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Abstract 15 

The potential for genome-wide modeling of epistasis has recently surfaced given the possibility of 16 

sequencing densely sampled populations and the emerging families of statistical interaction models. 17 

Direct coupling analysis (DCA) has earlier been shown to yield valuable predictions for single protein 18 

structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel 19 

interactions in the co-evolution between resistance, virulence and core genome elements. However, 20 

earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 21 

10
4
-10

5
 polymorphisms, representing the amount of core genomic variation observed in analyses of 22 

many bacterial species. Here we introduce a novel inference method (SuperDCA) which employs a new 23 

scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to 24 

achieve scalability for up to 10
5
 polymorphisms. Using two large population samples of Streptococcus 25 

pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings 26 

about this major human pathogen. We also show that our method can uncover signals of selection that 27 

are not detectable by genome-wide association analysis, even though our analysis does not require 28 

phenotypic measurements. SuperDCA thus holds considerable potential in building understanding about 29 

numerous organisms at a systems biological level.   30 

 31 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182527doi: bioRxiv preprint 

https://doi.org/10.1101/182527
http://creativecommons.org/licenses/by-nd/4.0/


Author Summary 32 

Recent work has demonstrated the emerging potential in statistical genome-wide modeling to uncover 33 

co-selection and epistatic interactions between polymorphisms in bacterial chromosomes from densely 34 

sampled population data. Here we develop the Potts model based approach further into a fully mature 35 

computational method which can be applied to most existing bacterial population genomic data sets in 36 

a straightforward manner.  Our advances are relying on more efficient parameter scoring, highly 37 

optimized and parallelized open source C++ code, which does not rely on the computation-intensive 38 

polymorphism subsampling approximations used earlier. By analyzing the two largest available 39 

population samples of Streptococcus pneumoniae (the pneumococcus), we highlight several biological 40 

discoveries related to the survival of the pneumococcus and co-evolution of penicillin-binding loci, which 41 

were not uncovered by the earlier analyses. Our method holds considerable potential for building 42 

understanding about numerous organisms at a systems biological level. 43 

Introduction 44 

Direct Coupling Analysis (DCA) emerged less than a decade ago and has opened up a new direction of 45 

biological research by demonstrating that large population based protein sequence analysis can be 46 

leveraged to make accurate predictions about protein structure[1-7]. DCA has been successfully 47 

extended to predict secondary and tertiary RNA structure[8], synergistic effects on fitness of mutations 48 

in the E. coli lactamase TEM-1[9], the fitness landscapes of HIV proteins[10], prediction of mutation 49 

effects from sequence co-variation[11], and to genome-wide epistasis analysis for bacterial population 50 

genomics[12]. Our focus here is to significantly extend the applicability of DCA methodology by enabling 51 

scalable inference for two orders of magnitude larger than previously modeled dimensionality of 52 

sequence positions.  53 

Maximum likelihood inference for the Potts models employed in DCA is intractable due to the form of 54 

the normalizing constant of the model distribution, hence various weaker criteria or approximations 55 

have been used to derive estimators of the model parameters. Notably, maximum pseudolikelihood is a 56 

statistically consistent inference method which has typically outperformed variational methods[13], 57 

such as the mean-field estimator[14]. The different software implementations based on regularized 58 

maximum pseudolikelihood for DCA applications (plmDCA)[3,14-17] have been designed for at most 59 

1000-2000 sequence positions, after which the computation times tend to become prohibitive for 60 

practical purposes. 61 

To enable use of plmDCA in a much higher dimensional setting, with the order of 10
5
 polymorphisms in a 62 

bacterial genome, Skwark et al.[12] stratified a genome into non-overlapping windows and sampled 63 

randomly a single SNP from each window to form haplotypes of approximately 1,500 sequence 64 

positions, on which the plmDCA implementation by Ekeberg et al.[15] could be directly applied. They 65 

then used a large number of repeated random sampling of positions from the stratified genome to 66 

aggregate information about interactions between polymorphisms across the genome. While this 67 

approach was demonstrated to successfully capture both known and novel interactions, it remains very 68 

computationally intensive and may still leave important interactions undiscovered as only a fraction of 69 
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all possible combinations of interactions will be covered even when using large numbers of repeated 70 

samples. It is also a hybrid method which does not fully implement global model learning which is a 71 

conceptually central point of DCA. To avoid these problems, here we introduce a method termed 72 

SuperDCA, which can perform inference simultaneously for all SNP positions in a much higher 73 

dimension. These advances are based on a new computational architecture exploiting efficient 74 

parallelization and optimization to achieve scalability for up to 10
5
 polymorphisms. In addition to being 75 

significantly faster with more modest computational resources, we also show that the global inference 76 

with SuperDCA allows the discovery of previously undetected epistatic interactions that inform our 77 

understanding of bacterial biology related to survival of the pneumococcus at lower temperatures. 78 

SuperDCA is freely available from https://github.com/santeripuranen/SuperDCA 79 

Results 80 

Results of SuperDCA and comparison with genomeDCA 81 

The Potts model for genome-wide epistasis analysis was fitted to two largest existing pneumococcal 82 

population data sets using the SuperDCA method; the Maela[12,18] and Massachusetts populations[19]. 83 

