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Abstract 
 

As the  time  and  cost of sequencing  decrease, the  number of available  genomes and 
transcriptomes rapidly increases. Yet the  quality of the  assemblies and  the  gene  annotations 
varies considerably and  often  remains poor, affecting  downstream analyses. This is particularly 
true  when  fragments of the  same  gene  are  annotated  as distinct genes and  consequently 
wrongly appear as paralogs. In  this study, we  introduce  two  novel  phylogenetic tests to  infer 
non-overlapping  or partially overlapping  genes that are  in  fact parts of the  same  gene. One 
approach  collapses branches with  low bootstrap  support and  the  other computes a  likelihood 
ratio  test. We  extensively validated  these  methods by 1) introducing  and  recovering 
fragmentation  on  the  bread  wheat, Triticum aestivum cv. Chinese  Spring, chromosome  3B; 2) 
by applying  the  methods to  the  low-quality 3B assembly and  validating  predictions against the 
high-quality 3B assembly; and  3) by comparing  the  performance  of the  proposed  methods to  the 
performance  of existing  methods, namely Ensembl  Compara  and  ESPRIT. Application  of this 
combination  to  a  draft shotgun  assembly of the  entire  bread  wheat genome  revealed  1221  pairs 
of genes which  are  highly likely to  be  fragments of the  same  gene. Our approach  demonstrates 
the  power of fine-grained  evolutionary inferences across multiple  species to  improving  genome 
assemblies and  annotations. An  open  source  software  tool  is available  at 
https://github.com/DessimozLab/esprit2 . 

Introduction 
Thanks to  rapid  developments in  sequencing  technology (reviewed  in  Goodwin  et al. 2016), 
individual  laboratories now routinely sequence  and  assemble  entire  genomes and 
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transcriptomes. The  most well-established  short-read  sequencing  protocols are  cost effective 
and  widely applied. However, without reads that are  long  enough  to  span  repetitive  regions, the 
assembly step  remains a  challenge  with  negative  consequences on  downstream analyses (Lee 
and  Tang  2012; Jiao  and  Schneeberger 2017). 
 
The  challenge  of genome  assembly is particularly acute  in  plants, which  tend  to  have  large  and 
heavily redundant genomes (Claros et al. 2012; Jiao  and  Schneeberger 2017). Data  from such 
genomes frequently results in  fragmentary assemblies with  overestimated  gene  counts (Denton 
et al. 2014) and  limited  utility for downstream purposes such  as creation  of physical  maps used 
in  marker assisted  breeding.  
 
One  problem in  low-quality genome  assemblies is that fragments of the  same  gene  can  be 
annotated  as distinct entries in  genome  databases, and  thus erroneously appear to  be  paralogs. 
However, it is possible  to  use  homologous proteins conserved  in  other genomes to  detect 
fragments that are  likely to  be  part of the  same  gene. To  our knowledge, four such  approaches 
have  been  proposed. First, the  Ensembl  Compara  pipeline  (Vilella  et al. 2009) infers as 
“gene_split” pairs of apparent paralogs that lie  within  one  megabase  on  the  same  strand  of the 
same  region  of the  assembly and  do  not overlap  in  the  multiple  sequence  alignment of the 
family. Restricting  these  predictions to  genes belonging  to  the  same  contig  greatly reduces the 
risk of false  positive  split gene  calling, but particularly for fragmented  assemblies with  many 
short contigs, this approach  detects only a  fraction  of all  splits. Second, ESPRIT (Dessimoz et 
al. 2011) uses pairwise  comparisons to  identify non-overlapping  pairs of paralogs that have  a 
similar evolutionary distance  to  homologous sequences in  other genomes. The  third  approach, 
SWiPS (Li  and  Copley 2013) is conceptually similar in  that it also  works based  on  pairwise 
alignments—by identifying  sets of non-overlapping  candidate  sequences that have  a  maximal 
sum of score  with  homologous sequences in  other genomes. The  fourth  approach  is 
PEP_scaffolder (Zhu  et al. 2016), which  relies on  high-identity matches of reference  proteins to 
multiple  contigs. Thus, like  ESPRIT and  SWiPS, the  approach  relies on  pairwise  alignments. 
Computationally particularly efficient, it also  has the  strength  of considering  a  maximum intron 
length  to  avoid  combining  gene  fragments that are  unrealistically far apart.  
 
Yet for all  of these  methods, the  correct identification  of split genes heavily depends on  their 
ability to  distinguish  fragments of the  same  gene  from fragments from paralogous ones. 
Ensembl  compara  and  PEP_scaffolder make  no  attempt to  distinguish  between  the  two. As for 
ESPRIT and  SWiPS, although  they attempt to  identify fragments that match  reference  proteins 
consistently—either by requiring  consistent evolutionary distances to  the  reference  for all 
fragments or by requiring  consistent best matches for all  fragments—these  comparisons are 
inherently limited  by the  pairwise  comparison  setting, which  loses out on  evolutionary 
information  available  in  a  multiple-sequence  and  tree  setting. 
 
Here, to  address this problem, we  present two  complementary phylogenetic methods to  identify 
non-overlapping  or slightly overlapping  fragments of the  same  gene  that exploit evolutionary 
relationships across gene  families. The  first one  exploits bootstrap  support and  the  second 
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relies on  likelihood  ratio  tests. We  evaluate  their performance  on  an  artificially fragmented 
version  of the  reference  sequence  assembly of the  wheat chromosome  3B (Choulet et al. 2014). 
We  also  compare  the  two  methods, and  a  meta-approach  combining  the  two  methods with 
ESPRIT, which  we  call  ESPRIT 2.0, to  the  Ensembl  Compara  pipeline  and  ESPRIT 1.0. Finally, 
we  apply new phylogeny-based  methods to  the  early, highly fragmented, draft release  of the 
entire  breadwheat  genome  (International  Wheat Genome  Sequencing  Consortium (IWGSC) 
2014) and  identify 1221  high-confidence  pairs of split genes. 

Materials and  Methods  
We  first introduce  our phylogenetic tests of split genes, then  proceed  to  describe  the  datasets 
analysed  and  the  evaluation  methods. Note  that we  provide  the  fine  implementations details in 
the  Supplementary Materials. 

Phylogenetic tests of split genes 
Given  a  genome  assembly with  a  large  number of annotated  contigs, the  task we  face  is to 
figure  out which  annotated  genes actually belong  to  the  same  gene, due  to  annotation  mistakes 
or where  the  assembler failed  to  concatenate  collinear contigs. Consider therefore  two 
non-overlapping  fragments of the  same  gene  sequence. If we  perform a  multiple  sequence 
alignment of the  two  fragments together with  full-length  homologs from other species, and  infer 
a  tree  based  on  the  alignment, we  can  expect that the  two  fragments: i) align  to  different regions 
of the  multiple  sequence  alignment (since  they are  non-overlapping), and  ii) sit close  to  one 
another in  a  gene  tree  inferred  from the  fragments and  the  homologous genes.  
 
