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Abstract

Background: Malignant tumors originate from genomic and epigenomic
alterations, which lead to loss of control of the cellular circuitry. These alterations
relate with each other in patterns of mutual exclusion and co-occurrence that
affect prognosis and treatment response and highlight the need for multitargeted
therapy. However, to the best of our knowledge, there are no systematic reports
in the literature of co-dependent and mutually exclusive mutations across all
types of cancer. In addition, the studies reported so far generally deal with whole
genes instead of specific mutations, ignoring the fact that different alterations in
the same gene can have widely different effects.

Results: Here we present a systematic analysis of co-dependencies of somatic
mutations across all cancer types. Combining multi testing with conditional and
expected mutational probabilities, we have found pairs and networks of
co-mutations and exclusions, some of them in particular types of cancer and
others widespread. We have also determined that driver loci are present in more
types of cancer than non driver loci, that they tend to pair within a single gene
and that those pairs are more often exclusions than co-mutations.

Conclusions: Based on this properties, we propose new drivers that warrant
experimental validation. Our analysis is potentially relevant for cancer biology
and classification, as well as for the rational selection of multitargeted therapeutic
approaches.

Keywords: mutual exclusion; co-mutation; driver loci; multitargeted therapy

Background
Cancer is one of the most important health problems worldwide and, despite recent

advances in diagnosis and therapy, cancer-associated mortality remains unaccept-

ably high. Malignant tumors originate from genomic and epigenomic modifications

which lead to loss of control of the cellular circuitry. Alteration of specific pathways

enables tumors to bypass or activate a particular set of cellular processes, the so-

called hallmarks of cancer [1], that confer tumor cells with adaptative advantages.

A particular biological pathway in cancer cells can be altered by somatic muta-

tions or other changes in several genes. For example, in glioblastoma multiforme

(GBM) the p53 pathway is downregulated in up to 87% of the tumors; but the ge-

netic basis of this downregulation varies from patient to patient being the possible

causes: somatic mutations or homozygous deletion of the protein p53 (TP53) or the
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cyclin dependent kinase inhibitor 2A (CDKN2A) and amplification of two genes

codifying the double minute proteins (MDM2/MDM4). This and other examples

have provided increased evidence that genetic alterations in cancer-related genes

cluster within a limited set of essential biological pathways [2, 3, 4].

Tumor profiling projects have also unveiled mutually exclusive alterations across

many patients, including driver mutations in specific genes [5]. For instance, TP53

mutations and MDM2 amplification in GBM very uncommonly occur together (few

patients harbor both lesions). Additional examples include the mutual exclusivity

in colorectal cancer between mutations in the adenomatous polyposis coli protein

(APC) and catenin beta-1 (CTNNB1) genes (both involved in the beta-catenin

signaling pathway) or mutations in BRAF and KRAS (genes of the RAS/RAF sig-

naling pathway). In serous ovarian cancer, a mutual exclusivity between mutations

of the breast cancer type susceptibility proteins BRCA and BRCA2 and the epige-

netic silencing of BRCA1 has been observed while mutations in EGFR and KRAS

are mutually exclusive in non-small lung cancer [2].

But cancer profiling has also discovered several cases of co-occurring alterations,

suggesting that some changes in associated pathways may elicit complementary

rather than redundant effects [6]. Examples include the PTEN (Phosphatidyli-

nositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase)

deletion concomitant with ERBB2 (Receptor tyrosine-protein kinase) amplification

in breast cancer [7], MET (Hepatocyte growth factor receptor) activating mutations

when VHL (Von Hippel-Lindau disease tumor suppressor) is deleted in renal carci-

noma [8] and the CDKN2A suppression together with BRAF activating mutations

in melanoma [9, 2].

Despite all this evidence, to the best of our knowledge, there are not system-

atic analysis in the literature of co-dependent mutations across all types of cancer.

The only studies available, which used the TCGA dataset and the 2008 version of

COSMIC, deal with whole genes and not specific mutations [10, 2, 11, 12, 13, 14],

ignoring the fact that different mutations in the same gene can have widely differ-

ent effects, i.e. G735S, G796S and E804G induce oncogenic activation of EGFR in

prostate cancer while R841K has no functional relevance [15].

A better and wider understanding of co-dependencies between mutations is rele-

vant in many aspects, such as tumour classification, diagnosis or treatment choice.

At this respect, co-dependency relationships between genetic alterations evidence

mutational epistasis [16] and highlight the need for multitargeted therapy. Sev-

eral new generation antitumor drugs target proteins carrying specific driver muta-

tions, i.e. sorafenib is active against renal and hepatic cell carcinomas harboring

the BRAF.V600E mutation [9]; imatinib against gastrointestinal stromal tumors

with mutations V560G, K642E, N822H or N822K in KIT or mutation V561D in

PDGFRA [17]; gefitinib, erlotinib and afatinib against non-small cell lung cancers

with exon 19 deletions or L858R in EGFR [18]; and dabrafenib or vemurafenib

against BRAF.V600E in melanoma [19]. However, these treatments focusing in a

single alteration are almost invariably followed by relapse due to selection of resis-

tant cells [20]. Multitargeted approaches against co-occurring, biologically relevant

mutations have the potential to delay the onset of resistance, and a better under-

standing of co-occurring oncogenic alterations could be of help in this setting. It
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must be remembered that some of these approaches are already in clinical use, such

as the combination of BRAF and MEK inhibitors in metastatic melanoma [21] and

many others are currently being tested in clinical trials [22].