Two variants of the Maela population data were considered: one with only bi-allelic SNPs (81045 loci), 84 

filtered as in Skwark et al.[12] in order to maintain compatibility for comparison of the results, and the 85 

second with no restriction to bi-allelic SNP sites (94028 loci, Methods). For Massachusetts 78731 SNP 86 

loci were analyzed (Methods). Figure 1 shows the cumulative distributions of the estimated coupling 87 

strengths between SNP sites for the Maela and Massachusetts populations. In both cases a vast majority 88 

of the couplings were of negligible magnitude and could be discarded from further detailed investigation 89 

using the thresholds shown in Figure 1 (Methods). 90 

Figure 1 Log histograms of the cumulative distributions of estimated between-site couplings for Maela 91 

(left) and Massachusetts (right). The thresholds indicate the learned boundary between negligible and 92 

moderate to strong couplings. 93 

Supplementary Figure 1 shows the overlap between the predicted genomeDCA and SuperDCA links on a 94 

gene level for Maela population. SuperDCA replicated the previously identified links between PBP gene 95 

pairs, as well as the network containing the smc gene. In contrast, SuperDCA did not identify significant 96 

links between pspA, divIVA, and the triplet upstream of ply, SPN23F19480-19500. In the simultaneous 97 

analysis which is not affected by chromosome stratification and random sampling of positions, the 98 

respective couplings no longer clearly deviated from the background dependence distribution, which is 99 

considerably wider for SuperDCA than for genomeDCA. This illustrated by a closer examination of the 100 

pairwise mutual information (MI) values (for further details see Methods) between the SNP loci in pspA, 101 

divIVA, and SPN23F19480-19500. The few stronger pairwise dependencies between the three genes 102 

disappear when all SNP loci are considered simultaneously. As a consequence of performing a full DCA 103 

analysis, in contrast to only partial DCA, the SuperDCA approach is less susceptible to highlighting 104 

weaker dependencies than genomeDCA.  105 

Epistasis in the penicillin-binding proteins 106 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182527doi: bioRxiv preprint 

https://doi.org/10.1101/182527
http://creativecommons.org/licenses/by-nd/4.0/


Since the bulk of the biological signal of between-site variation dependence presented in Figure 1 is due 107 

to linkage disequilibrium (LD) between sites in close proximity, we used a refined version of the 108 

phylogenetic ranking of the couplings (Supplementary Tables 1-3, Methods), to focus on the strongest 109 

candidates of co-selected loci. Figure 2 shows two sets of SNP loci which are involved in the top ranking 110 

couplings in Maela, alongside with the phylogenetic distribution of the alleles. The very top ranking 111 

couplings are between sites in the three penicillin-binding proteins (PBPs), as discovered in the earlier 112 

epistasis analysis which stratified the genome into non-overlapping windows and used the Potts model 113 

for sampled subsets of loci to reduce dimensionality[12].  114 

Figure 2. Maela population distribution of alleles at top ranked coupled SNP sites. The estimated 115 

genome-wide maximum likelihood phylogeny is shown on the left. Each column is labeled by the 116 

genome position, gene name and a corresponding functional categorization. Columns marked by red 117 

rectangles indicate coupled sites in pbp2x, pbp2b that have a reversed minor/major allele distribution 118 

compared with the remaining displayed SNPs in the same genes. 119 

Figure 2 reveals a particular pattern of dependence between PBP mutations that adds significant 120 

biological information to the earlier findings[12]. The SNP positions marked by red rectangles in Figure 2 121 

have an approximately reversed distribution of minor/major alleles in the population, which may reflect 122 

fitness differences regarding co-evolution of emerging mutations. In pbp2x the first marked position 123 

(codon position 359) corresponds to a synonymous mutation coding for amino acid phenylalanine, part 124 

of a conserved cluster of hydrophobic residues (Figures 3A and 3C) consisting of F353, P354, F393, L402, 125 

L403, and the E357 to K406 charge interaction located at the upper part of the transpeptidase domain 126 

near the active site. This cluster of residues likely has a role in maintaining structural integrity in this 127 

region (marked with cyan), as it is positioned next to the more mobile loop (marked with red) at residue 128 

positions 362-383 that partially covers the active site. Selection pressure seems to act in favor of the 129 

phenylalanine phenotype, since the genotype space clearly is explored here and switching the 130 

phenotype to the similarly sized and hydrophobic (but in contrast to phenylalanine non-aromatic) 131 

residues leucine or isoleucine, would only require a single non-synonymous mutation.  132 

The second and third mutations (codon position 576, N/S/H amino acid changes; codon position 598, I/V 133 

amino acid changes) are conservative changes (Figure 3D) that may remotely affect the active site 134 

geometry or substrate association/dissociation kinetics, possibly as a compensatory mechanism for 135 

changes elsewhere. Active-site reshaping is an established cause of beta-lactam resistance in S. 136 

pneumoniae, where the involved polymorphisms can appear quite subtle at first sight. Our LD adjusted 137 

coupling scores indicate a very strong coupling between genome positions 294028/293661 in pbp2x and 138 