However, perhaps surprisingly at first sight, although  these  fragments will  generally be  close  to 
one  another on  the  tree, they will  almost never be  inferred  as adjacent tips. The  reason  for this 
is that since  they have  no  character in  common, they cannot be  directly compared  with  each 
other, only with  the  other genes in  the  tree. Thus, there  is no  information  available  to  infer the 
distance  between  them, only to  the  rest of the  tree. The  location  of the  split between  the  two 
sequences is therefore  undetermined. Furthermore, recall  that evolution  is modelled  as a 
stochastic process on  a  tree, with  each  column  in  the  alignment being  a  realisation  of the 
process. The  two  fragments will  almost certainly consist of different realisations. Therefore, in 
the  maximum likelihood  estimate  of the  tree, the  two  fragments’  terminal  branches will  almost 
never attach  to  the  exact same  place  on  the  tree.  
 
Under the  correct model  of evolution, however, if the  two  fragments originate  from the  same 
sequence, the  difference  in  the  place  these  are  attached  to  the  tree  should  not be  significant.  
 
Here  we  introduce  two  tests to  infer whether two  non-overlapping  sequences from the  same 
genome  are  fragments of the  same  gene: collapsing  branches with  low bootstrap  support (Efron 
et al. 1996) and  a  likelihood  ratio  test (Wilks 1938). 
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Test #1: Collapsing  “insignificant” branches 
 
Tree  branch  support measures are  commonly used  to  gauge  the  reliability of a  branch. Since 
fragments of the  same  genes can  be  expected  to  be  separated  by insignificant internal 
branches on  the  tree, collapsing  branches with  low support should  result in  fragments becoming 
adjacent tips (also  known  as “cherries”). Thus, for a  given  threshold, the  test collapses all 
branches below that threshold  and  infers as fragments of the  same  gene  all  candidates that are 
cherries.  
 

Test #2: Likelihood  ratio  test  
 
The  second  test to  infer fragments of the  same  gene  is a  likelihood  ratio  test (LRT). Our null 
hypothesis (labelled  “s” for split) is that fragments come  from the  same  gene, and  thus can  be 
concatenated  into  one  sequence. The  alternative  hypothesis (called  “p” for paralogs) is that the 
two  non-overlapping  sequences belong  to  paralogous genes.  
 
Hs: n-1  taxa  (split gene) 
Hp: n  taxa  (paralogous genes) 
Test statistic is defined  as  , where  L() denotes the  maximum estimator under eachln  T = 2 L(H )s

L(H )p  
hypothesis (Figure  1).  
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Figure  1: Conceptual overview of the  likelihood ratio test. The  null  hypothesis is that the  two 

fragments come  from the  same  gene  (Hs) while  the  alternative  hypothesis is that the  two  fragments come 
from different paralogous copies (Hp). This setup  is motivated  by the  fact that the  split gene  hypothesis 

has fewer parameters. However, it is unusual  in  that failure  to  reject the  test leads to  a  prediction, and  not 
the  other way round. 

 
In  a  typical  setting  of the  likelihood  ratio  test, the  null  model  is a  special  case  of the  alternative 
model  and  the  test statistic is chi-square  distributed. Since  our models are  not nested, the 
distribution  of the  test statistic given  under the  assumption  that Hs is true  is unknown. We  can 
bypass this problem by estimating  the  empirical  distribution  under the  null  using  bootstrapping 
(Efron  and  Tibshirani  1993; Goldman  1993). Hence, for a  particular sample, we: 

1. Compute  the  value  of the  test statistic; let’s denote  it by T0 

2. Since  we  have  no  prior knowledge  on  the  distribution  of the  test statistic under the  null 
hypothesis, we  estimate  the  distribution  using  non-parametric bootstrapping. First, from 
the  multiple  sequence  alignment used  under the  Hs we  generate  n artificial  alignments of 
the  same  length, i.e., n bootstrap  samples by sampling  columns with  replacement. 
Second, we  create  alignments to  be  used  under the  Hp by splitting  a  target full-length 
gene  (i.e. the  one  made  up  of two  candidate  fragments) at the  same  position  as in  the 
original  alignment. Finally, we  compute  the  test statistic for each  of the  n samples; let’s 
denote  them by T1

*, T2
*, …, Tn

*. 

If the  sampling  is correct, the  distribution  of Ti
*, i  = 1, 2,…, n will  converge  to  the  true 

distribution  of the  test statistic when  n → ∞.  Hence, if repeated  many times, the 
distribution  of the  bootstrap  sample  test statistic values will  approximate  the  distribution 
of the  unknown  test statistic. Throughout this project we  set n to  100  unless otherwise 
stated. 

3. Compute  bootstrap  p-value  as the  proportion  of samples with  likelihood  equal  or above 
that of the  input data:  pB = n

{# of  T  ≥ T }i
*

0  
 

Implementation  of the  tests 
As input candidate  pairs, we  identify, among  all  the  protein  sequences of a  target genome, 
those  that belong  to  the  same  gene  family—either established  by Ensembl  Compara  or defined 
as deepest hierarchical  orthologous groups as inferred  by OMA (Altenhoff et al. 2013)). We 
further require  that fragments be  non-overlapping  (less than  10% positions in  the  same 
alignment column, using  Mafft v7.164b  (Katoh  and  Standley 2013)).  
 
The  LRT requires computing  maximum likelihood  estimates, i.e. finding  an  optimal  tree  under 
both  Hs and  Hp. Under the  Hs hypothesis, fragments are  part of the  same gene. Hence, in  order 
to  find  a  maximum-likelihood  tree  under the  Hs, we  concatenate  the  candidate  fragments into  a 
single  sequence. To  correct for some  cases when  a  tree-building  method  gives a  suboptimal 
tree, which  may result in  the  estimated  T0 < 0  (impossible  in  theory), we  performed  two  tree 
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searches under the  Hp model; a  tree  search  without providing  an  input topology, and  a  tree 
search  with  an  input topology starting  with  the  best tree  under Hs   with  the  two  hypothetical 
fragments as adjacent tips), and  proceeded  with  the  tree  with  higher likelihood.  
 