Here we present the first systematic analysis of COSMIC somatic mutations [23]

aimed to uncover cancer specific patterns of mutation associations, demonstrating

that such an analysis is feasible and renders valuable information.

Results
Data was downloaded from COSMICv75 and filtered to obtain a dataset of recurrent

non synonymous mutated protein positions in common cancer types. A cancer type

was defined as the unique combination of tissue, histology and sub-histology (e.g:

lung/carcinoma/adenocarcinoma). Mutations were grouped by position in loci, e.g.

BRAF.V600E, BRAF.V600D, BRAF.V600K and BRAF.V600R were grouped as

BRAF.V600. Positions with driver mutations were identified according to Kin-driver

database [24] in the case of protein kinases and to the literature in the case of NRAS,

KRAS, HRAS [25, 26], PI3KCA [27] and TP53 proteins [28]. The dataset used for

the analysis was composed of 1,098,411 samples from 687 cancer types with 365,096

mutated loci (289 of them are known driver loci) in 1,329 genes (see methods).

In order to avoid multi testing correction, previous approaches had focused on the

identification of clusters of mutated genes through exploration of cellular pathways

and statistical testing of significance [10, 2, 11, 12, 13, 14]. In contrast, we have used

a simple pipeline combining multi testing with conditional and expected mutational

probabilities to define pairs of co-dependent loci in the different types of cancer.

Those pairs were subsequently merged in a single network where general traits

about cancer co-mutation and exclusion could be observed.

Counts of co-sequenced loci reveal pairs of significantly related mutations

As our first interest resided in related mutations, we tested all the pairs of co-

sequenced loci where each member of the pair was mutated more than 10 times.

This analysis was made in each cancer type, since admixing could hide signals char-

acteristic of a particular malignancy. The arbitrary threshold of 10 mutated samples

attempted to filter out uninteresting mutations that might co-occur randomly and

to make the analysis more comprehensible. Thus, we obtained a starting dataset

containing 262375 pairs of co-sequenced loci from a total of 135 cancer types.

Each pair of loci was tested for co-dependency using the exact Fisher test, which

compares the number of samples with the two loci mutated with those with one

or none. We found these numbers to be highly unbalanced due to the differential

sequencing of loci -with some of them extensively and others only rarely sequenced-

and the large proportion of samples with no mutations (supplementary figure 1

1). In consequence, false positives were possible; in particular, poorly co-sequenced

pairs could be falsely detected as co-dependent owing to contingency tables with low

values. To avoid this problem, we enhanced previous algorithms by combining the

co-dependency tests with a comparison between observed and expected co-mutation

probabilities (see methods “Filtering of probable false positives”). Thus, we ended

up with 30,679 pairs of dependent loci in particular cancer types whose relation is

not an artifact due to low mutational frequencies.
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Conditional probability discriminates the type of dependency between pairs of related

loci

If the probability of mutation of a locus increased when another mutation in a dif-

ferent locus is present, we considered that those loci co-mutated. That is, if the a

posteriori mutation probability of a locus surpassed its a priori mutation probability,

a co-mutation was assigned in a particular cancer type; if the opposite happened,

mutations were considered to be mutually exclusive. The difference between a pri-

ori and a posteriori probabilities was usually low; in consequence, we defined the

confidence interval of the a priori probabilities for each mutation and subsequently

classified the mutations according to the rules depicted in figure 1.

If P(mi|mj) < CI(mi) AND P(mj |mi) < CI(mi) → mutual exclusion

If P( mi|mj) > CI(mi) AND P(mj |mi) > CI(mj) → bidirectional co-mutation

Where P(mi|mj) is the conditional probability of mi given mj and CI(mi) is the

95% confidence interval of the a priori probability of mutation of mi.

If the mutation probability of a locus augmented given a second mutation but

the reciprocal didn’t happen, the co-mutation would have been considered unidi-

rectional. However, in our analysis we didn’t encounter a single case of this class of

dependency.

Network of loci with co-dependent mutations

As a result of our analysis, we found 189 pair of exclusions and 30,490 of bidirectional

co-mutations (in total: 30,679 pairs of co-dependent mutations) involving 568 loci

across 67 cancer types and 22 tissues of origin. The involvement of only 568 loci in

the 30,679 pairs highlights the fact that a locus can mutate repeatedly in different

types of cancer.

