1	Molecular phylogenetics supports a clade of red algal parasites retaining native
2	plastids: taxonomy and terminology revised
3	
4	Eric D. Salomaki ^{1,2} and Christopher E. Lane ¹
5	
6	¹ Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
7	
8	
9	
10	
11	Running head: Biological basis for defining red algal parasites
12	
13	Author for correspondence: email eric.salomaki@gmail.com
14	² Present address: Institute of Parasitology, Biology Centre, Czech Academy of Science,
15	České Budějovice, Czech Republic 370 05
16	

17 Abstract:

18 Parasitism is a life strategy that has repeatedly evolved within the 19 Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used 20 to distinguish parasites based on the relative phylogenetic relationship of host and 21 parasite. However, analyses using molecular phylogenetics indicate that nearly all red 22 algal parasites infect within their taxonomic family, and a range of relationships exist 23 between host and parasite. To date, all investigated adelphoparasites have lost their 24 plastid, and instead, incorporate a host derived plastid when packaging spores. In 25 contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the 26 alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella 27 mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a 28 partial plastid genome from *Leachiella pacifica*. The *H. mirabilis* plastid shares more 29 synteny with free-living red algal plastids than that of C. polysiphoniae. Phylogenetic 30 analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly 31 supported clade of parasites, which retain their own plastid genomes, within the 32 Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic 33 family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying 34 the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites 35 (formerly adelphoparasites) to distinguish red algal parasites using a biological 36 framework rather than taxonomic affiliation with their hosts. 37 38 Keywords: Alloparasite, Adelphoparasite, Choreocolax, Harveyella, Leachiella,

39 Choreocolacaceae, Rhodomelaceae

- 40 **Abbreviations:** ORF = Open Reading Frame; BI = Bayesian inference; MCMCMC =
- 41 Metropolis-coupled Markov chain Monte Carlo

42 **INTRODUCTION:**

43	Since the late 19 th century when parasitic red algae were first formally recognized
44	the number of red algal parasite species has been steadily increasing (Reinsch 1875,
45	Setchell 1914, 1923, Goff 1982, Preuss et al. 2017). Recent counts identify 124 distinct
46	species of red algal parasites distributed across eight of the 31 of the Florideophyceae
47	(Salomaki and Lane 2014, Blouin and Lane 2015, Preuss et al. 2017, Preuss and
48	Zuccarello 2018, Guiry and Guiry 2018). The abundance of successful independent
49	evolutions of parasitism within the Florideophyceae seems in large part due to their
50	ability to form direct cell-to-cell fusions between adjacent, non-daughter cells
51	(Wetherbee and Quirk 1982a, Goff and Coleman 1985). With few exceptions [e.g.
52	Choreonema thuretii (Broadwater and LaPointe 1997)], red algal parasites use their
53	ability to form cell fusions as a means of infecting their host (Goff and Coleman 1985,
54	Zuccarello et al. 2004).
54 55	Zuccarello et al. 2004). Red algal parasites exclusively infect other rhodophytes and are predominately
55	Red algal parasites exclusively infect other rhodophytes and are predominately
55 56	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts.
55 56 57	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts. Despite their diminutive habit, parasitic red algae share morphological characteristics
55 56 57 58	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts. Despite their diminutive habit, parasitic red algae share morphological characteristics with other close relatives, and thus were assigned to tribes or families at the time of their
55 56 57 58 59	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts. Despite their diminutive habit, parasitic red algae share morphological characteristics with other close relatives, and thus were assigned to tribes or families at the time of their initial discovery (Reinsch 1875, Feldmann and Feldmann 1958). In the early 20 th century,
 55 56 57 58 59 60 	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts. Despite their diminutive habit, parasitic red algae share morphological characteristics with other close relatives, and thus were assigned to tribes or families at the time of their initial discovery (Reinsch 1875, Feldmann and Feldmann 1958). In the early 20 th century, two hypotheses arose to explain the origins of red algal parasites. First, Setchell (1918)
 55 56 57 58 59 60 61 	Red algal parasites exclusively infect other rhodophytes and are predominately unpigmented, appearing as galls or irregular growths on their free-living red algal hosts. Despite their diminutive habit, parasitic red algae share morphological characteristics with other close relatives, and thus were assigned to tribes or families at the time of their initial discovery (Reinsch 1875, Feldmann and Feldmann 1958). In the early 20 th century, two hypotheses arose to explain the origins of red algal parasites. First, Setchell (1918) noted that approximately 80% of the parasites he was studying infected hosts in the same

65 evolving sympatrically, parasitic red algae started out as small epiphytes of their hosts 66 that eventually would penetrate cortical cells of the host, becoming an endophyte. Once 67 established as an endophyte, the alga would adopt mechanisms to obtain nutrients from 68 the host, becoming increasingly reliant on its host, solidifying an irreversible path 69 towards parasitism (Sturch 1926). Feldmann and Feldmann (1958) furthered Sturch's 70 hypothesis, adding that epiphytes that are closely related to their hosts are more likely to 71 succeed in creating connections with hosts cells and are therefore more likely to complete 72 a transition to parasitism.

73 Historically parasites that have infected species within their own family or tribe 74 have been considered 'adelphoparasites', while those more distantly related to their hosts 75 are called 'alloparasites' (Feldmann and Feldmann 1958, Goff et al. 1996). In agreement 76 with Setchell's initial observations (1918), approximately 80% of the currently described 77 red algal parasite species are considered to be adelphoparasitic, while the remaining 20% 78 are alloparasitic (Goff 1982, Salomaki and Lane 2014, Blouin and Lane 2015). Based 79 initially on morphological observations, and later coupled with molecular data, it was 80 proposed that parasites evolve sympatrically with their hosts, as adelphoparasites, and 81 over time diversify or adapt to infect new and more distantly related hosts, becoming 82 alloparasites (Feldmann and Feldmann 1958, Blouin and Lane 2012).

Sturch (1926) described the Choreocolacaceae as a family in the Gigartinales
comprised of morphologically reduced parasites lacking chlorophyll including species of *Choreocolax, Harveyella,* and *Holmsella*. This exclusively parasitic family was the
subject of a thorough phylogenetic analysis of alloparasites to confirm whether these
parasitic red algae were truly monophyletic (Zuccarello et al. 2004). Their study