Some  genes might be  involved  in  multiple  predictions, i.e., in  more  than  one  pair of fragments 
coming  from a  split gene. If all  these  multiple  predictions span  different parts of the  sequences, 
we  conclude  that the  gene  is split in  more  than  two  pieces and  consider these  predictions as 
non-ambiguous. If by contrast more  than  one  prediction  spans over a  common  part of the 
sequence  (which  might be  the  case  if the  fragments come  from very closely related  paralogs, or 
if alternative  splicing  variants of the  same  gene  are  erroneously annotated  as separate  genes), 
we  report the  overlapping  predictions as ambiguous.  

Datasets and  evaluation  methodology 
As a  test case  for evaluation  and  application  of the  methods, we  used  proteome  of bread  wheat, 
i.e., Triticum aestivum cv. Chinese  Spring. In  2014, the  International  Wheat Genome 
Sequencing  Consortium (IWGSC) published  a  highly fragmented  chromosome-by-chromosome 
survey sequence  of the  bread  wheat genome  (International  Wheat Genome  Sequencing 
Consortium (IWGSC) 2014). The  same  year, Choulet et al. (2014) published  a  high-quality 
reference  sequence  of bread  wheat chromosome  3B . The  two  provide  a  good  basis to  evaluate 
our methodology on  a  challenging  dataset. 
 
As customary in  the  field, we  determine  the  quality of the  methods by measuring  the  precision 
and  recall. Here  the  recall  measures the  proportion  of fragmented  genes that the  methods can 
identify. The  precision  penalises for erroneous predictions by measuring  the  proportion  of 
predictions that are  indeed  fragmented  genes. For both  measures, we  simulated  fragmentation 
on  the  wheat 3B reference  sequence. In  a  subsequent experiment, we  applied  the  tests to  the 
wheat 3B survey sequence  and  validated  predictions using  the  wheat 3B reference  sequence. 
In  this case  the  total  number of fragmented  genes is unknown, so  we  could  only count the 
number of correct and  wrong  predictions, and  calculate  the  precision. 
 
Finally, we  applied  the  methods to  the  rest of the  wheat survey sequence  to  infer split genes in 
bread  wheat proteome. 

Random fragmentation  of the  wheat 3B reference  assembly (recall) 
 
To  determine  the  recall  of the  methods, we  simulated  fragmentation  on  genes assigned  to  a 
high-quality assembly of bread  wheat chromosome  3B (3B reference  sequence). All  genes and 
their gene  families were  obtained  from Ensembl  Plants, release  31. We  randomly chose  one 
hundred  genes, each  at least 100  amino-acids long, and  split them at a  random position  such 
that both  fragments are  at least 50  amino-acids long. All  alignments were  performed  using  Mafft 
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v7.164b  with  default parameters. Gene  trees were  build  by FastTree  v2.1.8  (Price  et al. 2010), 
also  with  a  default set of parameters. 
 
In  addition, we  simulated  fragmentation  in  a  more  challenging  setting, i.e. on  small  gene  families 
typically containing  only evolutionarily very close  paralogs. As a  source  of homologous groups, 
we  used  hierarchical  orthologous groups (HOGs). They were  computed  by the  GETHOGs 
algorithm with  a  default set of parameters on  the  input dataset comprised  of thirteen  plants: 
bread  wheat and  twelve  flowering  plants exported  from OMA Browser (Altenhoff et al. 2014) 
(Suppl. table  1). 

Introducing  non-overlapping  paralogs in  wheat 3B reference  assembly 
(precision) 
 
To  inspect cases where  the  methods incorrectly predict split genes, we  simulated  fragments 
from pairs of paralogs assigned  to  the  bread  wheat 3B reference  sequence  using  the  same 
datasets as above. We  chose  one  hundred  pairs of same-species paralogs, cut them at a 
random position  and  took two  complementary fragments (one  from each  initial  gene) each  being 
at least 50  amino-acids long. Again, MSAs were  obtained  by Mafft v7.164b  (default parameters) 
and  gene  trees by FastTree  v2.1.8  (default parameters).  
 
Similarly as above, we  also  simulated  more  challenging  cases of fragmentation. We  used  the 
same  set of HOGs as in  the  previous section.  

Validation  on  3B survey assembly 
 
To  assess predictions on  the  real  data  containing  fragmented  genes, we  applied  our 
approaches to  a  low-quality assembly of bread  wheat chromosome  3B - 3B survey sequence 
(IWGSP1; 2013-11-MIPS), and  compared  the  predictions with  the  high-quality assembly of 
chromosome  3B (“3B reference  sequence”) downloaded  from URGI 
(https://urgi.versailles.inra.fr). As gold  standard, we  mapped  sequences between  the  two 
assemblies using  BLAST+ v2.2.30  (Camacho  et al. 2009).  
 
For the  predictions, we  used  the  same  reference  species as in  the  simulations on  HOGs (see 
previous two  sections) which  we  again  exported  from OMA Browser (Suppl. Table  2 ). We 1

computed  gene  families by GETHOGs algorithm with  a  default set of parameters. We  generated 
500  bootstrap  samples for each  family and  performed  both  tests on  fragments overlapping  less 
than  10%. Sequences were  aligned  with  Mafft v7.164b  (default parameters) and  trees built with 

1  The  OMA Browser release  containing  3B survey sequence  is older than  the  one  containing  3B 
reference  sequence. Hence, assemblies for some  reference  species differ between  the  releases 
as can  be  noticed  from Suppl. table  1  and  Suppl. table  2.  
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FastTree  v2.1.8  (default parameters) as above. In  addition, we  also  computed  HOGs with  a 
different set of parameters and  repeated  the  rest of experiment.  
 
For the  assessment, the  mapping  of sequences between  the  survey and  high-quality genomes 
was not straightforward  because  the  two  differ not only in  the  degree  of fragmentation, but also 
in  some  of the  sequences themselves due  to  sequencing  error, contamination  etc. To  allow for a 
bit of tolerance  while  still  maintaining  unambiguous mapping  between  the  two, we  required  hits 
to  cover at least 95% of the  corresponding  query, the  percentage  identity in  these  matching 
regions to  be  at least 95%, and  the  hit to  be  unambiguous. As a  stringent control, we  also 
performed  a  validation  where, in  addition  to  these  two  requirements, we  only allowed 
mismatches to  occur at the  ends of a  query sequence.  

Comparison  to  established  methods and  meta-approach 
As a  point of comparison, we  employed  Ensembl  Compara  pipeline  and  ESPRIT on  the  same 
3B survey sequence  as above. Again, the  obtained  predictions from each  method  were  mapped 
to  the  3B reference  sequence  by BLAST+ v2.2.30  to  inspect if predicted  pairs belong  to  the 
same  gene  or not, requiring  both  coverage  and  percentage  identity to  be  at least 95%. Validated 
predictions were  compared  to  the  results from Validation  experiment on  3B survey sequence 
with  the  same  BLAST+ criteria.  
 