As 30,272 of the 30,679 pairs (98.67%) were found in upper aerodigestive

tract/carcinoma/squamous cell carcinoma (supplementary figure 2, also interac-

tive in http://sdmn.leloir.org.ar/, bottom link), they were studied separately (see

below), and our analysis focused on the rest of the cancer types. Thus, we ended up

with 407 pairs of related mutations, 218 co-mutations and 189 exclusions, involving

a total of 260 loci from 94 genes in 66 cancer types. The pairs are shown in the

network depicted in figure 2 and can be interactively explored in the following link:

http://sdmn.leloir.org.ar/. The user can look for a locus (i.e: KRAS.G12) in the

search box or see the dependencies it has by clicking the node. Also, by applying

appropriate filters, users can see the relationships within a particular type of tumor

or gene, display only the co-mutations, the exclusions, the genes listed in the Can-

cer Gene Census [29] and the driver mutations. In addition, Figure 2 integrates the

mutational probability of each position (size of the node), the tissues where the pair

occurs (edge color) and whether a protein pertains to the Census (black outline at

the nodes) and if the locus is known to have driver mutations or not (red outline

at the nodes). It is worth noting that we have found dependent mutations within

94 genes from a starting dataset of 1,329 genes, thus meaning that the remaining

1,235 genes have mutations that do not significantly associate with others.
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Distribution of repeated pairs of mutations across cancer types and prevalence of

proteins in some cancer types

The network depicted in figure 2 shows how some pairs of associated loci appear in

different cancer types (nodes connected by more than one edge) and also how pairs

of loci involving particular genes are prevalent in some tumors.

Regarding pairs repeated across different types of cancer, we found a total of 52,

involving 58 loci from 24 proteins, all of them reported in the Cancer Gene Census.

Additionally, of those 58 loci, 31 (57%) are known to harbor driver mutations. About

two thirds (34) of the 52 pairs were found in different tumors from the same tissue

of origin while 18 appeared in different tissues of origin. Although most of the 52

repeated pairs behaved equally across cancer types, we found a few examples where

the type of association diverged; namely 6 pairs, which were mutually exclusive in

most cancer types but occasionally co-occurred (see supplementary table 2).

We also found an abundance of specific genes in a particular type of tumor

like CCAAT/enhancer-binding protein alpha (CEBPA) loci in 16 out of the 27

pairs found in acute myeloid leukaemia; KIT (Mast/stem cell growth factor re-

ceptor) loci as a partner in 19 out of 20 significantly related pairs of soft gas-

trointestinal stromal tumor (GIST); and 54 of 60 pairs in lung carcinomas involv-

ing loci from the epidermal growth factor receptor (EGFR). In fact, only large

intestine/carcinoma/adenocarcinoma, the second cancer after upper aerodigestive

tract/carcinoma/squamous cell carcinoma in number of pairs, escaped from this

predominance of loci from specific proteins in the pairs in a particular type of can-

cer (figure 2 and supplementary figure 3a).

In our analysis we also found the presence of cliques, that is, groups of several

interconnected loci, in the network of some tumors (all can be explored in inter-

active figure 2). Examples include the clique of exclusions between KIT.W557del,

KIT.Y503ins, KIT.V559, KIT.V560, KIT.W557 and PDGFRA.D842 in soft tis-

sue/gastrointestinal stromal tumour/NS and the clique formed by FGFR3.S249,

FGFR3.Y373, FGFR3.G370 and FGFR3.R248 in urinary tract/carcinoma/transitional

cell carcinoma. Other Interesting cliques were a group of 8 co-mutating loci involv-

ing 6 different proteins in kidney (kidney/carcinoma/clear cell renal cell carcinoma)

and the 5 frameshifts co-occurring in SORBS2 in large intestine (see supplementary

figure 3).

Driver loci can be distinguished from non-driver loci based on their associations

Looking for specific properties of the driver loci (encircled with red in figure 2), we

noticed a large quantity of edges of different tumors arising from common driver

nodes like BRAF.V600 and KRAS.G12 (edges color stand for cancer types), sug-

gesting that driver loci interact in a higher diversity of cancers than non-drivers.

When we checked this analytically, we found that the two groups of nodes have a

significantly distinct degree, mutational frequency and number of cancers in which

they are present, as can be seen in figure 3. Driver loci have more edges (Mann

Whitney U Test p-value = 1.583e-05) and are present in more cancer types (Mann

Whitney U Test p-value = 8.86e-12) than non-drivers, but show lower mutational

frequencies (Mann Whitney U Test p-value = 0.006581).

We were expecting that the loci more frequently mutated would be more con-

nected in more types of cancer. But, while connectivity and number of cancers were
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highly correlated (Pearson coefficient: 0.8408, p-value = 2.2e-16), connectivity and

mutational frequency and number of tumors affected and mutational frequency were

only partially correlated (Pearson coefficient: 0.5205, p-value = 2.2e-16 and 0.4733,

p-value = 6.3e-16, respectively).

Loci with driver mutations tend to exclude while non-drivers tend to co-mutate

Next, we divided the pairs of related loci in those with (i) no driver, (ii) one driver

and (iii) two driver loci. This classification was found to be associated with the type

of relationship between the loci in the pair (X-squared p-value <2.2e-16). As shown

in figure 4, the most common association between pairs of two driver loci is mutual

exclusion, 80.5% (128/159). In contrast; 80.8% (151/188) of the no driver pairs

were found to be co-mutations. It is worth noting that some well-known exclusions

between driver loci appeared clearly in our analysis, such as the mutual exclusion

of KRAS, BRAF and NRAS mutations in colorectal cancer [30](figure 2, zoomed

in supplementary figure 3c).