88	supported previous morphological observations (Fredericq and Hommersand 1990)
89	confirming that Holmsella was a member of the Gracilariaceae and questioned the
90	legitimacy of recognizing a family of red algal parasites. However, Zuccarello et al.
91	(2004) did not formally address the taxonomic implications for the Choreocolacaceae.
92	In the few other cases where molecular phylogenetics have been applied to assess
93	evolutionary histories of red algal parasites, data suggests that red algal parasites have
94	arisen though numerous independent evolutionary events (Goff et al. 1996, 1997,
95	Kurihara et al. 2010). In addition to phylogenetic analyses, molecular tools have also
96	been applied to investigate the parasite-host dynamics throughout parasite development.
97	Analyses of the adelphoparasites Gardneriella tuberifera Kylin, Gracilariophila
98	oryzoides Setchell & H. L. Wilson demonstrated that, although the parasites maintain a
99	native mitochondrion, they have lost their native plastid and instead 'hijack' a host plastid
100	when packaging their own spores (Goff and Coleman 1995). To date, all red algal
101	parasites examined maintain a fully functional mitochondrion (Salomaki and Lane 2016).
102	All adelphoparasites that have been investigated have lost their native plastid (Goff and
103	Coleman 1995; Salomaki and Lane 2014), and next-generation sequencing efforts
104	targeting Faucheocolax attenuatus Setchell, Janczewskia gardneri Setchell & Guernsey,
105	and G. oryzoides support these findings (Salomaki and Lane unpublished). In contrast, a
106	highly reduced native plastid was sequenced from the alloparasite Choreocolax
107	polysiphoniae Reinsch, which lost genes involved in photosynthesis, yet maintains
108	functions including fatty acid and amino acid biosynthesis (Salomaki et al. 2015). The
109	lack of plastids in adelphoparasites, in combination with finding a native plastid in the

110	alloparasite C.	polysiphoniae,	demonstrates that not all	parasites pass	through an
-----	-----------------	----------------	---------------------------	----------------	------------

- 111 'adelphoparasite stage' and that there are multiple paths to parasitism in red algae.
- 112 In their study examining relationships in the Choreocolacaceae, Zuccarello *et al.*
- 113 (2004) found that Holmsella pachyderma and Holmsella australis formed a clade within
- the Gracilariaceae. Additionally they demonstrated that the parasite genera *Choreocolax*,
- 115 Harveyella, and Leachiella belonged in the Rhodomelaceae, but lacked support for a
- 116 monophyletic group of parasites. Using DNA sequence data we investigated the

117 relationships of *Choreocolax*, *Harveyella*, and *Leachiella*, and tested the hypothesis that

- 118 parasites can arise and subsequently speciate, forming clades that infect a range of hosts.
- 119 Furthermore, we explored the evolution of parasitism and the loss of photosynthesis

120 among species traditionally called alloparasites.

121

122 MATERIALS AND METHODS

123 Sample Collection and DNA Extraction

124 Harveyella mirabilis (Reinsch) F.Schmitz & Reinke, on its host, Odonthalia

125 washingtoniensis Kylin, was collected from Cattle Point, Friday Harbor, WA, USA

126 (48.452428, -122.962774), and *Leachiella pacifica* Kugrens, on *Polysiphonia hendryi*

- 127 N.L. Gardner, was collected off the dock at Friday Harbor Laboratories, Friday Harbor
- 128 WA, USA (48.545066, -123.012268). Individual parasite galls from *Harveyella mirabilis*
- 129 and Leachiella pacifica were dissected from their respective hosts and collected in a 1.5
- 130 mL microcentrifuge tube. Unfortunately, only single parasites of *H. mirabilis* and *L.*
- 131 *pacifica* were observed on the host tissue and the entire pustule was excised for DNA
- 132 isolation. Dried vouchers for the remaining host tissue from *Polysiphonia hendryi*

133	(specimen 03304646) and Odonthalia washingtoniensis (specimen 03304647) have been
134	deposited at the New York Botanical Garden herbarium (NY). Parasite tissue was hand-
135	ground using a Corning Axygen® PES-15-B-SI disposable tissue grinder pestle in a 1.5
136	mL microcentrifuge tube while submerged in 100 μ L of DNA extraction buffer (Saunders
137	1993). DNA was extracted from specimens using a standard phenol/chloroform
138	extraction with all ratios adjusted for an initial buffer volume of $100\mu L$ (Saunders 1993).
139	
140	Molecular Analyses
141	Genomic DNA was amplified from Harveyella mirabilis and Leachiella pacifica
142	using the illustra Single Cell GenomiPhi DNA Amplification kit (GE Healthcare Life
143	Sciences, Pittsburgh, Pa) according to manufacturer protocols. Libraries for Illumina
144	sequencing were constructed from the amplified DNA on the Apollo 324 robot using the
145	PrepX ILM DNA Library Kit (Wafergen Biosystems, Freemont, CA, USA). The
146	Harveyella mirabilis and Leachiella pacifica libraries were multiplexed and sequenced
147	on an Illumina MiSeq paired-end 250 x 250 basepair run. The sequencing effort resulted
148	in 7,923,094 paired end reads for Harveyella mirabilis and 7,502,360 paired-end reads
149	for Leachiella pacifica. Raw sequencing reads with Phred scores <30 were removed and
150	the remaining reads were trimmed of adapter sequences. Additionally, fifteen 5' and five
151	3' nucleotides were trimmed from the remaining reads and all reads under 100
152	nucleotides were removed from the dataset. All trimming was completed using CLC
153	Genomics Workbench v. 9.5.2 (CLC Bio-Qiagen, Aarhus, Denmark) and the remaining
154	reads were assembled using default parameters in CLC Genomics Workbench v. 9.5.2.
155	

156 Plastid Genome Annotation

157	A 90,654 bp contig was identified as the plastid genome of Harveyella mirabilis
158	from the assembled Illumina MiSeq data (GenBank Accession MK039118). We
159	recovered >40,000 bp of the Leachiella pacifica plastid genome that were in five separate
160	contigs (GenBank Accession MK039114-MK039117, MK039119). Open reading frame
161	(ORF) prediction on the plastid genomes was done in Geneious Pro v. 9.1.5 and the
162	resulting ORFs were manually annotated using GenBank and Pfam (Finn et al. 2010,
163	2015) databases. Functional annotations were assigned from the UniProt (The UniProt
164	Consortium 2017) and KEGG databases (Kanehisa et al. 2016). Genes found in red algal
165	plastid genomes that were missing from the H. mirabilis plastid were searched for using
166	BLAST, against the plastid sequence and the genomic assemblies to verify their absence
167	and check for evidence of transfer to another genetic compartment. Plastid genome
168	sequences were submitted to the tRNAscan-SE online server v1.21 (Schattner et al. 2005)
169	for identification of tRNA sequences and to MFannot
170	(http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl) to identify rRNA
171	sequences and confirm manual gene annotations.
172	
173	Plastid Genome Comparative Analysis
174	The circular plastid genomes of from the florideophytes, Calliarthron
175	tuberculosum (KC153978), Ceramium cimbricum (KR025491), Ceramium japonicum
176	(KX284719), Chondrus crispus (HF562234), Dasya binghamiae (KX247284), Laurencia
1	

- 177 sp. JFC0032 (LN833431), Grateloupia taiwanensis (KC894740), Gracilaria
- 178 tenuistipitata (AY673996), Vertebrata lanosa (KP308097), and the alloparasites

Choreocolax polysiphoniae (KP308096) and *Harveyella mirabilis* (MK039118) were
arranged so that their sequences began with the *fts*H gene. Whole genome alignment was
completed using the default settings for the progessiveMauve algorithm in the Mauve
v2.3.1 (Darling et al. 2004). *Phylogenetic Analysis*