1613045/1613098 in pbp2b. The fourth and fifth mutations (codon position 714, conserved L amino 139 

acid; codon position 721, E/Q amino acid change) are located in the PASTA-2 domain (Figure 3B; marked 140 

with green).  The Q721 variant is prevalent in beta-lactam susceptible- and E721 in non-susceptible 141 

isolates. PASTA (PBP and Serine/Threonine kinase Associated) domains typically bind beta-lactams, 142 

however, a direct mechanistic role for 721 in beta-lactam resistance seems unlikely due to the structural 143 

position facing away from the protein core region. Rather, 721 is more likely to be involved in divisome 144 

complex formation and functions in a way that supports bacterial resilience in the presence of 145 

antibiotics; pbp2x and the PASTA domains therein are essential for bacterial division[20,21]. The 146 
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characteristics and placement of L714 and the fact that all polymorphisms at this site are synonymous, 147 

point to a role in assuring structural integrity rather than in direct beta-lactam interaction. 148 

In pbp2b the second marked position (codon position 458, D/N amino acid change) is located such that 149 

it may affect the active site in a mechanistic way via two distinct routes, either by indirectly modifying 150 

stability of the loop region (marked with red) proximal to the active site, or by slightly affecting the 151 

geometry of active site residues through the helix from 445 to 456 (marked with orange) directly 152 

connected to active site residues N445 and S443. The first marked position in pbp2b (codon position 153 

476, G/E amino acid change) is spatially separated from 458. Although glycine at this site is more 154 

prevalent in beta-lactam non-susceptible- and glutamic acid in susceptible isolates, the potential role of 155 

the residue at this position in resistance remains unclear and would be a target for further experimental 156 

work. 157 

 158 

Figure 3. Structural mapping of the pbp2x (panels A-C) and pbp2b (panel D) positions marked in Figure 2. 159 

The panels show the transpeptidase domains of each PBP with active site residues shown in cyan and 160 

positions marked in Figure 2 as sticks in orange or green. Panel A depicts a structure-stabilizing cluster of 161 

conserved hydrophobic residues (light gray sticks) and charge interaction (dark gray) in a region 162 

proximal to (cyan cartoon) the pbp2x active site (with bound inhibitory antibiotic as pink space-filling 163 

volume) and a mobile loop (red cartoon) covering the active site. Panel B depicts the PASTA-2 domain 164 

essential for divisome complex function (green cartoon) with the bulk of the protein to the right (gray 165 

cartoon). Panel C shows an overview of the pbp2x transpeptidase domain colored as in the detail views 166 

in panels A and B. Panel D depicts the pbp2b transpeptidase domain region proximal to the active site 167 

with a helix (orange cartoon) mechanically connecting the active site to the 'top' of the protein. An 168 

adjacent mobile loop covering the active site is shown in red.  169 

Figure 4 shows a clear overlap between the Maela and Massachusetts populations in terms of identified 170 

links between genes involved in antibiotic resistance. For the two PBP gene pairs pbp2x-pbp2b and 171 

pbp2x-pbp1a the numbers of strong links between SNPs are large in both populations. For the pair 172 

pbp1a-pbp2b there is a pronounced asymmetry in this respect, such that the Massachusetts population 173 

harbors a large number of links whereas there are only very few in Maela. The latter observation is in 174 

line with the findings by Skwark et al.[12] which indicated that most interactions found between the PBP 175 

genes were between pbp2x-pbp2b and pbp2x-pbp1a. The fact that the Massachusetts population clearly 176 

deviates from this suggests that the co-evolution of PBPs may follow a non-congruent route in different 177 

populations. In the case of Massachusetts versus Maela, this may be a consequence of markedly 178 

different serotype distribution in the two populations, or other ecological constraints such as the varying 179 

selection pressure from different beta-lactam antibiotic usage. In Maela, beta-lactam prescriptions were 180 

almost exclusively amoxicillin, whereas in Massachusetts the pediatric prescription practice is likely to 181 

have been considerably more varied. Similar to the asymmetry of the extent of pbp1a-pbp2b couplings, 182 

the reverse allele distribution pattern discussed previously for Maela was not observed in the 183 

Massachusetts population. Given these differences our results suggest that the co-selective pressure on 184 

PBP gene polymorphisms acts differently depending on the type of the beta-lactams used in the 185 
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population, warranting further experimental work to elucidate the mechanistic role of the coupled 186 

variations.  187 

Figure 4. Overlap of estimated SNP interactions between the Maela and Massachusetts populations. 188 

Each dot represents an estimated link (interaction) between two coding sequences (CDSs), the blue 189 

CDSs are involved in antibiotic resistance, and the red CDSs are in close proximity to antibiotic resistance 190 

loci. Grey dots represent other functional categories not displayed here explicitly for visual clarity. Both 191 

axes are on log-scale and the values represent numbers of links in each CDS pair.  192 

Epistasis in cold tolerance and transmission potential 193 

The current analysis additionally highlights several important between-site dependencies not identified 194 

by genomeDCA, showing greater sensitivity for identifying putative epistatic interactions. Firstly, the 195 

highest ranked SuperDCA couplings included twenty links between cold resistance-related genes 196 

exoribonuclease R (rnr), glyceroporin (glpF1), and lytic amidase C (lytC) (Figure 2), the strongest of which 197 

was ranked 668. In total, among the 5000 highest ranked couplings, there were two links between glpF1 198 

and rnr, and 18 links between glpF1 and lytC. GlpF1 is a transporter than imports glycerol, is involved in 199 

maintaining membrane fluidity with temperature changes[22]. The glpF1 gene is at the 3’ end of its 200 

operon, with a tightly-folding BOX repeat at its distal end[23]. This would make the corresponding mRNA 201 

a potential target for rnr, a cold shock response 3’->5’ exonuclease that degrades tightly-folded RNAs 202 

that might be misfolded at lowered temperatures. Hence these interactions may be involved in tuning 203 

the expression of glpF1 at lowered temperatures. Like glpF1, lytC is involved in maintaining the cell 204 

surface at lower temperatures, as it is the cellular amidase specialized at degrading peptidoglycan at 205 

lower temperatures (30 degrees Celsius, rather than 35-37 degrees Celsius)[24]. 206 