The only 20 co-mutations where both members are drivers comprises 25 loci from 7

proteins in 12 cancer types. Only one pair of associated loci are of two different genes,

KRAS.G12 + BRAF.V600 in thyroid/carcinoma/anaplastic carcinoma. There are

6 pairs that appear in more than one cancer type, 5 of them involving EGFR in

different types of lung carcinoma, with the co-mutation between EGFR.L858 and

EGFR.T790 being the most common (present in 5 cancers).

Driver mutation pairs tend to occur in the same gene

When we considered all pairs, we found loci of a single gene are associated almost as

frequently as loci from two different genes (Mantel-Haenszel X-squared p-value =

0.6578). Next, we applied the classification presented in Figure 4 and we found that

pairs with no drivers and pairs with one driver do not show a preference to occur

in the same or different genes. In contrast, pairs with 2 drivers behaved differently,

with a majority of them associating loci from the same gene. Namely, 96.77% of

driver co-mutations and 68.75% driver exclusions were found to involve loci in the

same gene (Fisher Test p-value = 0.0009532; X-squared p-value = 0.002964).

The squamous cell carcinoma of upper aerodigestive tract mutates in an uncommon

way

Upper aerodigestive tract/carcinoma/squamous cell carcinoma (SCC) is the name

used to denote a variety of cancers, with divergent etiologies, originated in the

epithelium of head or neck [31]. It is by far the least sequenced malignancy

in the COSMIC database, with 2048 samples versus the 32,392 of large intes-

tine/carcinoma/adenocarcinoma (the most sequenced one). SCC exhibit a high mu-

tational frequency that could explain the extremely elevated number of significant

dependent pairs encountered (Supplementary figure 2, and http://sdmn.leloir.org.ar

-bottom link-). The 30,272 pairs found in SCC correspond to co-mutations associ-

ating 307 loci of 45 proteins. It is compelling that there are no exclusion pairs and

no previously described driver loci involved. Only 8 of the 45 proteins (PDE4DIP,

NCOR1, HLA-A, NOTCH1, NOTCH2, BCOR1, KMT2C and SETBP1) are re-

ported in the Census, forming 411 pairs with 65 loci.
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Discussion
Although the advent of Next Generation Sequencing technologies has allowed the

mutational profiling of thousands of tumor samples, no systematic studies have

been published of co-occurring and mutually exclusive mutations. Here, we report a

cancer-type specific bioinformatics analysis of the thousands of somatic mutations

described in COSMIC, which were grouped in loci, aimed to discover co-occurrence

and exclusion pairs. In our analysis, we found some well known pairs that validate

our approach, such as the mutual exclusion of KRAS.G12/G13 with EGFR loci

in lung cancer or KRAS.G12/13 with BRAF.V600 in several neoplasias. Another

example is the co-ocurrence of EGFR.L858 + EGFR.T790 in lung adenocarcinoma.

Somatic mutations in L858 confer sensitivity to tyrosine kinase inhibitors targeting

EGFR (EGFR TKIs). However, patients ultimately relapse and one of the most

common mechanisms of resistance to TKIs is the emergence of the p.T790M mu-

tation. This observation constitutes an example of how a systematic analysis of

co-ocurrences in tumor rebiopsies after progression to targeted therapies can help

to find loci associated with resistance.

However, we also encountered controversial co-ocurrences like KRAS.G12 +

KRAS.G13 in anaplastic thyroid carcinoma, prostate adenocarcinoma and papillary

thyroid carcinoma or BRAF.V600 + KRAS.G12, again in anaplastic thyroid carci-

noma. These mutations are generally regarded as mutually exclusive in most ma-

lignancies [32, 33]. To track this discrepancy, we reviewed the articles reporting co-

mutations of this two loci. Garcia-Rostan et al, described co-mutations KRAS.G12

+ KRAS.G13 in poorly differentiated (papillary) and undifferentiated (anaplastic)

thyroid carcinomas, but did not discuss them further [34]. The same co-mutation

but in prostate adenocarcinoma was reported in two articles [35, 32]; with Silan et

al remarking the high Gleason Score and PSA (prostate specific antigen) levels on

combinedly mutated patients, both being indicators of an aggressive tumor. Mean-

while, Costa et al identified a strong link between clinical parameters indicative

of unfavourable prognosis and BRAF.V600E associated with other genetic events,

such as the co-mutation BRAF.V600 + KRAS.G12 [36]. Another unexpected pair of

associated loci was the co-mutation EGFR.L858 + EGFR.G719 in lung squamous

cell carcinoma (LSCC), since the frequency of EGFR mutations in LSCC is low [37]

and, as a consequence, the L858+G719 co-mutation is very uncommon, appearing

only in approximately 1/2000 patients (frequency 0.0007520682).

Another issue that should be considered when trying to explain unexpected co-

mutations is intratumoral heterogeneity. Subclonal populations within the same

tumor [38] can explain the presence of mutually exclusive mutations, as sequencing

admixes the genomes of different cells. Zou et al even report a BRAF mutation in a

whole thyroid tumor, and RAS mutation only in some sections [39]. This examples

of tumor heterogeneity reflect the need for serial examination of tumors during

the course of therapy, and of different areas within a single tumor [40]. Genetic

heterogeneity has also been linked to a variable clinical response to treatment, with

primary tumors and metastatic regions responding differently to the same drug [40].