185 A data matrix comprising 17 protein coding genes (accB, acpP, fabH, ilvH, odpA, 186 rne, rpl16, rpl20, rpl3, rps14, rps16, rps19, sufB, trpA, trpG, tsf, ycf19) and two plastid 187 encoded rRNAs (*rnl*, *rns*) that were shared between the *Harveyella mirabilis* plastid, the 188 partial *Leachiella pacifica* plastid, and 55 completely sequenced plastid genomes from 189 the Ceramiales was assembled to investigate the placement of Harveyella mirabilis and 190 Leachiella pacifica, within the Rhodomelaceae (Salomaki et al. 2015, Verbruggen and 191 Costa 2015, Hughey and Boo 2016, Díaz-Tapia et al. 2017). Shared plastid genes were 192 extracted into 19 distinct datasets in Geneious Pro v. 9.1.5 (Kearse et al. 2012). The 193 protein coding gene datasets were independently aligned using the translation align 194 setting in Geneious v. 9.1.5 and the rRNAs were aligned using the MAFFT online server 195 (Katoh et al. 2017) and subsequently concatenated using Sequence Matrix v. 1.7.8 196 (Vaidya et al. 2011) producing a 15,763 site dataset. The best-fit partitioning scheme and 197 the best model of evolution for each partition was inferred using the Bayesian 198 information criterion (BIC) as implemented in PartitionFinder2 (Lanfear et al. 2017). The 199 concatenated dataset was then subjected to phylogenetic analysis using maximum 200 likelihood, implemented in both RAxML v. 8.2.2 (Stamatakis 2014) and IQ-TREE v. 201 1.5.6 (Nguyen et al. 2015), as well as Bayesian Inference using MrBayes v. 3.2.2

202	(Ronquist et al. 2012). For the maximum likelihood analysis the bootstrap support values
203	were calculated using 1,000 bootstrap replicates in RAxML, and 1,000 replicates of
204	ultrafast bootstrapping (UFBoot) in the IQ-TREE analysis (Hoang et al. 2018). For the
205	Bayesian inference analysis, two Metropolis-coupled Markov chain Monte Carlo
206	(MCMCMC) runs consisting of one cold chain and three hot chains were
207	preformed. Each run was sampled every 500 generations for 2,000,000
208	generations. After confirming the runs converged by checking to ensure that the average
209	standard deviation of split frequencies was below 0.01, the trees were merged. The
210	resulting tree and posterior probabilities were calculated from the 8,002 trees generated.
211	
212	RESULTS
213	An Exclusively Parasitic Clade
214	Phylogenetic analysis was conducted on a concatenated dataset comprised of 19
215	plastid-encoded genes from 54 free-living species, and the parasites C. polysiphoniae, H.
216	mirabilis, L. pacifica. A Bayesian inference analysis implemented in MrBayes and
217	maximum likelihood analyses using both RAxML and IQ-TREE all recovered robust
218	support for a topology similar to that recovered by Díaz-Tapia et al. (2017). The three
219	parasites formed a clade with 1.0 posterior probability (BI), 100% bootstrap support in
220	RAxML and 100% ultrafast bootstrap approximation (UFBoot) in IQ-TREE (Fig. 1).
221	Choreocolax polysiphoniae was the earliest branching parasite with H. mirabilis and L.
222	pacifica being recovered as sister taxa with 100% bootstrap support/1.0 posterior
223	probability (Fig. 1).
224	

225 Taxonomic Considerations

226	Choreocolax polysiphoniae was initially described by Reinsch (1875) from the
227	Atlantic coast of North America as parasitic on Polysiphonia fastigiata (now Vertebrata
228	lanosa). Specimens used in the phylogenetic analysis presented here (Fig. 1) were
229	collected at Beavertail State Park in Jamestown, RI, USA infecting Vertebrata lanosa and
230	are a strong match to the type description (Reinsch 1875). A representative voucher of C .
231	polysiphoniae on its host V. lanosa (03304648) has been deposited at the New York
232	Botanical Garden herbarium (NY). As the type collection cannot be located, we formally
233	lectotypify C. polysiphoniae on image #49 accompanying the description in Reinsch
234	(1875). Based upon the molecular analyses here, which resolved a monophyletic clade of
235	parasitic red algae within the Rhodomelaceae (Fig. 1), we formally transfer Choreocolax
236	to the Rhodomelaceae and recognize Choreocolacaceae as a synonym of this family. To
237	adhere to the principle of monophyly, the genus Harveyella, based on the type and only
238	species H. mirabilis and included in our analyses (Fig. 1), is also transferred to the
239	Rhodomelaceae.
240	

241 *Parasite Plastid Genomes*

The complete plastid genome of *Harveyella mirabilis* was assembled as a 90,654 kb circular molecule with 322x coverage. The plastid genome has an overall AT content of 76.5% and contains 84 protein coding genes, 3 rRNAs, and 23 tRNAs (Fig. 2). Similar to the *Choreocolax polysiphoniae* plastid (Salomaki et al. 2015), all genes related to photosynthesis have been lost with the exception of *pet*F, which is involved in electron transport in other metabolic pathways (Happe and Naber 1993, Jacobs et al. 2009). Genes

248	involved in transcription/translation and fatty acid, amino acid, protein, isoprene
249	biosynthesis remain conserved. As in the C. polysiphoniae plastid, gltB appears to be a
250	pseudogene. BLAST similarity searches are able to find conserved homology, however
251	the presence of stop-codons throughout the region suggests that the gene is likely no
252	longer capable of being completely translated.
253	Five contigs, comprising 40,895 bp of the Leachiella pacifica plastid genome,
254	were assembled and annotated. These genomic pieces encode 24 complete protein-coding
255	genes, 6 protein-coding gene fragments at the ends of contigs, the small and large rRNA
256	subunits, and 12 tRNAs. Similar to H. mirabilis and C. polysiphoniae, no genes
257	associated with photosynthesis were recovered from the incomplete L. pacifica plastid
258	genome.
259	
260	Plastid Genome Comparisons
261	A whole genome MAUVE alignment of nine representative free-living Florideophyceae
262	plastid genomes, the H. mirabilis and C. polysiphoniae genomes, identified 13 locally

263 collinear blocks in the *H. mirabilis* genome that aligned with the free-living plastids (Fig.

3). There were no rearrangements or inversions in the *H. mirabilis* plastid genome when

265 compared to photosynthetic Rhodomelaceae taxa. When aligning *H. mirabilis* to the *C*.

266 *polysiphoniae* plastid genome, 11 locally collinear blocks were identified, and several

267 genome inversions and rearrangements are evident (Fig. 4). Additionally, gene content

268 varies slightly between the two parasite plastid genomes. *Harveyella mirabilis* retains

269 argB, carA, infB, rnz, rpl9, rpl17, rpl24, rpl32, rpl33, rpl34, rpoZ, rps18, rps20, ycf21,

270 which have all been lost in *C. polysiphoniae* (Table 1), while *C. polysiphoniae* maintains

271 copies of *dna*B and *fab*H which have both been lost in the *H. mirabilis* plastid genome.

