathogen secretomes is low, they are highly enriched for predicted effectors. 27 

Conserved sequence motifs in predicted cytoplasmic effector candidates 28 

We predicted apoplastic and non-apoplastic (cytoplasmic) effector candidates in fungi using ApoplastP and 29 

EffectorP. To find conserved motifs in predicted cytoplasmic effector candidates, we reduced the sequence 30 

homology in each set and applied a MEME motif search (Bailey et al., 2009) with the setting of one 31 

occurrence of a motif per sequence. Even though EffectorP is not designed for effector prediction in 32 

oomycetes, we used this methodology as a positive control on Phytophthora infestans. As expected, MEME 33 

returned the RxLR (yet with a non-significant E-value > 0.05) and dEER motifs (E-value 2.2x10-28) in the 34 
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cytoplasmic effector candidate set (Fig. 6), but not in the apoplastic effector candidate set. For the fungal 1 

pathogens, we found the [YFW]xC motif in the predicted cytoplasmic effector candidate set of Blumeria 2 

graminis f. sp. hordei (E-value 1.2 x10-33, Fig. 6C), however it was also detected in the respective predicted 3 

apoplastic effector candidate set albeit with non-significant E-value (Fig. 6D). Weak conservation for the 4 

[YFW]xC motif was also found for the Puccinia graminis f. sp. tritici cytoplasmic effector candidate set 5 

(non-significant E-value > 0.05, Fig. 6E). 6 

We also observed an enrichment in a proline at the +1 position after the predicted signal peptide cleavage 7 

site in fungal secretomes. We therefore performed a systematic search for +1 prolines in the mature protein 8 

sequences across the predicted secretomes of fungal and oomycete genomes using the predicted cleavage 9 

sites of the neural network model of SignalP 3 (Bendtsen et al., 2004b). Whilst on average 9% of apoplastic 10 

plant proteins and 8.7% of oomycete secretomes have a +1 proline, this increases to 25.8% for fungal 11 

secretomes. For the fungal secretomes, 30.4% of predicted apoplastic proteins in fungal secretomes have a 12 

+1 proline compared to 21.3% of predicted non-apoplastic proteins. Significant differences between +1 13 

proline content in predicted apoplastic and non-apoplastic proteins was observed for all fungal groups except 14 

obligate biotrophic fungal pathogens (Fig. 7). Furthermore, 34.5% of the 29 apoplastic fungal effectors and 15 

41.4% of the 29 cytoplasmic fungal effectors have a +1 proline after the predicted signal peptide cleavage 16 

site. This includes the ToxA effector of Pyrenophora tritici-repentis and Parastagonospora nodorum, which 17 

has a pro-domain after the signal peptide region that is thought to be important for folding, but not necessary 18 

for toxic activity (Tuori et al., 2000; Ciuffetti et al., 2010). Taken together, this suggests that a +1 proline 19 

after the predicted signal peptide cleavage site is a prevalent characteristic of secreted fungal proteins, 20 

however it is unlikely related to fungal effector function.  21 

Discussion 22 

The plant apoplast is integral to essential plant processes such as intercellular signalling and transport. 23 

Furthermore, early interactions between plants and pathogens in the apoplast determine if a pathogen can 24 

colonize and infect plant tissue (Doehlemann & Hemetsberger, 2013). Whilst apoplastic localization 25 

prediction is important for effectors across all plant pathogen taxa as well as for secreted plant proteins, no 26 

dedicated computational method was previously available. Apoplastic proteins are commonly identified 27 

through microscopic analyses or apoplastic proteomics, however both techniques are technically challenging 28 

(Doehlemann & Hemetsberger, 2013; Delaunois et al., 2014). Whilst tools such as SignalP (Petersen et al., 29 

2011) or Phobius (Kall et al., 2004) can predict the presence of a signal peptide, proteins that are predicted 30 

to be secreted can also localize to the cell walls or be retained intracellularly (Emanuelsson et al., 2007). 31 

Furthermore, effectors can either function in the plant apoplast or enter the plant cell cytoplasm and being 32 

able to discriminate between these two localizations accurately is highly desirable for shortlisting prime 33 

effector candidates for subsequent experimental validation.  34 
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Machine learning is a promising technique for effector prediction, because effectors co-localize with their 1 

respective plant targets and thus are likely to carry subcellular localization signals which may be cryptic. 2 