Whichever is the explanation for the unexpected co-mutations, they are probably

capturing a general feature of the corresponding tumors that warrants testing and,

if found, should be considered during treatment. In tumors with BRAF.V600 and
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KRAS.G12, either via a true co-mutation or due to tumor heterogeneity, both loci

should be targeted to avoid the selection of subclonal resistance mutations through

treatment [38].

During our search for mutational patterns, we made a number of general observa-

tions regarding pairs of associated loci. First, we discovered that loci within a single

gene (or occasionally two genes) are present in a particular type of cancer, indicating

a relevant role for the corresponding protein(s) in that specific malignancy. Some

examples were CEBPA in acute myeloid leukemia, EGFR and KRAS in lung cancer

and KIT in GIST. According to the literature activating KIT mutations are present

in a majority of GISTs from soft tissue [41], while the oncogenes EGFR and KRAS

in lung cancer, are not always mutated but serve for routinary diagnoses [42, 43].

Large intestine adenocarcinoma was the only relevant tumor that did not show an

association with a particular gene in the co-mutational and exclusion patterns. This

finding was not unexpected, since it has been demonstrated that several genes can

play key roles in the development of this malignancy [44, 45].

We also observed that driver mutations present three common properties, namely

(i) driver loci tend to mutate in a mutually exclusive fashion, (ii) driver loci pairs

are repeatedly present in several cancer types and (iii) driver loci pairs frequently

occur within the same gene. These three properties can facilitate the discovery of

new drivers and, as a proof of concept of this idea, we searched loci fulfilling at

least one property in our network of associations, finding a total of 172 possible

new driver loci in genes of the Cancer Census (supplementary table 3). Of them, 15

were located in 4 protein kinases, which we further analyzed via structural alignment

using the Kin-driver database. We found that 8 loci were in positions known to be

drivers in other kinases, and 9 mapped to hyper mutated segments (-HS-) where

driver mutations have been shown to cluster [46] (Table 1). Furthermore, one of

these loci, KIT.D419del, has indeed been described as a driver [47] although it was

not considered as such in our analysis; and there is experimental evidence suggesting

a driver role for 7 additional loci [48, 49, 50, 51, 52].

In addition to protein kinases, some loci in other types of genes exhibited the

three properties mentioned above so we consider them as candidate drivers. Ex-

amples include R282 in the TP53 gene or K385fs and L367fs in the calreticulin

gene (CALR). Mutations in the TP53.R282 locus are relatively common and they

exclude with the drivers TP53.R175 and TP53.R273 in two cancer types according

to our results. According to literature mutation of R282W is actually a driver, it

has been described to shift the DNA binding domain of the p53 protein to a dys-

functional structure [53] and cause an earlier onset of familial cancer and a shorter

overall survival in cancer patients [54]. Regarding CALR.L367fs and CALR.K385fs,

they exclude with other frameshifts in the same gene, and also with thrombopoietin

receptor (MPL) V515 and the know driver JAK2.V617 in three haematopoietic neo-

plasms. This pattern is not a new finding; the triad of exclusion amidst JAK2, MPL

and CALR has been previously reported [55]. Frameshifts in exon 9 of CALR gene,

such as CALR.L367fs and CALR.K385fs, are common in some myeloproliferative

disorders and change the C terminal charge of the protein, altering its subcellular

localization, stability and function [56, 57].

In addition to pairs, we found cliques of significantly related loci (listed in sup-

plementary Table 4). The co-mutation cliques, where mutations in each loci are
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more probable when some of the other loci are mutated, can represent combina-

tions conferring synergistic adaptative advantages to the tumor cells. An example is

the clique formed by IDH1.R132, NPM1.W288fs, DNMT3A.R882 and FLT3.D835

in acute myeloid leukaemia that emerged in our analysis. Mutations in IDH1 and

DNMT3A, and in DNMT3A and FLT3, have been described to be simultaneously

present in a significant number of myeloid leukaemia patients, and concomitant

mutations in the triad NPM1/DNMT3A/FLT3 have been associated with a worse

overall survival in this malignancy [58, 59] . These experimental findings support our

hypothesis of a synergistic advantage of co-mutation cliques. In contrast, exclusion

cliques, probably reveal loci that alter the same biological pathway. A mutation

in one of them is enough to acquire the corresponding hallmark of cancer and,

therefore, tends to exclude the others [6].

The pairs and cliques of associated loci that emerged in our analysis, particularly

those involving drivers, might prove useful not only in cancer biology studies, but

also for the selection of therapies. Cancer treatment faces several challenges, such

as the selection of appropriate markers for targeted and non-targeted agents and

the relapse to a more aggressive disease after an initially successful treatment. Since

most of the new antitumor drugs specifically target mutated or genetically altered

proteins, co-mutations can suggest combined treatments that can prove more ef-

fective than single agent approaches. In contrast, exclusions might indicate that

certain combinations of drugs are unlikely to be useful in a meaningful percentage

of patients. For instance, we found that the IDH1.R132 and the TP53.R273 loci

co-mutated in gliomas. Mutations in IDH1.R132 gene are very frequent in this ma-

lignancy and inhibitors of mutant IDH are currently in trials to prove their clinical

utility as single agent or in combination strategies targeting additional oncogenic

pathways [60]. Anti-mutant TP53 drugs are also being tested in clinical trials [61],

and our results indicate that they might be an appropriate partner for IDH in-

hibitors in a significant number of gliomas.