To  obtain  a  comparable  set of predictions on  the  3B survey sequence  using  public results 
available  from the  Ensembl  Compara  pipeline, we  filtered  “gene_split” pairs from their 
homologies file  (release  21). We  took only pairs where  both  genes were  at least 50  amino-acids 
long  and  such  that, when  corresponding  gene  family was aligned  with  Mafft v7.164b, candidate 
genes overlapped  for less than  10%. We  also  included  cases where  more than  two  genes were 
inferred  as a  part of the  same  gene  given  that no  two  genes involved  overlapped  for 10% or 
more. Since  some  of the  sequences could  not be  found  in  the  OMA Browser dataset used  for 
validating  Collapsing  and  LRT approach, we  classified  Ensembl  predictions into  two  groups: 
those  that could  be  found  in  the  OMA Browser dataset, and  hence, included  in  the  comparison, 
and  those  that could  not.  
 
Another set of predictions was obtained  by running  ESPRIT on  the  same  3B survey sequence 
data  using  twelve  reference  plants (the  same  dataset as in  the  Validation  section, Suppl. table 
2) keeping  all  parameters default but increasing  the  required  length  of the  candidate  genes to 
be  at least 50  amino-acids (MinSeqLenContig  :=  50 ). We  only considered  a  confident 
unambiguous set of predictions (hits.txt  file). 
 
In  addition, we  considered  a  meta-approach  ESPRIT 2.0  - encompassing  ESPRIT and  the  new 
combined  approach. It takes the  union  of predictions made  by ESPRIT and  our joint method 
(Collapsing  branches with  support lower than  0.95  and  likelihood  ratio  test with  significance  of 
0.01). 
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Inferring  split genes on  the  rest of the  wheat survey assembly 
 
Finally, we  employed  the  tests to  infer fragmented  genes in  the  first draft release  of the 
predicted  genes in  whole  bread  wheat genome, i.e., Triticum aestivum cv. Chinese  Spring 
proteome  (IWGSP1; 2013-11-MIPS). We  considered  only candidate  fragments assigned  to  the 
same  chromosome  and  the  same  chromosome  arm. We  used  the  same  reference  genomes as 
in  the  previous analyses with  HOGs (see  above). Based  on  simulations and  validation  on  3B 
survey sequence, we  determined  a  set of parameters used  for predictions. In  particular, we  ran 
GETHOGs with  default parameters and  allow candidate  fragments to  mutually overlap  less than 
10% in  the  corresponding  MSA. We  used  Mafft v7.164b  to  get alignments and  FastTree  v2.1.8 
to  construct trees, both  with  their default set of parameters. Finally, we  chose  0.95  as a 
threshold  for collapsing  and  set significance  of the  LRT to  0.01. 

Results 
Recall  that we  aim to  identify fragments of the  same  gene  wrongly annotated  as separate  genes 
in  a  genome  of interest, leveraging  genomes of related  species. In  the  previous section, we 
introduced  two  phylogenetic methods: one  based  on  collapsing  branches with  low bootstrap 
support and  the  other relying  on  a  likelihood  ratio  test (LRT). To  evaluate  the  methods and 
determine  parameters for predictions on  the  bread  wheat assembly, we  took two  approaches. 
First, we  simulated  fragmentation  on  the  real  data  to  calculate  recall  and  precision. Then  we 
applied  both  methods to  the  bread  wheat chromosome  3B survey sequence  and  validated 
predictions with  respect to  the  3B reference  sequence. Finally, based  on  the  best parameters 
obtained  from these  analyses, we  applied  the  method  to  infer split genes in  the  20  other 
chromosomes of the  survey wheat assembly. 

Artificial  fragmentation  of the  wheat 3B reference  assembly  
 
To  assess our methods, we  first simulated  fragmentation  in  100  protein  sequences from the 
high-quality wheat 3B reference  assembly and  tried  to  recover these  pairs. Our simulations also 
included  one  hundred  pairs of non-overlapping  fragments generated  from pairs of randomly 
selected  paralogous genes—which  can  be  very difficult negative  cases if the  paralogs are 
near-identical. 
 
On  these  challenging  simulations, the  collapsing  test yielded  high  precision  (0.85-0.88) and 
moderate  recall  (0.20-0.58), while  the  LRT performed  the  other way round, yielding  moderate 
precision  (0.56-0.64) and  high  recall  (0.81-0.99) (Fig. 2a, Suppl. File  S1, Suppl. File 
esprit2_simulations.tar.gz).  
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We  also  evaluated  an  approach  that combines our two  methods. A split gene  was inferred  if 
both  methods were  in  agreement. This approach  resembled  the  recall  and  precision  of the 
collapsing  approach  (with  the  same  threshold) but with  slightly higher precision  (Fig. 2a, Suppl. 
File  S1). 
 
As a  control, we  performed  another set of simulations using  a  different set of input homologous 
sequences—OMA hierarchical  orthologous groups (HOGs) containing  protein  sequences from 
thirteen  plants including  wheat (Suppl. File  S1, Suppl. File  esprit2_simulations.tar.gz). Precision 
of the  collapsing  test was again  high  (0.73-0.81) while  recall  varied  between  0.30  and  0.78. 
Precision  of the  LRT was moderate  to  high  (0.51-0.89) and  the  recall  was high  (0.70-0.75) 
(Suppl. fig. 3a).  
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Figure  2: Evaluation of the  methods. a) Wheat genes from the  high-quality wheat 3B chromosome 

were  artificially fragmented  and  recovered  by the  collapsing, likelihood  ratio  test (LRT), and  a  combination 
between  the  two.  b) Split genes inferred  on  the  low-quality (“survey”) wheat genome  were  validated  using 
the  high-quality wheat 3B, and  comparison  with  three  other approaches (Ensembl  Compara, ESPRIT and 

ESPRIT 2.0). ESPRIT 2.0  combines ESPRIT’s and  the  predictions inferred  when  combining  collapsing 
approach  (threshold  0.95) and  LRT (significance  0.01). c) The  number of predictions on  3B survey 
sequence  classified  as correct in  the  BLAST+ validation. “New  approach” denotes a  combination  of 

collapsing  approach  (threshold  0.95) and  LRT (significance  0.01) 
 
 
 

Validation  on  3B survey assembly 
 
To  further assess the  tests and  identify suitable  parameters, we  applied  our method  on  the 
chromosome  3B of the  bread  wheat survey genome  (International  Wheat Genome  Sequencing 
Consortium (IWGSC) 2014); indeed, this is the  one  chromosome  arm for which  a  high-quality 
referencewas available  (Choulet et al. 2014) but which  was not used  for creating  the  draft 
whole-genome  assembly. 
 