This also means that for training machine learning classifiers for effector localization prediction, one can 3 

take advantage of the large number of experimentally validated plant proteins with localization data, as 4 

effectors likely exploit the plant cell machinery for localization and function. Using both plant and effector 5 

localization data, we have pioneered a data-driven machine learning approach called ApoplastP that can 6 

predict if a protein localizes to the plant apoplast. By using machine learning, we were able to exploit 7 

compositional differences between apoplastic proteins and intracellular plant proteins that were previously 8 

unrecognized such as a depletion in glutamic acid for apoplastic proteins. ApoplastP outperforms the 9 

common approach of selecting apoplastic effectors from secretomes based on a high cysteine content, 10 

improving prediction accuracy by over 13%. For many pathogens, cytoplasmic effectors are delivered first 11 

to the plant apoplast and then subsequently enter plant cells, such as the SIX3, SIX5 and SIX6 effectors 12 

from Fusarium oxysporum f. sp. lycopersici (De Wit, 2016) or the ToxA effector from Pyrenophora tritici-13 

repentis and Parastagonospora nodorum (Manning & Ciuffetti, 2005). We showed that ApoplastP 14 

recognizes the localization of cytoplasmic effectors with high accuracy, even if they enter the plant cell 15 

cytoplasm from the apoplast.    16 

ApoplastP does not rely on the presence of a signal peptide and can thus predict unconventionally secreted 17 

proteins that localize to the plant apoplast. This makes it a valuable validation tool for screening apoplastic 18 

proteomics sets for cytoplasmic protein contamination and for elucidating unconventional secretion 19 

pathways in both plants and pathogens. Furthermore, ApoplastP will facilitate the identification of likely 20 

cytoplasmic effectors by exclusion and can potentially elucidate effector translocation mechanisms, e.g. 21 

through future compositional pattern searches in the predicted set of cytoplasmic effectors. In general, it 22 

highlights the benefit of using data-driven machine learning classifiers over classifiers that rely on user-23 

driven thresholds in the field of plant-pathogen interactions. 24 
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 9 

 10 

Fig. 1: Differences in sequence length, percentage of cysteines and number of cysteines for apoplastic 11 

and intracellular (cytoplasmic) proteins. (A) Fungal apoplastic and cytoplasmic effectors. (B) Oomycete 12 

apoplastic and cytoplasmic effectors. (C) Apoplastic plant proteins and cytoplasmic plant proteins. All data 13 

points were drawn on top of the box plots. 14 
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 1 

Fig. 2: Training of a machine learning classifier for apoplastic protein prediction. (A) Apoplastic 2 

effectors and apoplastic plant proteins were used as positive training data and intracellular plant proteins as 3 

negative training data. Cytoplasmic effectors were used as an independent test set. (B) Positive and negative 4 

training data are used to train machine learning classifiers using selected features. A common technique of 5 

assessing performance is to use k-fold cross-validation, which can assess how a classifier is able to 6 

generalize to an independent dataset. In k-fold cross-validation, the training data are partitioned into k sets of 7 

equal size. The classifier is trained on k–1 datasets and tested on the one holdout set. This procedure is 8 

repeated k times and performance is reported. The best model is saved for effector prediction. Predicted 9 

apoplastic proteins can be taken to experimental validation and can be included in re-training of the 10 

classifier for improved classification in the future. 11 

 12 
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Fig. 3: Box plots of feature distribution for the ApoplastP training set. The positive training set consists 1 

of 84 apoplastic plant and effector proteins and the negative training set consists of 336 non-apoplastic plant 2 

proteins. All data points were drawn on top of the box plots. 3 

 4 

Fig. 4: (A) Percentages of ApoplastP predicted apoplastic proteins in secretomes of fungi and oomycetes. 5 

(B) Box plots of predicted apoplastic proteins in secretomes grouped according to lifestyle. All data points 6 

were drawn on top of the box plots. 7 
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 1 

Fig. 5: Percentages of EffectorP predicted effectors in the predicted apoplastic and non-apoplastic sets for 2 

fungi. Outliers were drawn and labelled around the box plots. 3 

 4 

Fig. 6: MEME motif searches on homology-reduced predicted apoplastic and non-apoplastic 5 