Previous work has demonstrated a significant seasonality in the transmission dynamics for the Maela 207 

population while carefully controlling for viral epidemics; the probability of the transmission being 208 

higher during the cold and dry winter months in comparison to warmer and more humid spring and 209 

summer months[25]. To examine whether the observed epistatic links related to survival at lower 210 

temperatures are connected with the seasonal transmission phenomenon, we examined the major and 211 

minor allele frequencies at the strongly linked cold resistance loci according to months, averaged over 212 

the three years 2007-2010 during which the data were sampled. Figure 5 shows clear temporal signals in 213 

terms of when the isolates carrying the linked minor/major alleles were sampled. The temporal changes 214 

in allele frequencies for the strongest cold resistance related link between glpF1 (position 2162687) and 215 

rnr (position 871912), and also for the most strongly coupled sites between lytC (position 1533938) and 216 

glpF1 (position 2162676), display a repetitive pattern of synchrony across years. In the first case, the 217 

proportion of major alleles in glpF1 increases towards the end of the year, while in rnr the proportion of 218 

the minor alleles varies, being the dominant allele in January, April, and December. In the second case, 219 

the pattern in glpF1 remains the same, but the proportion of minor alleles in lytC increases towards the 220 

winter months.  221 
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Figure 5. Seasonal variation of the allele frequencies for the two top cold resistance couplings between 222 

glpF1-rnr and glpF1-lytC averaged over three years, 2007-2010. The shaded areas indicate 95% 223 

confidence intervals. 224 

These findings combined with the earlier results on Maela hosts being more susceptible for transmission 225 

during the cold and dry winter months[25], suggest that the recurrent selective advantage related to 226 

increased cold tolerance to facilitate survival outside hosts has been sufficient to shape the variation in 227 

population allele frequencies. To investigate whether the selection pressure on cold resistance genes 228 

could be discovered using a genome-wide association study (GWAS) approach, we coded the phenotype 229 

of each sample as winter or summer depending on the sampling date (Methods). We then applied the 230 

SEER GWAS method to identify polymorphisms that explain the variation in the phenotype[26]. 231 

Supplementary Figure 2 shows the Manhattan plot of the SEER analysis based on the annotated 232 

reference genome. No clear association signal can be seen and the SNP loci within the cold resistance 233 

genes are not associated with any markedly smaller p-values than the level of background variation of 234 

the association signal. 235 

No cold resistance related couplings were found among the top 5000 couplings in the Massachusetts 236 

population, which may represent the less variable environmental conditions to which children are 237 

exposed, and the sampling of isolates only during winter, rather than year-round. In contrast, the Maela 238 

refugee camp conditions are such that the changes in selection exposure are more directly influential.  239 

 240 

Filtering on phylogenetic information 241 

Inferred couplings from DCA typically have to be filtered to remove those that refer to trivial or non-242 

informative dependencies. In the protein-structure applications very strong couplings are inferred 243 

among close neighbors along the peptide backbone, and are usually removed after model fitting by a 244 

simple distance based cut-off. A related issue is sampling bias, which for protein-structure applications 245 

has been handled by a reweighting applied to each sequence[1]. In bacterial sequence data produced 246 

from a sample taken from a small area over a limited period of time, a further issue is clonal inheritance; 247 

the meta-population is in a state of flux, and for a short window of time may not fully relax to the 248 

postulated Potts model of DCA. To compensate for this problem we used a refined version (Methods) of 249 

the phylogenetic re-ranking of the coupling estimates introduced in Skwark et al.[12] To visualize its 250 

effect, we consider mutual information to characterize the strength of pairwise dependencies between 251 

SNP loci. MI is a widely used information theoretical measure of dependence between discrete-valued 252 

variables, and it has been a popular tool as part of bioinformatics methods for DNA sequence 253 

analysis[27-29]. Here we use MI to characterize the strength of pairwise dependence between SNP loci 254 

as a function of their ranked estimated couplings alone and a ranking based jointly on couplings and 255 

phylogenetic criteria. Figure 6 shows the distribution of inferred MI values (Methods) for the two 256 

rankings in both Maela and Massachusetts population. The PBP-related couplings are nearly universally 257 

associated with higher MI values, indicating their tighter co-evolution despite of the negligible level of 258 

background LD between the three PBP segments. The distributions of large MI values have a clear shift 259 
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towards a higher rank for both Maela and Massachusetts populations, which succinctly demonstrates 260 

the usefulness of using a phylogenetic ranking of coupling estimates to highlight co-selected sites above 261 

the background LD.  A comparison of MI distributions for PBP-related SNPs for the two populations 262 

revealed that Maela displays stronger dependencies between the PBP mutations than Massachusetts 263 