Overall, the  methods achieved  higher precision  than  when  applied  to  simulated  fragmentation 
(Fig. 2b). The  analysis showed  particularly high  precision  of the  collapsing  approach. The 
absolute  recall  rate  could  not be  easily assessed  on  these  real  data; instead, we  considered  the 
number of correctly predicted  HOG annotations as a  surrogate  for recall, yielding  results highly 
consistent with  the  simulations (Fig. 2b).  
 
One  challenge  with  this setup  was the  fact that the  draft survey sequence  assembly contains 
other types of problems, such  as sequencing  errors or ~10% contamination  from other 
chromosomes (International  Wheat Genome  Sequencing  Consortium (IWGSC) 2014)). If we 
only consider fragments that can  be  perfectly mapped  between  the  draft whole-genome 
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assembly and  the  reference  assembly (no  mismatch  in  their central  part, see  Supplementary 
Materials), the  number of predictions that could  be  validated  diminishes, but on  the  remaining 
set, our approaches showed  even  higher precision  (Suppl. fig. 3c and  3d), indicating  that the 
performance  reported  in  Fig. 2b  is conservative. 
 
Control  experiments also  gave  consistent results (Suppl. File  S2, Suppl. File 
esprit2_validation.tar.gz). As expected, relaxing  parameters yielded  more  predicted  split genes, 
but at a  cost of lower precision  (Fig. 2b  vs. Suppl. fig. 3b).  

Comparison  to  established  methods and  meta-approach 
 
To  gain  further insights into  the  performance  of the  proposed  approaches, we  compared  them to 
two  existing  methods, namely Ensembl  Compara  pipeline  (which  however cannot easily run  on 
custom genome  data) and  ESPRIT, as described  in  the  Methods. Both  methods were  applied  to 
the  3B survey sequence  and  then  validated  against the  3B reference  sequence  using  BLAST+ 
(Suppl. File  esprit2_comparison.tar.gz). We  also  considered  a  meta-approach, which  we  call 
ESPRIT 2.0, comprising  ESPRIT and  a  combination  of the  collapsing  approach  (threshold  0.95) 
and  LRT (significance  0.01). 
 
In  terms of the  number of correct predictions, Ensembl  Compara  and  ESPRIT performed  equally 
well  or better than  our approaches displaying  high  precision  (Fig. 2b  and  Suppl. table  3). Further 
analysis showed  that predictions from different methods are  rather complementary and 
worthwhile  taking  into  account (Suppl. fig. 4). Hence, the  meta-approach, ESPRIT 2.0, inferred 
by far the  biggest number of correct predictions with  high  precision  (Fig. 2b  and  Suppl. table  3). 

Predictions on  the  rest of the  survey assembly 
 
Finally, we  applied  our tests to  infer split genes on  the  rest of the  bread  wheat genome, i.e., all 
chromosomes other than  3B. Based  on  the  analyses on  simulated  fragmentation  and  between 
two  assemblies (see  above), we  determined  parameters for the  tests. For each  chromosome 
arm, we  obtained  gene  families by running  OMA GETHOGs with  default parameters. In  the 
collapsing  approach, we  collapsed  all  branches with  bootstrap  support less than  0.95, and  we 
performed  the  likelihood  ratio  test with  the  significance  level  of 0.01. The  intersection  of 
predictions identified  1442  pairs in  total: 1221  unambiguous and  221  ambiguous cases. The 
distribution  of the  number of predictions per chromosome  is shown  in  Fig. 3  (see  also  Suppl. 
File  S3) while  fragment IDs are  provided  in  Suppl. file  esprit2_predictions_wheat.tar.gz. 
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Figure  3:  High-confidence  inferred gene  splits  on the  wheat genome. a) Number of unambiguous 

predictions for each  chromosome  arm. b) Number of ambiguous predictions (i.e. for which  there  is more 
than  two  candidate  fragment for a  single  juncture). Pairs of fragments are  inferred  separately for each 

chromosome  arm of flow-sorted  Triticum aestivum cv. Chinese  Spring, except chromosome  3B, for which 
the  analysis was performed  on  the  entire  chromosome. 

 

Discussion  and  outlook 
Despite  technological  and  algorithmic advances, genome  assembly and  annotation  remains a 
challenge, especially for large  polyploid  genomes with  complex evolutionary histories. Genes 
often  remain  fragmented  and  fragments get annotated  as separate  genes. Our work 
demonstrates that using  available  assemblies of related  species can  provide  enough 
information  to  recognise  some  of those  cases and  obtain  full-length  genes. 
 
We  developed  two  approaches and  showcase  their good  performance  on  a  challenging 
proteome  of hexaploid  bread  wheat (Triticum aestivum cv. Chinese  Spring). In  simulations and 
validation, both  of which  were  performed  on  the  real  data  taking  into  account all  its complexities, 
an  approach  relying  on  collapsing  gene  tree  branches showed  lower recall  and  higher precision 
than  a  likelihood  ratio  test (Fig. 2). As a  trade-off between  precision  and  recall, we  propose 
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taking  an  intersection  of their predictions, as we  did  in  the  quest for fragmented  genes in  the 
wheat survey sequence  dataset. As our stringent simulation  and  real  data  assessment shows, 
the  inferred  split genes are  highly specific. The  performance  is even  better when  we  combine 
the  new phylogeny-based  tests our earlier pairwise  approach  “ESPRIT”. 
 
The  two  main  inherent challenges of in-silico split gene  inference  are the  confounding  effect of 
close  paralogs and  the  variation  in  the  rate  of evolution  along  the  sequences. Indeed, 
sometimes fragments come  from identical  or nearly identical  paralogs and  there  is not enough 
information  to  distinguish  fragments belonging  to  one  gene  from another. Hence, we  are  more 
likely to  make  a  false  positive  prediction  (Suppl. Fig. 5). As for evolutionary rate  heterogeneity 
across the  protein  length, this can  pose  problem because  fragments of the  same  genes can 
wrongly appear to  be  coming  from distinct sequences. Consider for instance  a  protein 
composed  of two  domains—one  slowly evolving  and  one  fast evolving. If we  consider each 
domain  as a  distinct sequence  and  look at their position  in  a  gene  tree  including  full-length 
homologous counterparts, the  branch  lengths connecting  these  fragments to  the  rest of the  tree 
may have  markedly different lengths. As a  consequence, the  increase  in  likelihood  obtained  by 
having  distinct branches for each  fragment may be  sufficiently large  for our test to  erroneously 
infer that the  fragments come  from distinct sequences (see  Suppl. Table  4  for an  actual 
example). It may be  possible  to  address this problem by more  explicitly modelling  variation  of 
rate  among  sites.  
 