DISCUSSION

Parasite Plastids

275	The link between plastid origin in red algal parasites and their evolutionary
276	relationship to their hosts may be central to our understanding of red algal parasite
277	evolution. The Harveyella mirabilis plastid genome (Fig. 2) represents the second red
278	algal parasite demonstrated to retain a reduced native plastid. Similar to Choreocolax
279	polysiphoniae, the H. mirabilis plastid genome remains conserved for functions including
280	amino acid, fatty acid, and protein biosynthesis, but has lost genes involved in building
281	the light harvesting apparatus, photosystems I and II, and other photosynthesis related
282	genes. The partial Leachiella pacifica plastid genome presented here also supports that
283	hypothesis, although work remains to completely sequence its plastid genome.
284	The H. mirabilis plastid gene order, with the exception of the missing
285	photosynthesis genes, is conserved when compared to plastids of free-living
286	Rhodomelaceae species (Fig. 3). In contrast, the C. polysiphoniae plastid has undergone
287	greater gene loss than the H. mirabilis plastid, and a substantial amount of genome
288	reorganization (Fig. 4). Harveyella mirabilis retains 13 genes that have been lost from the
289	C. polysiphoniae plastid (Table 1); argB and carA, which are involved in arginine
290	biosynthesis processes, rpoZ, which promotes RNA polymerase assembly, nine
291	ribosomal protein genes, and an uncharacterized hypothetical protein. In contrast, C.
292	polysiphoniae retains copies of dnaB, which is involved in DNA replication, and fabH,
293	which is involved in fatty acid biosynthesis, both of which have been lost in <i>H. mirabilis</i> .

- 294 Analysis of additional plastid genomes in this clade will provide greater insights into
- 295 patterns of plastid genome evolution in red algal parasites.
- 296
- 297 The Demise of Exclusively Parasitic Families

298 Sturch (1926) initially described the Choreocolacaceae as a family of

- 299 holoparasites, containing the genera Choreocolax, Harveyella, and Holmsella. However,
- 300 more recent morphological investigation showed that *Holmsella* was related to the
- 301 parasites *Gelidiocolax* and *Pterocladiophila*, and it was moved to the family
- 302 Pterocladiophilaceae in the Gracilariales (Fredericq and Hommersand 1990). Their
- 303 observations were subsequently supported by molecular data generated with the specific

304 aim of testing the phylogenetic affinities of parasites that Sturch had assigned to the

305 Choreocolacaceae. This work demonstrated that Holmsella australis and Holmsella

306 *pachyderma* formed a well-supported monophyletic clade within the Gracilariaceae

307 (Zuccarello et al. 2004). Their molecular data also indicated that *Choreocolax* and

308 *Harveyella* belonged in the Ceramiales, leading the authors to question whether the

309 Choreocolacaceae should continue to be recognized (Zuccarello et al. 2004). However,

310 their use of 18S sequence data was insufficient to resolve a monophyletic clade

311 exclusively comprised of parasites. Other authors have also noted that species in

312 *Choreocolax, Harveyella*, and *Leachiella* have features aligning them to the Ceramiales,

313 but again, taxonomic affinities among the parasite species and within this order remained

314 uncertain (Goff and Cole 1975, Kugrens 1982, Fredericq and Hommersand 1990). Our

315 data confirm the findings of Zuccarello et al. (2004), placing *Choreocolax, Harveyella*

316 and *Leachiella* within the Rhodomelaceae. Furthermore, the phylogeny utilizing

317	additional molecular markers provides strong support for a clade containing
318	Choreocolax, Harveyella and Leachiella (Fig. 1), and supports the placing the
319	Choreocolacaceae in synonymy with the Rhodomelaceae. Since their adoption by
320	Feldmann and Feldmann (1958) the terms adelphoparasite and alloparasite have been
321	used to describe parasites that infect hosts within their tribe/family, or in different
322	tribes/families, respectively. The use of these terms has been questioned as molecular
323	data have revealed that alloparasites, like adelphoparasites, infect close relatives rather
324	than distantly related species (Zuccarello et al. 2004, Kurihara et al. 2010). To date, there
325	is only one documented case of intrafamilial infections by red algal parasites that are
326	supported by molecular systematics of host and parasite (Zuccarello et al. 2004). By
327	placing the family Choreocolacaceae in synonymy with the Rhodomelaceae we are
328	making steps to move away from a taxonomic definition for red algal parasites in favor of
329	a biological distinction.

330

331 A Biological Basis for Distinguishing Red Algal Parasites

332 With more than 120 described parasites occurring across eight Florideophyceae 333 orders (Salomaki and Lane 2014, Blouin and Lane 2015, Preuss et al. 2017, Preuss and 334 Zuccarello 2018), red algae appear more able to transition from autotrophy to parasitic 335 lifestyles than any other eukaryotic lineage. The data presented here place *Choreocolax* 336 polysiphoniae, Harveyella mirabilis, and Leachiella pacifica firmly within the same 337 family as their hosts, further supporting abandonment of the adelpho/allo- terms for 338 differentiating two types of red algal parasites. However, differences between two groups 339 of parasites remain, including their developmental patterns as they infect their hosts, and

340	the origins of organelles (Table 2). We believe that it is time to abandon the terms
341	adelpho- and alloparasite, which are based upon a taxonomic framework that is different
342	today than it was when these terms were introduced. Instead we propose to distinguish
343	red algal parasites by biological characteristics that can be easily tested using molecular
344	techniques, the retention of a native plastid. Throughout the remainder of this manuscript
345	we will use the term "archaeplastic" parasite to refer to those parasites that retain a native
346	plastid (formerly most alloparasites), and "neoplastic" parasite to discuss those that hijack
347	a host plastid rather than retain their own copy (formerly adelphoparasites).
348	
349	Developmental differences
350	It had long been recognized that the association between parasitic red algae and
351	their hosts was facilitated, at least in part, by the ability of red algae to form cell to cell
352	fusions between adjacent, non-daughter cells, called secondary pit connections (Sturch
353	1899, 1926, Feldmann and Feldmann 1958). With modern microscopy, the structure and
354	formation of secondary pit connections between parasites and their hosts was determined
355	(Kugrens and West 1973, Goff and Cole 1976a, Wetherbee and Quirk 1982a, 1982b,
356	Wetherbee et al. 1984). Furthermore, these cell to cell fusions were proposed to serve as
357	the mechanism by which nutrients are transported from the host to parasite cells
358	(Wetherbee and Quirk 1982b). With the use of epifluorescence microscopy, Goff went on
359	to establish their importance in the infection process by demonstrating that red algal
360	parasites are able to transfer their nuclei and organelles into host cells via secondary pit