(cytoplasmic) effector proteins. For Phytophthora infestans, the RxLR (A) and dEER motifs (B) are 6 

predicted in the cytoplasmic effector candidates. In Blumeria graminis f. sp. hordei, the [YFW]xC motifs 7 

are predicted in both the non-apoplastic (C) and with weaker conservation in the cytoplasmic (D) effector 8 
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candidate set. (E) The [YFW]xC motif is also found in the Puccinia graminis f. sp. tritici cytoplasmic 1 

effector candidate set with weaker conservation. 2 

 3 

Fig. 7: Percentages of proteins in fungal and oomycete secretomes that have a +1 proline after the signal 4 

peptide cleavage site. 5 

Table 1: Effectors used in the training and independent test sets. 6 

Data set Used in training Used in independent testing 

Apoplastic effectors with experimental validation 

Fungal AvrLm4-7, Ave1, Avr9, Avr4, Avr4E, 

Avr2, Avr5, Ecp2, Ecp1, Ecp5, Ecp4, 

Bas4, MC69, Slp1, NIP1, Pep1, Pit2, 

Mg3Lysm 

Ecp6, AvrLm6, AvrLm1, AvrLm11, NEP1, ToxB, Msp1, AvrStb6, 

Cgfl, PstSCR1, CfTom1 

Oomycete GIP1, EPI1, PcF, EpiC1, CBEL, NPP1 INF1, GIP2, EPI10, INF2A, INF2B, EPIC2A, EPIC2B, PsXEG1, 

CBEL, EcpiC1, OPEL, GP42, NIP1 

Nematode - Asp2, Crt-1, Map-1, VAP1, HYP-3, Sp12, CLE1, CLE2 

Cytoplasmic effectors with experimental validation 

Fungal  - AvrM, AvrL567, AvrP123, AvrP4, RTP1, PGTAUSPE-10-1, 

Avra10, Six3, Six6, Avr-Pita1, Pwl1, Avr-Pia, Bas1, AvrPiz-t, Avr1-

CO39, Avr-Pii, Avr-Pik, Bas107, See1, Cmu1, Tin2, ToxA, SP7, 

MISSP7, Bas162, AvrM14, AvrL2-A, CgEP1, VdSCP7 
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Oomycete - Atr13, Avr3a, Avr1B-1, Atr1, Avh5, Avh241, Avr1l, Avr1d, 

Avrblb1, Avrblb2, Avr2, Crn1, Crn2, Crn8, Crn15, Crn16, Crn63, 

Crn115, Atr5, PexRD2, Atr1, Avr3b, PITG_03192, Avr1, Pslsc1, 

Atr39-1, Avh18a1, Avr1a, Avr3a, HaAtr1, PiAvr2, PiAvr3b, PiAvr4, 

PiAvrVnt1, PsAvr3b, PsAvr3c, PsAvr4/6, SNE1 

 1 

Table 2: Performance of simple classifiers that predict apoplastic effectors based on cysteine residues. 2 

PPV stands for positive predictive value and MCC for Matthews Correlation Coefficient MCC. 3 

 Threshold 

(>=) 

Sensitivity False positive 

rate 

PPV Accuracy MCC 

58 fungal effectors       

Number of cysteines 4 75% 19.2% 82.8% 77.6% 0.55 

 5 76% 30.3% 65.5% 72.4% 0.45 

 6 81.8% 30.6% 62.1% 74.1% 0.5 

% of cysteines 4 77.3% 33.3% 58.6% 70.7% 0.43 

 5 87.5% 35.7% 48.3% 70.7% 0.46 

 6 80% 43.7% 27.6% 60.3% 0.27 

57 oomycete effectors       

Number of cysteines 4 69.6% 8.8% 84.2% 82.5% 0.63 

 5 80% 16.7% 63.2% 82.5% 0.59 

 6 80% 16.7% 63.2% 82.5% 0.59 

% of cysteines 4 100% 25.5% 31.6% 77.2% 0.49 

 5 100% 25.5% 31.6% 77.2% 0.49 

 6 100% 26.9% 26.3% 75.4% 0.44 

 4 

Table 3: Performance of simple classifiers that predict apoplastic effectors based on cysteine residues 5 

compare to ApoplastP. PPV stands for positive predictive value and MCC for Matthews Correlation 6 

Coefficient MCC. 7 

Classifier Sensitivity False positive 

rate 

PPV Accuracy MCC 

58 fungal effectors 

Cysteines >=4 75% 19.2% 82.8% 77.6% 0.55 

ApoplastP 89.7% 10.3% 86.7% 89.7% 0.79 

57 oomycete effectors 

Cysteines >=4 69.6% 8.8% 84.2% 82.5% 0.63 

ApoplastP 89.5% 0% 100% 96.5 0.92 

40 fungal effectors (no overlap with ApoplastP training set) 

Cysteines >=4 50% 12.5% 72.7% 72.5% 0.41 

ApoplastP 72.7% 10.3% 72.7% 85% 0.62 
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51 oomycete effectors (no overlap with ApoplastP training set) 