At a  practical  level, predictions heavily depend  on  the  choice  of two  parameters: a  threshold  for 
collapsing  branches and  a  significance  level  for likelihood  ratio  test. Lower, more  stringent 
thresholds for collapsing  yield  more  confident predictions, while  higher, less conserved 
thresholds will  produce  more  predictions but less confident. Similarly, a  higher significance  of 
the  likelihood  ratio  test will  result with  less but more  confident predictions. Obtaining  more 
predictions can  be  achieved  by lowering  the  significance  of the  test at the  cost of their lower 
confidence. Overall, it is important to  choose  thresholds depending  on  the  application. For 
example, a  higher number of predictions can  be  favourable  for comparison  with  other data. 
 
Predictions also  depend  on  the  input families. Bigger gene  families facilitate  more  predictions 
(Fig. 2, Suppl. fig. 3) but also  result in  more  ambiguous calls, i.e., cases where  a  fragment is 
involved  in  multiple  predictions (Suppl. File  S2). We  observed  fewer false  positive  predictions 
when  we  simulated  fragmentation  on  bigger gene  families where  we  were  more  likely to 
randomly split a  pair of more  distant paralogs in  comparison  to  small  gene  families which  are 
more  likely to  contain  only very close  paralogs (Fig. 2a, Suppl. fig. 3a). However, the  results of 
validation  indicate  that the  methods are  still  able  to  identify a  reasonable  number of split genes 
with  high  precision  even  when  small  gene  families are  used. 
 
Throughout this project, we  fixed  some  of the  parameters. First, we  considered  only genes at 
least 50  amino-acids long. Shorter sequences contain  less information  thus make  phylogeny 
reconstruction  more  challenging; at the  same  time, the  benefit of putting  together short 
fragments is also  more  limited. Second, we  required  candidate  fragments to  overlap  less than 
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10%. Increasing  the  overlap  increases the  number of candidate  pairs and, consequently, the 
number of predictions including  false  positive  and  ambiguous predictions. Finally, we  used  Mafft 
v7.164b  to  align  gene  families and  FastTree  v2.1.8  to  reconstruct gene  trees, both  with  their 
default parameters due  to  their convenience  and  speed. Exploring  their parameter space  or 
using  more  suitable  tools for the  dataset of interest could  contribute  to  higher precision  and 
recall. 
 
As often  with  new approaches, the  likelihood  ratio  test still  has room for improvement. Currently, 
we  compute  the  distribution  of the  test statistic empirically, via  resampling. We  computed  up  to 
five  hundred  samples per test which, given  the  simulations and  validation, seems to  be  enough 
here; yet the  convergence  of the  distribution  could  be  explored. Increasing  the  number of 
samples might lead  to  significantly better approximation  of the  distribution  and  more  accurate 
results. In  addition, parameterising  the  distribution  of the  test statistic would  reduce 
computational  time  and  memory usage.  
 
Since  both  tests rely on  evolutionary relationships, some  of the  mistakes could  be  avoided  by 
implementing  more  realistic evolutionary model. This is of particular importance  for cases which 
are  missed  due  to  differences in  evolutionary rates across the  length  of the  gene. 
 
To  further improve  the  performance, one  could  try to  find  optimal  parameters for the  dataset of 
interest and  application  in  question. Different strategies could  be  used  to  obtain  input families as 
well  as alternative  tools for alignments and  methods with  more  exhaustive  optimal  tree  search. 
 
But already in  its present form, as the  large  number of detected  split genes in  the  wheat 
genome  illustrates, our approach  is already proving  highly useful. All  computer code  is available 
for reuse  as a  user-friendly package  (https://github.com/DessimozLab/esprit2 ) that we  hope  will 
help  make  phylogeny-based  detection  of split genes a  routine  step  in  genome  assembly and 
annotation. 
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Supplementary Materials 

Implementation  of the  tests 

Input data 

Concatenating non-overlapping  fragments  into  a  single sequence 
Concatenation  was done  at the  level  of multiple  sequence  alignment, i.e., we  aligned  a  gene 
family and  then  replaced  the  two  fragments with  a  newly created  sequence  containing  residues 
from both  fragments and  gaps at the  remaining  positions. 

Working  with  overlapping fragments 
Given  a  chosen  threshold  L ∈ <0, 1>, two  candidate  fragments were  allowed  to  overlap  for less 
than  L*100% of the  region  length  each  of them spanned  in  the  multiple  sequence  alignment. 
Looking  at the  alignment from left to  right, this means that the  end  of one  fragment and  the 
beginning  of the  other overlap. In  order to  concatenate  them, we  first determined  the  middle of 
the  overlap  and  edited  the  sequences as follows. In  the  sequence  on  the  left, we  kept all 
positions the  same  up  to  the  middle  and  replaced  the  remaining  residues with  X’s. Similarly, in 
the  sequence  on  the  right, we  edited  the  beginning  of the  sequence  by replacing  all  residues up 
to  the  middle with  X’s and  then  kept all  remaining  residues as they were. This way we  got two 
fragments with  non-overlapping  known  residues in  the  alignment. They were used  as such  in 
both  tests. For trees under the  Hs model  in  the  likelihood  ratio  test, these  modified  sequences 
were  concatenated  as described  in  the  section  on  concatenating  non-overlapping  fragments 
(see  above).  

Input  topology 
As an  input topology in  the  search  for maximum likelihood  tree  under the  Hp model, we  used  a 
modified  tree  from the  Hs model. We  bifurcated  a  node  (leaf) with  the  candidate  gene  and  set 
new branches’  lengths to  zero. We  set the  support of a  branch  leading  to  fragments’  parental 
node  to  0.5  (Suppl. fig. 1).  
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Supplementary  figure  1: Input topology  for  the  likelihood ratio test. Left: Maximum 

likelihood  tree  under the  Hs. Right: Modified  tree  to  be  used  as an  input tree  in  the  Hp model. 
 