362	In addition to recognizing the role of secondary pit connections in the infection
363	process, sophisticated microscopy advanced our understanding of how parasitic red algae
364	spread throughout their hosts and characterized the host responses. In a groundbreaking
365	series of manuscripts, Goff described in great detail the biology of Harveyella mirabilis
366	(Reinsch) F. Schmitz et Reinke, including its development, structure, and nutrient
367	acquisition from its host Odonthalia flocossa (Esper) Falkenberg (Goff and Cole 1973,
368	1975, 1976a, 1976b, Goff 1976, 1979a, 1979b). These investigations provided a
369	framework to more intimately understand the development and interactions of a range of
370	red algal parasites.
371	Aside from the formation of secondary pit connections that initiate host infection,
372	important differences in developmental patterns and their subsequent spread throughout
373	the hosts have been observed between the two types of parasites (reviewed in Salomaki
374	and Lane 2014, Freese and Lane 2017). First, archaeplastic parasites including
375	Choreocolax, Harveyella, and Holmsella, spread throughout their hosts by producing
376	mitotically dividing rhizoidal filaments that grow among host cells (Sturch 1899, 1926,
377	Goff and Cole 1976a, Fredericq and Hommersand 1990). In contrast, the neoplastic
378	parasites Gracilariophila oryzoides, Gardneriella tuberifera, and Janczewskia gardneri,
379	infect their host cells directly and spread from cell to cell, rarely creating their own
380	rhizoidal filaments (Goff and Coleman 1987a, Goff and Zuccarello 1994). Additionally,
381	while neoplastic parasites appear to transform infected host cells and undergo nuclear
382	replication solely within host cells (Goff and Coleman 1987a, Goff and Zuccarello 1994),
383	archaeplastic parasites appear to only undergo DNA replication in their rhizoidal
384	filaments and infected host cells maintain a 1:1 ratio of parasite nuclei to secondary pit

connections (Goff and Coleman 1984, 1985, 1987b). These key developmental

386 differences further lend support for a means of discussing parasitic red algae in a

- 387 biological rather than a taxonomic context.
- 388

389 Organellar Origins

390 The combination of microscopy with molecular tools challenged the dogma of 391 how red algal parasites interact with their hosts. In a study investigating the origins of 392 organelles from three neoplastic parasites, Gracilariophila oryzoides, Gardneriella 393 tuberifera, and Plocamiocolax pulvinata, Goff and Coleman (1995) demonstrated that the 394 parasites retain their own mitochondria. However all three had lost their native plastid, 395 and instead incorporate a dedifferentiated host plastid when packaging their spores. 396 Subsequent investigations into parasite mitochondria also implicated gene loss in the 397 adelphoparasites Gracilariophila oryzoides and Plocamiocolax pulvinata (Hancock et al. 398 2010). In their study, *atp*8 and *sdh*C were described as pseudogenes in the G. *oryzoides* 399 mitochondrion and *atp*8 was noted as missing completely from the *P. pulvinata* 400 mitochondrion genome (Hancock et al. 2010). These losses were attributed to decreased 401 selective pressures as the parasites increasingly relied on their hosts for ATP and other 402 molecules essential to their survival. A more recent investigation spurred by those results, 403 demonstrated that gene loss in the parasite mitochondria were the result of sequencing 404 errors and/or downstream analysis (Salomaki and Lane 2016). 405 Red algal parasite plastids appear to be more dynamic and perhaps the more 406 interesting story in red algal parasite evolution. Molecular investigations including deep 407 genomic sequencing, have confirmed that all adelphoparasites investigated to date,

408 Faucheocolax attenuata, Gracilariophila oryzoides, Gardneriella tuberifera,

409 Janczewskia gardneri, and Plocamiocolax pulvinata do not retain a native plastid (Goff 410 and Coleman 1995, Salomaki and Lane, unpublished). Previously, the plastid genome has 411 been completely sequenced from the archaeplastic parasite *Choreocolax polysiphoniae* 412 (Salomaki et al. 2015), and here we present the plastid genome of *Harveyella mirabilis*, 413 and partial plastid genome sequences of *Leachiella pacifica*. Both completely sequenced 414 plastids are greatly reduced in coding capacity compared to the plastids of free-living 415 photosynthetic red algae, having lost all genes related to photosynthesis (Salomaki et al. 416 2015). Interestingly, genes involved in amino acid and fatty acid biosynthesis, iron-sulfur 417 cluster synthesis, as well as transcription and translation are conserved (Salomaki et al. 418 2015). Aside from the loss of photosynthesis genes, the *H. mirabilis* plastid retains a high 419 level of synteny with plastids of closely related free-living red algae, however the C. 420 polysiphoniae plastid has experienced extensive genome reorganization (Figs. 3 & 4). 421 Developmental differences are notable, including the location of parasite DNA 422 replication and mechanism of spreading throughout the host, but plastid origin appears to 423 be central to differences observed in red algal parasite evolution. We hypothesize that the 424 observed developmental differences between the traditionally termed adelpho- and 425 alloparasites are intimately linked to plastid origin. Parasites that maintain a native plastid 426 are, in essence, a complete red alga in their own right, while those that incorporate a host 427 derived plastid are being pieced together with organelles from another organism they 428 remain compatible with. By retaining their own plastid, the plastid remains under the 429 same selective pressures as the rest of the parasite genome, and therefore, retains its 430 ability to function for amino acid, fatty acid, protein, and isoprene biosynthesis – all

431	necessary functions for survival. Those parasites that retain their own plastid are
432	therefore capable of developing and functioning similar to other free-living red algae,
433	with the exception of not being able to photosynthesize. Furthermore, the maintenance of
434	a native plastid and the resulting self-reliance would enable those parasites to endure
435	through evolutionary time, successfully adapting to new hosts and speciating. This
436	hypothesis can be tested in future studies by investigating the organellar origins of
437	parasites in the genus Holmsella. Holmsella pachyderma was previously placed in the
438	Choreocolacaceae based upon its developmental patterns within its host, until 1990 when,
439	along with Holmsella australis, it was transferred to the Gracilariaceae based upon
440	morphological characteristics (Fredericq and Hommersand 1990). A subsequent
441	phylogenetic analysis including H. australis and H. pachyderma found that the species
442	formed a monophyletic clade within the Gracilariaceae (Zuccarello et al. 2004). To date
443	no work has been completed on the plastid origin of members of the genus Holmsella, but
444	if they do retain a native plastid, Holmsella would represent a second successful
445	evolution of parasites retaining archaeplastic characteristics: a native plastid, mitotically
446	dividing rhizoidal filaments as a means of vegetative growth throughout their hosts, and
447	forming a monophyletic clade of parasite species. Further investigation of the taxonomic
448	affiliation of parasite genera in families outside the Rhodomelaceae including
449	Gelidiocolax and Pterocladiophila is warranted.
450	

451 Origin of Parasites

452 Two hypotheses have been proposed for the origin of red algal parasites. Setchell453 (1918) suggested that a mutation in a spore causes parasites to arise sympatrically,