(Supplementary Figure 3).  264 

Figure 6. Estimated mutual information for 60749 pairs of SNPs (Maela) and 125469 pairs of SNPs 265 

(Massachusetts).  266 

Scalability improvements in SuperDCA 267 

Overall, SuperDCA achieved an 18-fold effective performance increase over the earlier reference 268 

plmDCA implementation[15] on a single 20-core dual-socket compute node, enabling inference of 269 

1.4*10
11

 parameters for a 94028 SNP genome dataset in less than 8 days, instead of an estimated 170 270 

days. This was achieved through multiple alterations to the central algorithm explained below. Let 271 

��� , �� … , ��� be a haplotype over N SNP loci, where each si can take values from an alphabet with 272 

cardinality q. Typically this cardinality varies between three (allelic states: minor/major/gap) and five 273 

(allelic states: A,C,G,T, gap). A Potts model assigns a probability distribution on such haplotypes defined 274 

by the following formula  275 

���� , �� , … , ��� � 1
	 
���� ,�� ,…,��	 

where the normalizing constant Z is known as the partition function and the expression in the exponent 276 

is  277 

����, �� , … , ��� �    �
������,�

�

��

�


�

�   �
���, �����,����,�

�

�,��

�


,��

 

In above ��.� represents the Kronecker delta function which takes the value one if the arguments x and 278 

y are equal, and is otherwise zero. The linear terms are �
������,� for different SNP loci and their alleles. 279 

The coefficients �
��� parametrize a deviation from the uniform allele distribution for each SNP, 280 

independently of the values of all the other variables. The quadratic terms are the matrix elements 281 

�
���, �����,����,�  for different combinations of values of i and j, and a and b. The coefficients �
���, ��, 282 

which are the couplings or interactions of pairs of SNPs,  are defined as zero when the two indices i and j 283 

are equal. A coupling matrix with all elements equal to zero for non-identical locus index pairs implies 284 

that the alleles at these two loci are distributed independently in the population. Small positive values of 285 

the coupling matrix elements correspond to weak dependence between the SNP loci.  In this paper we 286 

have addressed the issues of gauge invariance and gauge fixing in the Potts model[1] as described 287 

previously[12,15]. 288 

One of the major obstacles for using earlier plmDCA algorithms simultaneously on large numbers of 289 

SNPs without locus subset sampling is their large runtime memory requirements. plmDCA memory use 290 

is dominated by the storage of q
2
-dimensional parameter matrices �
� , where q is the cardinality of the 291 
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SNP state space (the maximum value being q = 5 when a  gap/indel is included). �
� and ��
  are needed 292 

simultaneously for calculating the pairwise coupling value, and since the elements are inferred row- or 293 

column-wise for all i (or j) at a time, a straightforward implementation of the algorithm necessitates 294 

simultaneous storage of all couplings in an N-by-N matrix J, therefore storage is needed for q²(N²-N) 295 

scalar elements. The scoring of the estimated coupling matrices would then be calculated according to  296 

 J�� � J�� � ��J�� � J��� 2⁄ �
�

 297 

where F indicates the Frobenius norm. As an example, if a 10
5
 SNP genome alignment was characterized 298 

by 5-state alphabet and parameters stored in 64-bit floating point format, then the full interaction 299 

matrix J would require approximately 1.8 TB of memory, which is typically beyond the RAM available in 300 

state-of-the-art HPC cluster nodes. However, if the scoring of coupling values is instead calculated as 301 

J�� � J�� � ��J����
� �J����

� 2⁄  

then runtime storage requirements are reduced by a substantial factor and the intermediate storage 302 

requirements for our example would shrink to 74 GB, which is well in the feasible range for current HPC 303 

nodes. Supplementary Figure 4 illustrates numerically that the above two scoring approaches lead to 304 

insignificant numerical differences in practice. SuperDCA uses this finding as one of its key 305 

improvements of plmDCA. 306 

Performance profiling analysis identified high memory requirements and poor cache utilization as a 307 

major bottleneck for the performance in earlier plmDCA implementations when applied to higher-308 

dimensional data. Parallel execution scaling also suffered due to memory bandwidth starvation. The 309 

maximization step was performed by Ekeberg et al.[15] using L-BFGS gradient-based optimization. 310 

However, the objective function required repeated traversal through all input data and the full 311 

parameter vector, emphasizing the need for an efficient data structure. To remedy these issues, a space-312 

efficient, block-wise ordered data structure with simple state-pattern dictionary and run-length encoded 313 

indexing strategy for the genome data and a cache-friendly blocked memory layout for parameters were 314 

developed for SuperDCA and implemented in C++ (Supplementary Figure 5). A particular design choice 315 

was made to restrict the maximum value of q to 4. The resulting data structure reduced runtime 316 

memory use for nucleotide alignments by more than 4-fold compared with a typical dense data matrix 317 

representation. It also helped to reduce computing effort, improved processor cache utilization and 318 

enabled efficient utilization of SIMD vector instructions. The aggregate effect of these changes was an 8-319 

fold improvement in single-threaded performance. The reduced main memory bandwidth use also 320 

helped improve node-level scaling as we measure a strong scaling factor of >0.7 up to 20 cores. 321 