 

Datasets and  evaluation  methodology 

Random fragmentation  of the  wheat 3B reference  assembly (recall) 

Fragmentation 
First, we  aligned  corresponding  gene  families using  Mafft v7.164b  with  default settings. Then  we 
chose  a  random position  n in  the  alignment such  that the  target gene, i.e., the  one  we  want to 
fragment, contains at least 50  amino-acids in  the  first n positions of the  alignment and  at least 
50  amino-acids right of the  chosen  position. First n positions of the  aligned  target gene 
extended  by alignment_length-n gaps form one  fragment, while  the  second  fragment is formed 
from n  gaps extended  by the  rest of aligned  target sequence. The  original  target sequence  is 
then  replaced  with  newly formed  fragments while  the  rest of the  gene  family is kept the  same 
(Suppl. fig. 2a). 

Simulations on  HOGs 
We  performed  the  experiment as follows: 

1) We  computed  HOGs (input data  in  Suppl. table  1) using  GETHOGs algorithm 
implemented  in  OMA standalone  keeping  default settings.  

2) A random 3B gene  was selected, and  a  top-level  HOG containing  the  gene  was aligned 
using  Mafft v7.164b  (default settings). The  gene  was split at a  random position  (see 
above). 

3) All  necessary trees were  computed  using  default settings in  FastTree  v2.1.8.  
4) Both  methods were  applied  to  all  pairs of candidates.  

Introducing  non-overlapping  paralogs in  wheat 3B reference  assembly 
(precision) 

Fragmentation 
Again, we  aligned  gene  families using  Mafft v7.164b  with  default settings. Genes from a 
randomly chosen  pair of paralogs were  assigned  to  sequence 1 and  sequence 2 at random. 
Then  we  chose  a  random n such  that the  first n  positions of sequence 1 and  last 
alignment_length-n positions of sequence 2 each  contain  at least 50  amino-acids. These  two 
subsequences form the  basis of simulated  fragments, one  extended  by gaps on  its right end 
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and  the  other extended  by gaps at its left end  (Suppl. fig. 2b). If there  was no  such  n, the  pair 
was discarded.  

Simulations on  HOGs 
Analogous to  the  Simulations on HOGs  in  Random fragmentation of the wheat 3B reference 
assembly (recall).  

 
Supplementary  figure  2: Simulating fragmentation. a) Simulating  fragments coming  from the 

same  gene, b) Simulating  fragments coming  from paralogs. 
 
 

Species Database 

Aegilops tauschii Ensembl  Plants 21 

Arabidopsis thaliana  Ensembl  Plants 20 

Brachypodium distachyon Ensembl  Plants 21 

Hordeum vulgare  var. distichum Ensembl  Plants 16 

Oryza  brachyantha Ensembl  Plants 21 

Oryza  glaberrima  Ensembl  Plants 21 
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Oryza  sativa  subsp. indica Ensembl  Plants 21 

Oryza  sativa  subsp. japonica Ensembl  Plants v7 

Setaria  italica Ensembl  Plants 21 

Sorghum bicolor Sbi1_4 

Triticum aestivum cv. Chinese  Spring Ensembl  Plants 26 

Triticum urartu Ensembl  Plants 19 

Zea  mays Ensembl  Plants v8 

 
Supplementary  table  1: Proteomes  exported from OMA Browser  and used as  input data 

for  GETHOGs  algorithm in simulations. The  second  column  contains information  on  the 
database  release  that OMA browser retrieved  an  assembly and  annotation  from.  

Validation  on  3B survey assembly 
 

Species Database 

Aegilops tauschii Ensembl  Plants 21 

Arabidopsis thaliana  Ensembl  Plants 20 

Brachypodium distachyon Ensembl  Plants 21 

Hordeum vulgare  var. distichum Ensembl  Plants 16 

Oryza  brachyantha Ensembl  Plants 21 

Oryza  glaberrima  Ensembl  Plants 21 

Oryza  sativa  subsp. indica Ensembl  Plants 21 

Oryza  sativa  subsp. japonica Ensembl  Plants 27 

Setaria  italica Ensembl  Plants 21 

Sorghum bicolor Sbi1_4 

Triticum aestivum cv. Chinese  Spring Ensembl  Plants 21 

Triticum urartu Ensembl  Plants 19 
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Zea  mays Ensembl  Plants 27 

 
Supplementary  table  2: Proteomes  exported from OMA Browser  and used as  input data 

for  GETHOGs  algorithm in validation on Triticum  aestivum cv. Chinese  Spring 
chromosome  3B. The  second  column  contains information  on  the  database  release  that OMA 

Browser retrieved  an  assembly and  annotation  from. 
 

Procedure 
We  performed  the  experiment as follows: 

1) We  computed  HOGs using  GETHOGs algorithm implemented  in  OMA standalone 
keeping  default settings. Since  OMA requires sequences to  be  longer than  a  certain 
threshold, in  order to  consider shorter sequences in  the  target wheat genome, we 
renamed  WEAT.fa  file  in  OMA/Cache  to  WHEAT.contig.fa.  

2) Each  top-level  HOG was aligned  using  Mafft v7.164b  (default settings) and  searched  for 
candidate  fragments. Two  fragments were  called  a  pair of candidates if their overlaps 
were  below 0.1, i.e., 10%.  

3) All  necessary trees were  computed  using  default settings in  FastTree  v2.1.8.  
4) Both  tests were  done  on  all  pairs of candidates.  

 

Control 
Since  GETHOGs algorithm was not developed  for the  purpose  of surveying  genome 
assemblies, its default parameters might not be  optimal  for this purpose. In  particular, a  set of 
default parameters might be  too  conservative  so  we  repeated  the  experiment described  above 
but with  some  parameters lower than  default (MinScore  :=  150,  LengthTol  :=  0.4, 
ReachabilityCutoff  :=  0.3 ). This yielded  bigger HOGs and  hence  more  candidates to 
test.  
 

BLAST+ validation 
We  developed  two  modes of BLAST+ validation. A less stringent one  conditions only on  query 
coverage  per hit (qcovs ) and  %identical  matches (pident ). A more  stringent one  allows 
mismatches to  be  only at the  ends of a  query sequence. 
 

Less stringent validation 

For each  unambiguous or ambiguous prediction  we: 
1. Take  initial  non-modified  sequences of both  fragments and  BLAST+ them against 

high-quality assembly of chromosome  3B (-evalue  0.001 )  
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2. For each  query sequence, identify BLAST+ hit(s) with  the  highest bitscore  (bitscore ). 
Keep  only hit(s) with  qcovs  >= 95  and  pident  >= 95, if any. If there  are  no  such  hits 
for any of the  queries, the  pair cannot be  validated. 

3. For each  query and  its hits from 2., keep  only hits with  the  highest qcovs . If there  are 
multiple  hits per query that satisfy the  criteria, then  filter out all  hits with  pident  lower 
than  the  highest present. If there  are  still  multiple  hits for any of the  queries, we  consider 
that an  ambiguous mapping  and  do  not validate  the  pair.  