The absence of links is also of interest. One example are mutations in PTEN

that lead to the loss of protein expression and have been related to resistance to

many targeted therapies, such as EGFR inhibitors in EGFR-mutant lung cancer

[62], anti-EGFR antibodies in non mutated KRAS/NRAS colorectal cancer [63] or

BRAF inhibitors in BRAF-mutant melanoma [64]. In our analysis, PTEN mutations

are not significantly dependent to EGFR, KRAS, NRAS or BRAF mutations in

different cancer types with the only exception of the co-mutation with KRAS.G12 in

endometrium/carcinoma shown in the figure 2. In consequence, it can be estimated

that, if the above-mentioned therapies are tested in patients of all the other tumor

types, the percentage of cases not responding due to loss of PTEN will be equal

to the overall frequency of PTEN mutations in that particular malignancy. Data of

this kind can be of great interest when trying to find new applications for targeted

agents.

One important limitation of our study derives from the fact that a vast majority

of the tumors compiled in the COSMIC database have only sequenced a limited

number of genes, while whole exome or whole genome sequenced tumors are scarce.

In consequence, we are likely missing a significant number of associations between

loci simply because they have been rarely sequenced. This limitation also explains
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a counterintuitive correlation found during our analysis, where the more mutated

loci are not the more connected ones (Figure 3). For example, the G151 mutation

of the potassium channel KCNJ5 was almost as frequently mutated in the sam-

ples of the COSMIC database as KRAS.G12, with values of 0.1827 and 0.1893,

respectively; but KCNJ5.G151 was significantly less connected. The explanation

lies in the fact that, while the ubiquitous driver (KRAS.G12) has been sequenced

on 164511 samples from all types of tumor, the KCNJ5 status has only been re-

ported in 2671 samples, most of them (81.2%) from adrenal gland/adrenal cortical

adenoma/aldosterone producing, a cancer type where KCNJ5 mutations are preva-

lent [65]. To overcome this limitation, we plan to periodically update our analysis

and we are confident that we will find new associations of loci relevant for both

cancer biology and treatment.

The three-properties approach, might not be adequate to find possible drivers loci

in upper aerodigestive tract squamous cell carcinoma. Driver mutations for this can-

cer may have exceptional characteristics or, more likely, drivers in this malignancy

are genomic aberrations different from mutations. Experimental evidence seems to

support this explanation, since non mutation drivers such as EGFR overexpression

and amplification have been described to be frequent in this malignancy [66].

Conclusions
In summary, we can propose driver mutations based solely on the network of sig-

nificantly related pairs of mutations. At now, driver predictions rely on interaction

and functional networks focusing on complete genes [67, 68, 69], then, our approach

have the advantage of pinpoint specific mutated positions, which enlightens the

functional role they may be playing. All this prove the relevance of cumulative

repositories like COSMIC and cBio, that aggregate enough data sets to search for

significant patterns.

Methods
Dataset

Complete COSMICv75 was downloaded. Data included 1,178,444 samples from 47

tissues with 193 histologies and 716 sub-histologies; there were 2,812,088 mutations

from 2,128,846 sequenced positions. To identify unique mutations, ENSEMBL tran-

script ID from COSMIC entries were mapped to UNIPROT protein ID and concate-

nated with the mutations (e.g P15056.V600E). Mutations were grouped by position

following the type of alteration, so we could distinguish substitutions, deletions, in-

sertions, complex substitutions and frameshifts.

Mutations of type Nonstop extension, Substitution coding silent and Whole

gene deletion were filtered. This way the dataset decreased to 1,107,460 samples

from 1,298 cancer types with 1,615,508 mutated positions from 19,297 proteins.

Among these, 291 positions with driver mutations in kinases, Ras proteins, TP53

or PIK3CA were found. Cancer type was defined as the unique combination of

tissue, histology and sub-histology (e.g: lung/carcinoma/adenocarcinoma).

In order to roughly discard unimportant (to cancer evolution) mutations, positions

sequenced in less than 1,000 samples were filtered. The threshold is set empirically

to a limit passed by most of the driver loci (289 from 291) but only by 22.60%
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of the loci without known driver mutations. Cancer types without mutations or

sequenced less than 10 times, were also discarded. Then, the dataset for the analysis

is composed by 1,098,411 samples from 687 cancer types 365,096 mutated positions

(289 of them are driver mutations) of 1,329 proteins.

Co-dependant pairs of loci

To identify significantly related mutations, contingency tables were constructed for

every pair of co-sequenced loci in each cancer type. To avoid very infrequent mu-

tations, only the pairs with more than 10 mutated samples (out of 1000 or more

sequenced samples) for each position were retained, giving a starting dataset of

262,375 tables (pair of mutations to be evaluated) of 135 cancer types. Each table

was checked for dependency between loci with Fisher test. P-values were FDR cor-

rected. A total of 44,250 pairs of loci were found to be significantly associated in 82

cancer types.