Supplementary Figures 6-8 illustrate the computational scalability aspects for SuperDCA compared with 322 

genomeDCA. 323 

 324 

Discussion 325 
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Production of natural population genomic sequence data is currently still exponentially accelerating, 326 

highlighting the need for statistical methods that can generate detailed hypotheses for further 327 

experimental work regarding loci likely to be important in shaping bacterial evolution. Genome-wide 328 

association analysis has for a decade been the major general tool for such purposes, and more recently, 329 

its applicability to bacteria has been also demonstrated[26,30-32]. Skwark et al.[12] showed for the first 330 

time that statistical genome-wide modeling of joint SNP variation using DCA can uncover valuable 331 

information about co-evolutionary pressures on a large scale. This was done without relying on any 332 

phenotypic measurements, and using a hybrid scheme that does not fully employ the global model 333 

learning aspect of DCA. Here we built upon this initial observation to develop DCA into a powerful tool 334 

that is applicable to a majority of the existing bacterial population genome data sets in a 335 

computationally scalable manner. The biological insights on the differential evolution of PBPs, and the 336 

cold tolerance mechanisms, derived from the results of applying SuperDCA to two of the largest 337 

available pneumococcal genome data sets illustrate succinctly how such an approach could provide vital 338 

clues to the evolutionary processes under different ecological conditions in natural populations.  339 

As the size of genome sequence data sets keeps growing, even our optimized parallel inference 340 

algorithm will eventually become too inefficient for practical purposes. Currently the chosen data and 341 

algorithmic architecture work extremely effectively for up to around 10
5
 polymorphisms. As bacterial 342 

whole genome alignments are typically of the order of 10
6
 sites, this should be sufficient for most 343 

population genomic studies. After this, the runtime will start to increase so rapidly that different 344 

computational strategies will be required for data sets including significantly more SNPs. Thus, an 345 

important topic for future research is to investigate how the Potts model inference can be performed in 346 

a reliable manner without resorting to a quadratic increase in the computational complexity as a 347 

function of the number of polymorphisms.   348 

Materials and Methods 349 

Data pre-processing 350 

Bi- or tri-allelic loci with a minor allele frequency (MAF) greater than 1% were included in the analysis, 351 

provided that gap frequency was less than 15%. Gaps were not counted as alleles in the frequency 352 

calculations. To facilitate direct comparison with previous results[12] a separate dataset was prepared 353 

from the Maela input alignment using otherwise the same filtering rules, but for bi-allelic loci only. 354 

Filtering of 305245 SNPs in total resulted in two Maela input datasets for SuperDCA containing 94028 355 

SNPs and 3042 samples using the former rules, and 81045 SNPs and 3145 samples using the latter rules. 356 

A subset of 103 samples containing mostly low quality reads were included in the data in the previous 357 

study, but were here removed from the source alignment prior to locus pre-selection for our 94028 SNP 358 

set. For the Massachusetts population the first set of filtering criteria resulted in 78733 SNPs and 670 359 

samples. 360 

Hardware and inference details  361 

Parameter inference was performed using a single 20-core HP SL230s G8 compute node with dual Xeon 362 

E5 2680 v2 CPUs and 256GB of DDR3-1667 RAM. Total wall clock run times were 186h (Maela with 363 
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94028 SNPs), 167h (Maela with 81045 SNPs) and 39h (Massachusetts with 78733 SNPs), including file 364 

I/O, pre-filtering and parameter inference. Weights correcting for the population structure, 365 

regularization and choice of hyper-parameters were calculated exactly as in the genomeDCA 366 

method[12]. Coupling estimates for the three data sets which exceeded the cut-off described below are 367 

provided as Supplementary Tables 1-3 at https://github.com/santeripuranen/SuperDCA. 368 

Prediction cut-off 369 

The Potts models inferred in DCA are heavily over-parametrized. In protein contact applications the 370 

benchmark number of parameters is typically in the millions (number of residue pairs times q
2
, where 371 

q=21), while the number of samples varies typically from thousands to hundreds of thousands. 372 

Therefore only a small fraction of largest predictions are retained, commonly in the order of hundreds. 373 

Accordingly DCA manifests a varying degree of success when applied to protein families of the same size 374 

which has led to sustained efforts in algorithm optimization[6]. 375 

For the present and future applications to whole-genome data it is of more relevance to deliver a set of 376 

predictions at a pre-determined level of deviance from zero. An earlier approach using deviations from 377 

an extreme value theory distribution (Gumbel distributions)[12] was not applicable in the present set-378 

up, since we are not only sampling the tail of the coupling coefficients but estimate couplings for all 379 

possible pairs of SNPs. As shown in Figure 1, a semi-logarithmic cumulative distribution plot provides a 380 

computationally straightforward way to assess whether a particular coupling represents only random 381 

fluctuation near zero. The null distribution theory developed in Xu et al. for DCA inference procedures 382 

provides a strong motivation for using the linear part of the distribution near the origin as 383 

representation of the noise level signals[33]. To obtain a threshold we first perform a systematic scan 384 

over the histogram bins to fit a two-component linear spline function to the cumulative distribution. The 385 

standard deviation of the null couplings was then estimated using the part of the distribution between 386 

zero and the breakpoint. Similar to the Gumbel fit deviance level used by Skwark et al. [12] we then 387 

exclude all couplings that are less than 6 standard deviations away from the linear trend from further 388 

analysis. Figure 1 illustrates that this procedure effectively filters out the vast majority of all possible 389 

couplings as noise, and allows the downstream analysis to focus on the relevant signals.    390 