454 whereas Sturch (1926) postulated that parasitic red algae start out as epiphytes that 455 become endophytes over time and increasingly rely on the host for nutrition. It seems 456 plausible that Setchell's origin hypothesis could explain the rise of the neoplastic 457 parasites, which comprise the majority of known red algal parasite biodiversity. By 458 evolving from their hosts, neoplastic parasites could more easily incorporate a copy of a 459 genetically similar plastid as their own. The adaptation of incorporating a host plastid 460 may provide a quick fix for what otherwise would have been a lethal mutation. The 461 unique parasite nucleus and mitochondrion could continue spreading from cell to cell of 462 its newly acquired host (and savior) via secondary pit connections, essentially 463 transforming the host cells as has been described (Goff and Coleman 1985, Goff and 464 Zuccarello 1994). Although providing a means of short-term survival for the newly 465 transitioned parasite, co-opting a host plastid as their own would also establish these 466 parasites on an irreversible path towards their own extinction. In order for a non-467 photosynthetic parasite to survive it must retain compatibility for other plastid functions, 468 including amino acid and fatty acid biosynthesis. Our current understanding suggests that 469 the host-derived plastid is newly acquired during each new infection, therefore, the host 470 plastid experiences one set of evolutionary pressures while the parasite nucleus evolves 471 and accumulates mutations of its own. Eventually the parasite will inevitably lose the 472 ability to communicate with the host plastid as the parasite and host increasingly become 473 genetically distinct. This leaves the parasite with two possibilities, either find another 474 host with a compatible plastid or go extinct. Alternatively, the success of an archaeplastic 475 parasite may be explained by Sturch's hypothesis. By evolving from a closely related 476 epiphyte that is able to create secondary pit connections, the parasite may retain its own

plastid and therefore increase its longevity and the opportunity to speciate as the parasite
adapts to new hosts. Therefore, what were previously viewed as competing hypotheses to
explain the evolution of red algal parasites, may each explain how different types of
parasites arose.

481

482 Conclusion

483 Following the earliest investigations of red algal parasites, two groups were 484 recognized based on morphological distinctions and they were initially separated by 485 taxonomic affiliation with their hosts (Setchell 1918, Feldmann and Feldmann 1958, Goff 486 1982). The use of molecular phylogenetics for evaluating evolutionary relationships has 487 altered the taxonomic framework that was originally used for distinguishing red algal 488 parasites. Distinct differences remain, however, and whether or not the parasite retains a 489 native plastid or incorporates one from its host appears to be fundamental to parasite 490 biology. We propose that the terminology for discriminating between red algal parasites 491 should to reflect these biological differences, and identifying the plastid source has 492 become substantially easier with modern sequencing technologies. Therefore, we 493 recommend applying the term archaeplastic parasite to describe those that retain a native 494 plastid throughout the infection cycle, and neoplastic parasite to those that have lost their 495 native plastid and instead incorporate a host plastid. We predict that investigations of 496 parasites that have traditionally been referred to as alloparasites in families other than the 497 Rhodomelaceae, like *Holmsella* and *Pterocladiophila*, will also provide evidence of 498 plastid retention and monophyletic clades of parasites.

499

500 ACKNOWLEDGEMENTS

- 501 The authors thank Craig Schneider and Gary Saunders for conversation regarding
- 502 taxonomy and names for distinguishing parasites. Jillian Freese is thanked for collecting
- 503 specimens of Harveyella mirabilis and Leachiella pacifica, and Kristina Terpis for her
- support in the lab. Funding for this work was provided to by a Phycological Society of
- 505 America Grant-in-Aid of Research to ES and by grant #1257472 from the National
- 506 Science Foundation awarded to CL. This research is based in part upon work conducted
- 507 using the Rhode Island Genomics and Sequencing Center, which is supported in part by
- 508 the National Science Foundation (MRI Grant No. DBI-0215393 and EPSCoR Grant Nos.
- 509 0554548 & EPS-1004057), the US Department of Agriculture (Grant Nos. 2002-34438-
- 510 12688 and 2003-34438-13111), and the University of Rhode Island.
- 511

512 LITERATURE CITED

- 513 Blouin, N. & Lane, C. 2015. Red algae provide fertile ground for exploring parasite
- 514 evolution. *Perspect. Phycol.* 3:11–9.
- 515 Broadwater, S. T. & LaPointe, E. a 1997. Parasitic interactions and vegetative
- 516 ultrastructure of *Choreonema thuretii* (Corallinales, Rhodophyta). *J. Phycol.*517 33:396–407.
- 518 Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. 2004. Mauve□: Multiple
 519 alignment of conserved genomic sequence with rearrangements. *Genome Res.*
- 520 14:1394–403.
- 521 Díaz-Tapia, P., Maggs, C. A., West, J. A. & Verbruggen, H. 2017. Analysis of
- 522 chloroplast genomes and a supermatrix inform reclassification of the

- 523 Rhodomelaceae (Rhodophyta). J. Phycol. 53:920–37.
- 524 Feldmann, G. & Feldmann, J. 1958. Recherches sur quelques Floridees parasites. *Rev.*
- 525 *Gen. Bot.* 65:49–128.
- 526 Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter,
- 527 S. C. et al. 2015. The Pfam protein families database: towards a more sustainable
 528 future. *Nucleic Acids Res.* 44:D279–85.
- 529 Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., Gavin, O. L. et
- al. 2010. The Pfam protein families database. *Nucleic Acids Res.* 38:D211-22.
- 531 Fredericq, S. & Hommersand, M. 1990. Morphology and systematics of Holmsella

532 *pachyderma* (Pterocladiophilaceae, Gracilariales). *Br. Phycol. J.* 25:39–51.

- 533 Freese, J. M. & Lane, C. E. 2017. Parasitism finds many solutions to the same problems
- 534 in red algae (Florideophyceae, Rhodophyta). *Mol. Biochem. Parasitol.* 214:105–11.
- 535 Goff, L. J. 1976. The biology of *Harveyella mirabilis* (Cryptonemiales, Rhodophyceae).
- 536 V. Host responses to parasite infection. J. Phycol. 12:313–28.
- 537 Goff, L. J. 1979a. The biology of *Harveyella mirabilis* (Cryptonemiales, Rhodophyceae).
- 538 VI. translocation of photoassimilated 14C. J. Phycol. 15:82–7.
- 539 Goff, L. J. 1979b. The biology of Harveyella mirabilis (Cryptonemiales, Rhodophyceae).
- 540 VII. Structure and proposed function of host penetrating cells. J. Phycol. 15:87–100.
- 541 Goff, L. J. 1982. The biology of parasitic red algae. *Prog. Phycol. Res.* 1:289–369.
- 542 Goff, L. J., Ashen, J. & Moon, D. 1997. The evolution of parasites from their hosts: A
- 543 case study in the parasitic red alga. *Evolution (N. Y).* 51:1068–78.
- 544 Goff, L. J. & Cole, K. M. 1973. The biology of Harveyella mirabilis (Cryptonemiales,
- 545 Rhodophyceae). I. Cytological investigations of *Harveyella mirabilis* and its host,

546 *Odonthalia floccosa. Phycologia.* 12:237–45.