Filtering of probable false positives

As we feared that low mutational probabilities allowed unrelated pairs to pass the

corrected Fisher test, we compared the expected and the observed probabilities for

each pair. Specifically, scarcely mutated loci could seem to be excluding each other

when they are just infrequent, so their expected joint probability would be similar

to the observed one.

To filter this kind of false positives, we estimated the 99% confidence interval

of each observed joint mutational probability and located the expected joint muta-

tional probability. If the expected fell within the confidence interval of the observed,

the pair was discarded, which is equivalent to filter all the dots near to the diagonal

in the figure 1.

Confidence intervals were calculated using the binomial distribution. The distri-

bution B(n, p) is defined for each pair with size n, as the total of samples with

both loci sequenced and probability of success p, as the observed probability of

co-mutation.

After this step a final dataset of 30,679 pairs of dependent loci whose relation is

not due to their low mutational frequencies was obtained.

Assignation of type of dependency

To distinguish pairs that co-mutate from pairs that exclude mutually, a priori and

a posteriori mutation probabilities were compared. Considering only samples with

loci A and B co-sequenced, if locus A has a higher probability of mutation when

mutation B is present than in the whole set of samples, A co-mutates with B. If the

contrary is true, mutations exclude themselves. But the a priori mutational proba-

bility of a locus can vary randomly, so we estimated its 95% confidence interval as

previously described. This way, each table defines its own thresholds but a coherent

set of simple logic rules are used over the whole dataset:

If P(mi|mj) < CI(mi) AND P(mj |mi) < CI(mi) → mutual exclusion

If P(mi|mj) > CI(mi) AND P(mj |mi) > CI(mj) → bidirectional co-mutation

Where P(mi|mj) is the conditional probability of mi given mj and CI(mi) is the

95% confidence interval of the unconditional probability of mutation of mi.
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Network of related loci

The 30,679 pairs were divided by the type of dependency in 189 pairs of exclu-

sion and 30,490 of co-mutation. Upper aerodigestive tract/carcinoma/squamous

cell carcinoma pairs were separated and two network representations were made in

cytoscape. The one for the upper aerodigestive tract squamous cell carcinoma was

ordered with the prefuse force directed layout based on the observed probability of

co-mutation and enhanced manually to show all node labels. The other network,

representing the rest of the pairs, also was enhanced manually but departing from

an orthogonal layout.

Properties of driver loci

Degree, mutational frequency and number of engaged cancer types was calculated

for each loci in the network. The number of engaged cancer types was normalized

by the maximum possible, 66 cancers. Distributions of the four variables (degree,

mutational frequency, number of engaged cancers and normalized number of can-

cers) were compared between drivers and non-driver with Mann Whitney tests. The

relation among the variables was tested with Pearson correlation.

Pairs were classified in a 3-level contingency table by their categorical variables:

type of relation within the loci, origin of the linked loci, and number of driver

positions involved. This was plotted in a mosaic and tested for dependency with

Mantel-Haenszel test. Afterwards the segment of the table counting pairs formed

by two drivers was tested with chi square.

Loci corresponding to proteins of the Cancer Genes Census and satisfying at least

one of the observed properties of drivers were suggested as new possible drivers. The

new possible drivers belonging to kinases were mapped to driver hotspot regions or

to previously described driver loci. All calculus were made in R. The packages used

are: igraph, Matrix, doParallel and foreach.
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Figure 1: Treatment of dependent pairs. Left. Criteria used to filter

possible false positives. Observed values are represented with blue balls, while

the grey mesh follows the expected values assuming independence between

loci. Pairs with an observed probability of co-mutation within the confidence

interval of the expected one were discarded. Right. Rules used to classify

the co-dependent pairs. The space of mutational probability of each pair is

divided as shown by the relation between a priori P(mi) and a posteriori

probabilities P(mi|mj).

Table 1: Kinases loci suggested as driver by the analyses
Locus Equivalent driver Driver hotspot Reported as

KIT.D419del - - activating [47]
KIT.N822 FLT3.N841 HS3 vulnerable to treatment [48]
KIT.V654 HS2 - aligns EGFR.C775 Imantinib resistant [49]
KIT.T670 EGFR.790 HS2 Imantinib resistant [50]
KIT.Y823 PDGFRA.Y849 HS3 -

JAK2.V615 EGFR.T751> HS2 -
JAK2.K539 JAK2.F537> HS3 - aligns EGFR.Y900 -
EGFR.R108 - - recurrent in glioblastoma [51]
EGFR.G598 - - recurrent in glioblastoma [51]

EGFR.V769ins ALK.F1174 HS2 -
EGFR.D770ins - HS2 -

EGFR.A871 - - no
BRAF.D594 STK11.D194 HS3 inactivating [52]
BRAF.G466 - - recurrent in lung cancer [70]