Phylogenetic ranking of estimated couplings 391 

By default, SuperDCA includes gaps as a state in the Potts model if they are found in the alignment at 392 

sites fulfilling the SNP pre-filtering criteria. Some gaps can be considered informative, representing 393 

indels, while some simply relate to sites that are difficult to sequence. Hence some strong gap-induced 394 

couplings can represent lower quality sequence data instead of true between-site interactions, and they 395 

should be automatically de-emphasized to better enable assessment of the biological meaning of the 396 

inferred couplings. The superDCA coupling estimates are by default re-ranked using a combination of 397 

the three criteria described below, in addition to the actual value of the coupling.  398 

Let C be a set of estimated couplings and �
 � ��
� , �
�� �   a pair of SNP loci represented by their 399 

genome position indices. Let !� � "��
��	 , # , ��

��	$ be a haplotype over the N SNP loci. Further, %
,� is a 400 
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set of haplotypes carrying a minor allele at locus �
� and %
,� a set of haplotypes with a minor allele at 401 

locus �
�. The first phylogenetic ranking criterion is the minimum of the average genome-wide Hamming 402 

distances of all pairs of isolates !� , !�  � %
,� , & � '1,2(, ) * +, i.e. ,
 � min��,0��,��!� , !���, 1 �403 

1, # , | |, where ,0��,��!� , !�� � �

|��,�|
∑ ���

��	 4 ��
��	� .�

��    404 

Our second criterion is the normalized number of hierBAPS[34] clusters including isolates carrying the 405 

minor alleles at the two coupled loci, i.e.  �
 � 678�6� � �9
,� : 9
,��;6, where 8� is the designated 406 

hierBAPS cluster for haplotype b. Finally, the third criterion is the percentage of isolates where both SNP 407 

loci involved in a coupling had the minor allele, i.e. <
 � �

�
����,����,��

���,��
� ���,����,��

���,��
 �. 408 

The above three criteria are normalized by: ,

���� �  �

!"#�� �	 
, 1 � 1, # , | |, �


���� � �
/ max
��
�, 409 

and <

���� � <
/ max
�<
�, after which they are combined to a single ranking criterion: @
 � ,


���� �410 

�

���� � <


���� having a maximum value of three and a minimum equal to zero. Large values 411 

emphasize cases where both minor alleles at coupled loci are simultaneously widely distributed across 412 

the population. In cases where gaps at any two loci are phylogenetically spread in the population and 413 

would have led to a large estimated coupling values, they are still de-emphasized since they are not 414 

counted as minor alleles. The above criteria are derived by normalizing the individual coupling re-415 

ranking measures developed by Skwark et al. [12]. The hierBAPS clusterings were obtained from the 416 

original publications introducing genome sequences for the Maela and Massachusetts 417 

populations[18,19].  418 

 419 

Mutual information calculations 420 

Mutual information is an information theoretic measure of the mutual dependence between two 421 

variables. Let A� and A� be two discrete variables with outcome spaces indexed by 1 � 1, … , @� and 422 

B � 1, … , @�, respectively (the outcome indexing differs here from the earlier description of Potts model 423 

for notational simplicity). Let C � �C
�� represent the joint distribution over the variables such that C
�  424 

corresponds to the probability of �A� � 1, A� � B�. The mutual information between A� and A� is then 425 

calculated by 426 

D�C� �   C
� log C
�

C
·C·�
,

��

��

��


�

 

where C
· � ∑ C
�
��
��  and C·� � ∑ C
�

��

�  are the marginal probabilities for the corresponding variables 427 

(here SNPs). In practical applications the joint distribution is usually not known and must be estimated 428 

from data. The standard approach of estimating the probabilities is to use the maximum likelihood 429 

estimates given by the relative frequencies Ĉ
� � I
�/I, where I
�  denotes the count of the 430 

corresponding configuration and I is the sample size. A drawback of the standard frequentist approach 431 

is that it does not account for the uncertainty of the estimates. 432 

 433 
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In this work we adopted a Bayesian approach[35], where we put a prior density function J�C� on the 434 

@� · @� unknown joint probabilities. Taking the data into account, the posterior density function 435 

J�C|data� can be calculated from the prior using Bayes’ theorem. The posterior density over the mutual 436 

information given some dataset is then obtained through 437 

J�D|data� � N ��D�C� O D�J�C|data� dC, 
where ��. � is the Dirac delta function.  438 

 439 

The above density function can be approximated using a Monte Carlo simulation by sampling from 440 

J�C|data�. In particular, assuming a Dirichlet prior on C with hyperparameters P
� enables a 441 

straightforward sampling scheme since the posterior C|data then follows a Dirichlet distribution with 442 

updated hyperparameters PQ
� � I
� � P
�. Our main interest is to calculate the Bayesian point estimate 443 

given by the posterior mean 444 

�&|data�D� � N DJ�D|data�dD.
*

+
 

For this particular purpose, there exists an exact closed-form expression[35]: 445 