- 547 Goff, L. J. & Cole, K. M. 1975. The biology of Harveyella mirabilis (Cryptonemiales,
- 548 Rhodophyceae). II . Carposporophyte development as related to the taxonomic
- 549 affiliation of the parasitic red alga, *Harveyella mirabilis*. *Phycologia*. 14:227–38.
- 550 Goff, L. J. & Cole, K. M. 1976a. The biology of Harveyella mirabilis (Cryptonemiales,
- 551 Rhodophyceae). III. Spore germination and subsequent development within the host
- 552 *Odonthalia floccosa* (Cermiales, Rhodophyceae). *Can. J. Bot. Can. Bot.* 54:268–80.
- 553 Goff, L. J. & Cole, K. M. 1976b. The biology of Harveyella mirabilis (Cryptonemiales,
- 554 Rhodophyceae). IV. Life history and phenology. *Can. J. Bot. Can. Bot.* 54:281–92.
- Goff, L. J. & Coleman, A. W. 1984. Transfer of nuclei from a parasite to host. *Proc. Natl. Acad. Sci.* 81:5420–4.
- Goff, L. J. & Coleman, A. W. 1985. The role of secondary pit connections in red algal
 parasitism. *J. Phycol.* 21:483–508.
- 559 Goff, L. J. & Coleman, A. W. 1987a. Nuclear transfer from parasite to host: A new
- regulatory mechanism of parasitism. *Ann. N. Y. Acad. Sci.* 503:402–23.
- Goff, L. J. & Coleman, A. W. 1987b. The solution to the cytological paradox of
 isomorphy. *J. Cell Biol.* 104:739–48.
- 563 Goff, L. J. & Coleman, A. W. 1995. Fate of parasite and host organelle DNA during
- cellular transformation of red algae by their parasites. *Plant Cell*. 7:1899–911.
- 565 Goff, L. J., Moon, D. A., Nyvall, P., Stache, B., Mangin, K. & Zuccarello, G. C. 1996.
- 566 The evolution of parasitism in the red algae: Molecular comparisons of
- adelphoparasites and their hosts. J. Phycol. 32:297–312.
- 568 Goff, L. J. & Zuccarello, G. C. 1994. The evolution of parasitism in red algae—cellular

569	interactions of	adelphor	parasites and	their hosts. J.	Phycol.	30:695–720.

- 570 Guiry, M. D. & Guiry, G. M. 2018. AlgaeBase. World-wide electronic publication,
- 571 National University of Ireland, Galway. http://www.algaebase.org; searched on 03
- 572 October 2018.
- 573 Hancock, L., Goff, L. J. & Lane, C. E. 2010. Red algae lose key mitochondrial genes in
- 574 response to becoming parasitic. *Genome Biol. Evol.* 2:897–910.
- 575 Happe, T. & Naber, J. D. 1993. Isolation, characterization and N-terminal amino acid
- 576 sequence of hydrogenase from the green alga *Chlamydomonas reinhardtii*. Eur. J.
- 577 *Biochem.* 214:475–81.
- 578 Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. 2018.
- 579 UFBoot2: Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 35:518–
 580 22.
- 581 Hughey, J. R. & Boo, G. H. 2016. Genomic and phylogenetic analysis of *Ceramium*
- 582 *cimbricum* (Ceramiales, Rhodophyta) from the Atlantic and Pacific Oceans supports
- 583 the naming of a new invasive Pacific entity *Ceramium sungminbooi* sp. nov. *Bot.*
- 584 *Mar.* 0:211–22.
- Jacobs, J., Pudollek, S., Hemschemeier, A. & Happe, T. 2009. A novel, anaerobically
 induced ferredoxin in *Chlamydomonas reinhardtii*. *FEBS Lett.* 583:325–9.
- 587 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. 2016. KEGG as a
- 588 reference resource for gene and protein annotation. *Nucleic Acids Res.* 44:D457–62.
- 589 Katoh, K., Rozewicki, J. & Yamada, K. D. 2017. MAFFT online service: multiple
- 590 sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.*
- 591 1–7.

- 592 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.
- 593 et al. 2012. Geneious Basic: an integrated and extendable desktop software platform
- for the organization and analysis of sequence data. *Bioinformatics*. 28:1647–9.
- 595 Kugrens, P. 1982. Leachiella pacifica, gen. et sp. nov., a new parasitic red alga rom
- 596 Washington and California. *Am. J. Bot.* 123:306–19.
- 597 Kugrens, P. & West, J. A. 1973. The ultrastructure of an alloparasitic red alga

598 *Choreocolax polysiphoniae. Phycologia.* 12:175–86.

- 599 Kurihara, A., Abe, T., Tani, M. & Sherwood, A. R. 2010. Molecular phylogeny and
- 600 evolution of red algal parasites: A case study of *Benzaitenia*, *Janczewskia*, and
- 601 Ululania (Ceramiales). J. Phycol. 46:580–90.
- Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. 2017.
- 603 Partitionfinder 2: New methods for selecting partitioned models of evolution for
- 604 molecular and morphological phylogenetic analyses. *Mol. Biol. Evol.* 34:772–3.
- Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: A fast
- and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
- 607 *Mol. Biol. Evol.* 32:268–74.
- 608 Preuss, M., Nelson, W. A. & Zuccarello, G. C. 2017. Red algal parasites: a synopsis of

described species, their hosts, distinguishing characters and areas for continued
research. *Bot. Mar.* 60:1–13.

- 611 Preuss, M. & Zuccarello, G. C. 2018. Three new red algal parasites from New Zealand:
- 612 *Cladhymenia oblongifoliaphila* sp. nov. (Rhodomelaceae), *Phycodrys novae-*
- 613 *zelandiaephila* sp. nov. (Delesseriaceae) and *Judithia parasitica* sp. nov.
- 614 (Kallymeniaceae). *Phycologia*. 57:9–19.

- 615 Reinsch, P. F. 1875. Contributiones ad Algologiam et Fungologiam. Lipsiae, Nuremberg.
- 616 61 pp.
- 617 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S.,
- 618 Larget, B. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and
- model choice across a large model space. *Syst. Biol.* 61:539–42.
- 620 Salomaki, E. D. & Lane, C. E. 2014. Are all red algal parasites cut from the same cloth?
- 621 Acta Soc. Bot. Pol. 83:369–75.
- 622 Salomaki, E. D. & Lane, C. E. 2016. Red algal mitochondrial genomes are more
- 623 complete than previously reported. *Genome Biol. Evol.* 48:evw267.
- 624 Salomaki, E. D., Nickles, K. R. & Lane, C. E. 2015. The ghost plastid of *Choroeocolax*
- 625 polysiphoniae. J. Phycol. 51:217–21.
- 626 Saunders, G. W. 1993. Gel purification of red algal genomic DNA: An inexpensive and
- 627 rapid method for the isolation of polymerase chain reaction-friendly DNA. J.
- 628 *Phycol.* 29:251–4.
- 629 Schattner, P., Brooks, A. N. & Lowe, T. M. 2005. The tRNAscan-SE, snoscan and
- snoGPS web servers for the detection of tRNAs and snoRNAs. *Nucleic Acids Res.*33:686–9.
- 632 Setchell, W. A. 1914. Parasitic Florideae I. Univ. Calif. Publ. Bot. 6:1–34.
- 633 Setchell, W. A. 1918. Parasitism among the red algae. *Proc. Am. Philisophical Soc.*
- 634 57:155–72.
- 635 Setchell, W. A. 1918. Parasitism among red algae. *Proc. Am. Philisophical Soc.* 57:155–
 636 72.
- 637 Setchell, W. A. 1923. Parasitic Florideae II. Univ. Calif. Publ. Bot. 10:393–401.