BRAF.V600> BRAF.V600 - -
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HLT/haematopoietic_neoplasm/myeloproliferative_neoplasm
HLT/haematopoietic_neoplasm/polycythaemia_vera
HLT/lymphoid_neoplasm/acute_lymphoblastic_T_cell_leukaemia
HLT/lymphoid_neoplasm/acute_lymphoblastic_leukaemia
HLT/lymphoid_neoplasm/diffuse_large_B_cell_lymphoma
kidney/carcinoma/clear_cell_renal_cell_carcinoma
large_intestine/aberrant_crypt_foci/NS
large_intestine/aberrant_crypt_foci/hyperplastic
large_intestine/adenoma/NS
llarge_intestine/carcinoma/NS
large_intestine/carcinoma/adenocarcinoma
large_intestine/serrated_polyp/hyperplastic_polyp
large_intestine/serrated_polyp/serrated_adenoma
liver/carcinoma/hepatocellular_carcinoma
lung/carcinoma/NS
lung/carcinoma/acinar_adenocarcinoma
lung/carcinoma/adenocarcinoma
lung/carcinoma/bronchioloalveolar_adenocarcinoma
lung/carcinoma/non_small_cell_carcinoma
lung/carcinoma/squamous_cell_carcinoma
lung/other/neoplasm
meninges/meningioma/NS

NS/malignant_melanoma/NS
ovary/low_malignant_potential_(borderline)_tumour/serous
pancreas/carcinoma/ductal_carcinoma
pancreas/carcinoma/solid_pseudopapillary_carcinoma
pancreas/other/dysplasia-in_situ_neoplasm
pituitary/adenoma/GH
pituitary/craniopharyngioma/adamantinomatous
prostate/carcinoma/adenocarcinoma
skin/benign_melanocytic_nevus/NS
skin/malignant_melanoma/NS
skin/malignant_melanoma/nodular
skin/malignant_melanoma/superficial_spreading
skin/malignant_melanoma/vertical_growth_phase
skin/other/nevus_sebaceous
skin/other/seborrhoeic_keratosis
soft_tissue/desmoid_tumour-fibromatosis/NS
soft_tissue/gastrointestinal_stromal_tumour/NS
soft_tissue/gastrointestinal_stromal_tumour/spindle
soft_tissue/leiomyoma/NS
thyroid/carcinoma/anaplastic_carcinoma
thyroid/carcinoma/medullary_carcinoma
thyroid/carcinoma/papillary_carcinoma
urinary_tract/carcinoma/NS
urinary_tract/carcinoma/transitional_cell_carcinoma

meninges/meningioma/secretory

adrenal_gland/adrenal_cortical_adenoma/aldosterone_producing
breast/carcinoma/NS
breast/carcinoma/luminal_NS_carcinoma
CNS/glioma/NS
CNS/glioma/astrocytoma_Grade_II
CNS/glioma/astrocytoma_Grade_IV
CNS/glioma/oligoastrocytoma_Grade_III
CNS/glioma/oligodendroglioma_Grade_III
CNS/primitive_neuroectodermal_tumour-medulloblastoma/WNT_subtype
endometrium/carcinoma/adenocarcinoma
endometrium/carcinoma/endometrioid_carcinoma
eye/malignant_melanoma/NS
eye/malignant_melanoma/epithelioid
HLT/haematopoietic_neoplasm/acute_myeloid_leukaemia
HLT/haematopoietic_neoplasm/essential_thrombocythaemia
HLT/haematopoietic_neoplasm/juvenile_myelomonocytic_leukaemia
HLT/haematopoietic_neoplasm/mast_cell_neoplasm
HLT/haematopoietic_neoplasm/myelodysplastic_syndrome
HLT/haematopoietic_neoplasm/myelofibrosis

Figure 2: Network of significantly related loci. Also available for in-

teractive view in: http://sdmn.leloir.org.ar/. Nodes are loci and edges are

cancer types. The size of a node represents its mutational frequency. Nodes

of the same colour pertain to the same protein. A border means that the

protein is reported in the cancer Census. If the border is red, the locus has

driver mutations. Two nodes are linked if they are significantly related in the

cancer type of the corresponding color. Dotted lines indicate exclusions while

continuous lines represent co-occurrences.
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Figure 3: Difference between driver and non-driver loci. A. Connec-

tivity. B. Mutational Frequency. C. Number of cancer types.
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Figure 4: Classification of pairs by the origin of the loci (different

or same protein), the type of relation (co-mutation or exclusion)

and the number of driver loci involved (0,1 or 2). Color indicates

deviance from the expected under a model of complete independence. For

example, pairs formed by 2 driver loci behave oppositely to pairs with no

driver loci, with 128 exclusions versus 31 co-mutations. Also, they tend to

involve same protein loci, with 88:40 pairs within the exclusions and 30:1

within co-mutations. The color of the box representing the co-mutation of

driver loci from distinct proteins, shows that the value of 1 is between 4 and

5.6 residuals under the expected value, so it is individually significant.
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Supplementary figure 1: Type of samples in the dataset There is

almost three times more non mutated samples than mutated ones.
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Supplementary figure 2: Dependent pairs of loci from upper aerodi-

gestive tract/carcinoma/squamous cell carcinoma Loci are repre-

sented by nodes, they are colored according to the protein of provenance

and linked if they co-mutate. Node size reflects mutational frequency.
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Supplementary figure 3: Extracts of the network of dependent loci

A. Dependencies in large intestine. Contrary to what happens in most can-

cer types, there is no protein predominantly represented. B. Clique of co-

mutations in kidney, involving 6 different proteins. D. NRAS, KRAS and

BRAF exclusions in large intestine.
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