Cysteines >=4 61.6% 6.1% 84.6% 82.4% 0.6 

ApoplastP 84.6% 0% 100% 96.1% 0.9 

 1 

Table 4: Independent test set consisting of secreted, cytoplasmic effectors 2 

Data set Number of 

proteins 

Predicted as apoplastic Predicted as apoplastic (first 20 aas 

removed) 

Cytoplasmic oomycete effectors 38 0 (0.0%) 0 (0.0%) 

Cytoplasmic fungal effectors 29 3 (10.3%) 3 (10.3%) 

Total 67 4.5% 4.5% 

 3 

Table 5: Independent test set consisting of non-apoplastic proteins with a predicted signal peptide  4 

Data set Number of proteins Predicted as apoplastic Predicted as apoplastic 

(first 20 aas removed) 

UniProt plant proteins    

Golgi 14 1 (7.1%) 1 (7.1%) 

ER 51 2 (3.9%) 4 (7.8%) 

Vacuole 31 5 (16.1%) 5 (16.1%) 

Transmembrane 422 16 (3.8%) 31 (7.3%) 

UniProt fungal proteins    

Golgi 19 1 (5.3%) 1 (5.3%) 

ER 71 10 (14.1%) 10 (14.1%) 

Vacuole 15 0 (0%) 0 (0%) 

Transmembrane 447 29 (6.5%) 32 (7.2%) 

UniProt mammalian 

proteins 

   

Extracellular 147 9 (6.1%) 13 (8.8%) 

Total 1,217 6% 7.97% 

 5 

 6 

Table 6: Unconventionally secreted proteins from plants and fungi with experimental validation. 7 

Protein Reference Localization ApoplastP prediction 

(Probability) 

Lectin  (Pinedo et al., 2012) Apoplast Apoplastic (0.77) 

Endochitinase Cts1 (Stock et al., 2012) Likely apoplast Apoplastic (0.57) 

PsIsc1 (Liu et al., 2014) Plant cytoplasm Non-apoplastic (0.67) 

VdIsc1 Plant cytoplasm Non-apoplastic (0.81) 

Avr-k1  (Ridout et al., 2006) Plant cytoplasm Non-apoplastic (0.6) 
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Avr-a10 Plant cytoplasm Non-apoplastic (0.81) 

 1 

Table 7: ApoplastP prediction results on secreted proteins from P. graminis f. sp. tritici. 2 

Condition log FC 

 

Number 

of genes 

ApoplastP predicted 

as apoplastic 

Cysteine-rich 

classifier (>= 4) 

Up-regulated in haustoria vs. germinated spores >= 1.0 791 158 (20.0%) 52.7% 

>= 10 55 5 (9.1%) 30.9% 

Up-regulated in germinated spores vs. haustoria >= 1.0 458 145 (31.7%) 55.9% 

>= 10 26 12 (46.2%) 65.4% 

 3 

Table 8: Independent apoplastic effector test sets. 4 

Data set Number of 

proteins 

Predicted as 

apoplastic 

Predicted as apoplastic 

(first 20 aas removed) 

Apoplastic effectors with experimental validation    

Fungal apoplastic effectors 11 8 (72.7%) 6 (54.5%) 

Oomycete apoplastic effectors 13 11 (84.6%) 11 (84.6%) 

Nematode apoplastic effectors 8 5 (62.5%) 4 (50%) 

Total  32 24 (75%) 21 (65.6%) 

 5 

Table 9: Apoplastic proteomics test sets. 6 

Data set SignalP 4.1 

predicted 

as secreted 

Number 

of 

proteins 

Predicted as apoplastic 

Extracellular proteome of P. infestans (Meijer et al., 2014) - 199 100 (50.3%) 

Yes 180 95 (52.8%) 

Magnaporthe apoplastic proteome (Kim et al., 2013) - 403 96 (23.8%) 

Yes 155 81 (52.3%) 

Rice apoplastic proteome (Kim et al., 2013) - 249 68 (27.3%) 

Yes 94 53 (56.4%) 

Leaf apoplast proteome of Brassica napus var. napus after 

infection with Verticillium longisporum (Floerl et al., 2008) 

- 9 4 (44.4%) 

Yes 8 4 (50%) 

Leaf apoplast proteome of Arabidopsis thaliana after infection 

with Verticillium longisporum (Floerl et al., 2012) 

- 43 21 (48.8%) 

Yes 27 19 (70.4%) 

Apoplastic proteome of Nicotiana benthamiana leaves (Goulet et 

al., 2010)  

- 20 16 (80%) 

Yes 16 13 (81.3%) 

Total  - 923 305 (33%) 

 Yes 480 265 (55.2%) 

 7 
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