�&|data�D� � 1
PQ   PQ
��R�P,


� � 1� O R�P,

· � 1� O R�P,

·� � 1� O R�P, � 1�
��

��

��


�

� 

where R�. � is the digamma function and PQ � ∑ ∑ PQ
�
��
��

��

� . When using the above estimator we 446 

define the hyperparameters using the reference prior P
� � �
����

. To adjust for the population structure 447 

in the sample, we use the same re-weighting scheme as was applied in our SuperDCA inference with a 448 

similarity threshold of 0.90. Finally, to remove the influence of gap-gap interactions, we did not include 449 

sequences for which either of the two considered loci had a gap value. 450 

GWAS for the seasonality phenotype 451 

We coded season as a binary variable based on whether isolates were acquired during the winter or the 452 

summer. We then tested 123791 SNPs passing simple frequency filtering (>1% MAF) for association with 453 

this variable using SEER[26], which performs a logistic regression at every SNP. We used the first three 454 

multi-dimensional scaling components of the pair-wise distance matrix as fixed effects to control for 455 

population structure[26].  456 

Structural analyses 457 

Crystal structures of S. pneumoniae PBPs with the following IDs: 2WAF  458 

(pbp2b), 1QMF and 1RP5 (pbp2x) were retrieved from the Protein Data Bank[36] (www.rcsb.org; 459 

accession date January 8, 2016) and visualized in The PyMOL Molecular Graphics System, Version 1.8.4.0 460 

(Schrödinger, LLC). A chimera of 1QMF (chain A residues 257-618) and 1RP5 (chain A residues 64-256 461 

and 619-750; missing sidechain atoms of E721 were reconstructed) was used for visualizing pbp2x. 462 

  463 

 464 
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 Supporting information legends 550 

S1 Fig. Overlap of the predicted genomeDCA and SuperDCA couplings in Maela population. Lines are 551 

plotted between genes having at least three SNPs linked from the same genes, both in genomeDCA and 552 

SuperDCA. This results in 274 overlapping interactions. The thickness of lines is proportional to the 553 
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number of linked positions within the corresponding genes. Gene annotations shown outside the circle 554 

are centered at the positions of the corresponding genes. Red labels are given for genes linked tightly 555 

both with genomeDCA and SuperDCA, black labels for genes linked only with genomeDCA and blue 556 

labels for genes linked only with SuperDCA. 557 

S2 Fig. SEER GWAS Manhattan plot of p-values for the winter/summer phenotype. 558 

S3 Fig. Boxplots of MI value distributions for pairs of SNPs in two different PBP genes.  559 

S4 Fig. Comparison of the norm-of-mean (vertical axis) versus the mean-of-norms (horizontal axis) 560 

summary score strategies. Differences between the two are negligible for stronger, statistically 561 

significant coupling values and show more pronounced deviations only towards the sub-significant 562 

domain. The plot was calculated using a 25% uniformly random sample of loci from the 94028 SNP 563 

Maela dataset using the full data as background. Coloring marks coupling value count in log-scale.  564 

S5 Fig. Schematic drawings of the central data structures used in SuperDCA for storing input state data 565 

(nucleotide alignments) and the inferred parameters. The input data matrix is stored such that samples 566 

(i.e. isolate genomes in our case) are ordered row-wise, with each sample divided into blocks of size b. 567 

Only column-wise unique blocks are stored. Block indices are stored for sample-oriented access to the 568 

data and sample indices for column- oriented access. Block index lists can optionally be run-length 569 

encoded, which leads to very significant space savings in particular when storing full-genome alignments 570 

with large regions of low column-wise variation. Index-lists for column- oriented access can similarly be 571 

collapsed for saving storage space when indices form contiguous (ascending) sequences. The inferred 572 

parameters are stored in blocked format such that all parameters relating to a particular column block in 573 

the input data are grouped together.  574 

S6 Fig. Comparison of SuperDCA versus plmDCA parallel scaling efficiency. SuperDCA (blue curve) 575 

shows markedly stronger scaling than plmDCA (red curve). The scaling numbers were obtained as a 576 

mean of three runs of three 2-permil uniformly random samples of loci (188 loci) from the 94028 SNP 577 

Maela dataset and using the full data as background. Inferred parameter storage was disabled in 578 

plmDCA for the purpose of benchmarking. All benchmarks were run on a single 20-core HP SL230s G8 579 

compute node with dual Xeon E5 2680 v2 CPUs and 256GB of DDR3-1667 RAM.  580 

S7 Fig. Comparison of SuperDCA versus plmDCA sample size scaling. The sample-compressing 581 

datastructure used in SuperDCA enables markedly stronger scaling (blue bars) with increasing sample 582 

size than plmDCA (red curve). The scaling numbers were obtained as a mean of 9 runs: three-by-three 583 

sets of runs using a uniformly random sample of sequences and run for three 2-permil uniformly 584 

random samples of loci (188 loci) from the 94028 SNP Maela dataset and using the full data as 585 

background. See caption of Supplementary Figure 6 for details of benchmark hardware.  586 

 587 

S8 Fig. SuperDCA runtime improvement over plmDCA. The single- threaded performance of SuperDCA 588 

is more than 8-fold that of plmDCA. Due to the greater parallel scalability of SuperDCA the performance 589 
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delta grows as more compute threads are used, reaching more than 17-fold when run on 20 cores. See 590 

caption of Supplementary Figure 6 for details of benchmark settings and hardware. 591 
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