Abstract
A key player in the intracellular trafficking network is cytoplasmic dynein, a protein complex that transports molecular cargo along microtubule tracks. It has been shown that vertebrate dynein’s movement becomes strikingly enhanced upon interacting with a cofactor named dynactin and one of several cargo-adapters, such as BicaudalD2. However, the mechanisms responsible for this increase in transport efficiency are not well understood, largely due to a lack of structural information. We used cryo-electron tomography to visualize the first 3-dimensional structure of the intact dynein-dynactin complex bound to microtubules. Our structure reveals that the dynactin-cargo-adapter complex recruits and binds to two dimeric cytoplasmic dyneins. Interestingly, the dynein motor organization closely resembles that of axonemal dynein, suggesting that cytoplasmic dynein and axonemal dyneins may utilize similar mechanisms to coordinate multiple motors. We propose that grouping dyneins onto a single dynactin scaffold promotes collective force production as well as unidirectional processive motility. These findings provide a structural platform that facilitates a deeper biochemical and biophysical understanding of dynein regulation and cellular transport.