4. If both  queries have  the  same  best hit, the  prediction  is considered  to  be  correct. 
Otherwise, we  consider it wrong. 

More  stringent validation 

All  steps are  the  same  as in  Less stringent validation except the  step  2. Here, in  addition  to 
qcovs  >= 95  and  pident  >= 95, we  require  all  mismatches between  a  query and  a  hit to  be  at 
the  ends of a  query sequence.  
 
Let’s say that our tolerance  length  is M. Suppose  that first N1 and  last N2 positions of a  query 
are  not covered  by a  hit. If N1 > M or N2 > M, then  the  hit does not pass the  criteria. For a  given 
query and  a  hit such  that 0  <= N1, N2 <= M, consider their BLAST+ alignment. We  allow 
mismatches to  be  only in  the  query’s first M-N1 or last M-N2 aligned  positions, and  we  set M=5. 

Results 

 
Supplementary  figure  3: Results  of control experiments: simulations  and validations. a) 

Simulated  fragmentation  on  HOGs with  default settings in  GETHOGs algorithm, b) Validation  on 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182550doi: bioRxiv preprint 

https://doi.org/10.1101/182550
http://creativecommons.org/licenses/by/4.0/


23 

3B survey sequence  using  HOGs with  relaxed  parameters in  GETHOGs algorithm, less 
stringent BLAST+ validation, c) Validation  on  3B survey sequence  using  HOGs with  default 

settings in  GETHOGs algorithm, more  stringent BLAST+ validation, d) Validation  on  3B survey 
sequence  using  HOGs with  relaxed  parameters in  GETHOGs algorithm, more  stringent BLAST+ 

validation 

 

Comparison  to  other methods 
 

Summary of predictions on  the  data  that can  be  found  in  OMA 

 #correct #wrong #could  not validate #total 

Ensembl  Compara 33 6 47 86 

ESPRIT 55 3 146 204 

ESPRIT 2.0 73 3 166 242 

Summary of all  Ensembl's unambiguous predictions 

 #correct #wrong #could  not validate #total 

43 6 57 106 
Supplementary  table  3: Comparison to Ensembl Compara  and ESPRIT. Summary. 
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Supplementary  figure  4: Comparison to Ensembl Compara  and ESPRIT. The  number of 
predictions inferred  by each  method  on  3B survey sequence. The  new approach  combines 

Collapsing  (threshold  0.95) and  LRT (significance  0.01).  
 

Discussion 
 

Mistakes in  the  likelihood  ratio  test 

 
Supplementary  figure  5: The  relationship between paralog distance  (expected number  of 

changes  per  site) and p-value  for  the  likelihood ratio test when applied to random 
fragments  coming from the  paralogs. 

 

Fragments  coming from regions  that have  evolved  at different  rates 
 
Gene  TRAES3BF091400260CFD_t1  was split at a  random position. The  p-value  of the 
likelihood  ratio  test is probably low, i.e. in  favour of the  hypothesis that fragments come  from 
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paralogous sequences, due  to  dissimilar evolutionary rates. Collapsing  approach  correctly infers 
them as fragments of the  same  gene  when  used  with  any of the  thresholds {0.65, 0.75, 0.85, 
0.9, 0.95} (Suppl. table  4). 
 
The  gene  family was obtained  from Ensembl  Plants, release  31, alignments performed  by Mafft 
v7.164b  (Suppl. File  alignments.tar.gz) and  trees built with  FastTree  v2.1.8  (Suppl. fig. 6).  
 

Gene P- 
value 

#referen
ces in 
the MSA 

Length 
of the 
MSA 

Length 
(gene) 
 
Length 
(fragment1) 
 
Length 
(fragment2) 

Results from 
collapsing approach 

TRAES3BF091400260CFD
_t1 

0.02 3 355 244 
 
92 
 
152 

Split gene 

 
Reference sequence 

PAM distance (reference, 
fragment1) 

PAM distance (reference, 
fragment2) 

TRIUR3_21111-P1 43.06 734 

Supplementary  table  4: Information on a  case  where  the  likelihood ratio test 
distinguishes  fragments  coming from the  same  gene. 

 
 

a)       b) 

 
Supplementary  figure  6: Gene  tree  containing fragments  of the 

TRAES3BF091400260CFD_t1  gene. a) With  branch  bootstrap  supports, b) With  branch 
lengths. 
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Mistakes  on  distant  sequences  
 
To  illustrate  more  cases where  the  likelihood  ratio  test makes incorrect inference, we  also 
provide  information  on  three  cases (Suppl. table  5, alignments in  Suppl. File 
esprit2_alignments.tar.gz). In  all  of them, we  introduced  fragmentation  on  distant paralogous 
sequences which  should  be  sufficient to  distinguish  fragments as paralogous. Yet, based  on  the 
p-values and  levels of significance  of the  test, we  could  not reject the  hypothesis that fragments 
come  from the  same  gene.  
 
Given  the  size  of the  gene  families, non-conserved  long  alignments and  rather short candidate 
fragments, there  is likely the  lack of information  contained  in  the  alignments and  fragments to 
make  correct inference. However, there  is enough  information  for the  collapsing  approach  to 
infer that pairs in  question  are  paralogous. 
 
 

Gene1 Gene2 Distan
ce_in_
Ensem
bl_tree 
(gene1
, 
gene2) 

P- 
value 

#genes 
in the 
MSA 

Length 
of the 
MSA 

Length 
(gene1) 
 
Length 
(fragment
1) 

Length 
(gene2) 
 
Length 
(fragment2) 

Results from 
collapsing 
approach 

TRAES3BF
071900030
CFD_t1 

TRAES3BF
182800010
CFD_t1 

2.05 0.25 1040 11165 464 
 
366 

1160 
 
83 

paralogs 

TRAES3BF
117700060
CFD_t1 

TRAES3BF
136700020
CFD_t1 

1.73 0.35 1293 16234 554 
 
140 

368 
 
181 

paralogs 

TRAES3BF
075600050
CFD_t1 

TRAES3BF
171600010
CFD_t1 

1.69 0.99 1258 4924 243 
 
81 

207 
 
109 

paralogs 

Supplementary  table  5: Information on three  cases  where  the  likelihood ratio test fails  to 
distinguish paralogous  sequences. 

 
 
 

Datasets 
The  datasets referenced  in  this document and  the  main  body (simulated  splits, comparison, 
predictions, case  studies, etc.) can  be  downloaded  from http://lab.dessimoz.org/17_esprit2 .  
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