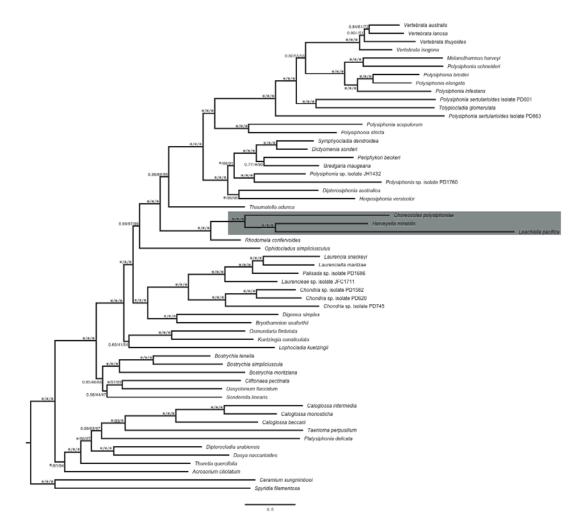
- 638 Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-
- 639 analysis of large phylogenies. *Bioinformatics*. 30:1312–3.
- 640 Sturch, H. H. 1899. *Harveyella mirabilis* (Schmitz & Reinke). *Ann. Bot.* 8:83–102.
- 641 Sturch, H. H. 1926. Choreocolax polysiphoniae, Reinsch. Ann. Bot. XL.
- 642 The UniProt Consortium. 2017. UniProt: the Universal Protein knowledgebase. *Nucleic*
- 643 *Acids Res.* 45:D158–69.
- 644 Vaidya, G., Lohman, D. J. & Meier, R. 2011. SequenceMatrix: Concatenation software
- 645 for the fast assembly of multi-gene datasets with character set and codon
- 646 information. *Cladistics*. 27:171–80.
- Verbruggen, H. & Costa, J. F. 2015. The plastid genome of the red alga *Laurencia*. J. *Phycol.* 51:586–9.
- 649 Wetherbee, R. & Quirk, H. 1982a. The fine structure of secondary pit connection
- 650 formation between the red algal alloparasite *Holmsella australis* and its red algal
 651 host *Gracilaria furcellata*. *Protoplasma*. 176:166–76.
- 652 Wetherbee, R. & Quirk, H. 1982b. The fine structure and cytology of the association
- between the parasitic red alga *Holmsella australis* and its red algal host *Gracilaria*
- 654 *furcellata*. *Protoplasma*. 165:153–65.
- 655 Wetherbee, R., Quirk, H. M., Mallett, J.E. & Ricker, R. W. 1984. The structure and
- 656 formation of host-parasite pit connections between the red algal alloparasite
- 657 *Harveyella mirabilis* and its red algal host *Odonthalia floccosa*. *Protoplasma*.
- 658 73:62–73.
- Zuccarello, G. C., Moon, D. & Goff, L. J. 2004. A phylogenetic study of parasitic genera
 placed in the family Choreocolacaceae (Rhodophyta). *J. Phycol.* 40:937–45.
- 661

662 Table 1. *Harveyella mirabilis* plastid genes and their function, which have been lost from

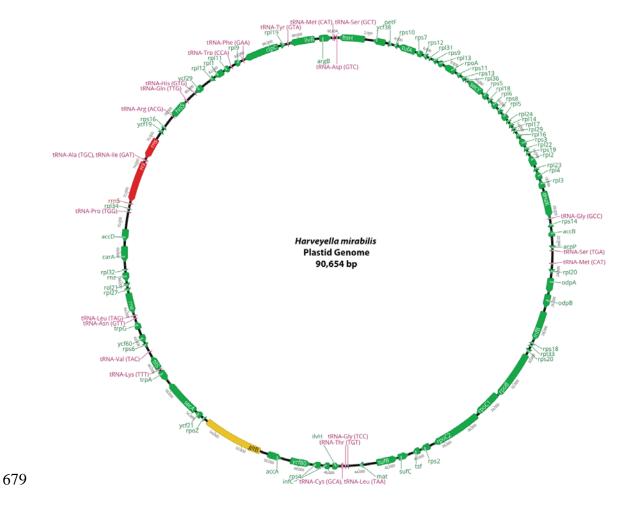
663 the *Choreocolax polysiphoniae* plastid genome.

664

Gene Name	Biological Process and Molecular Function
argB	Amino acid biosynthesis; ATP binding, acetylglutamate kinase activity
carA	Pyrimidine metabolism; ATP binding, carbamoyl-phosphate synthase
	(glutamine-hydrolyzing) activity
infB	Translation; Translation initiation, GTP binding
rpl9	Translation; structural constituent of the 50S ribosome
rpl17	Translation; structural constituent of the 50S ribosome
rpl24	Translation; structural constituent of the 50S ribosome
rpl32	Translation; structural constituent of the 50S ribosome
rpl33	Translation; structural constituent of the 50S ribosome
rpl34	Translation; structural constituent of the 50S ribosome
rpoZ	Transcription; DNA binding
rps18	Translation; structural constituent of the 30S ribosome
rps20	Translation; structural constituent of the 30S ribosome
ycf21	Uncharacterized hypothetical protein

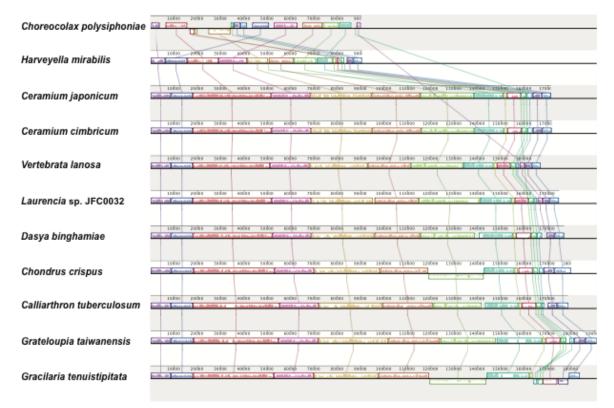

665

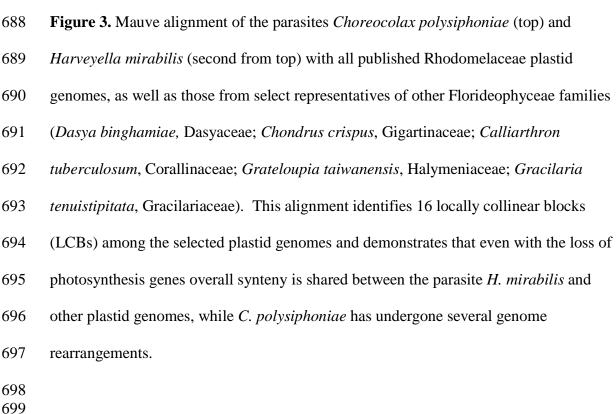
667 Table 2. Distinguishing features between Archaeplastic and Neoplastic parasites.

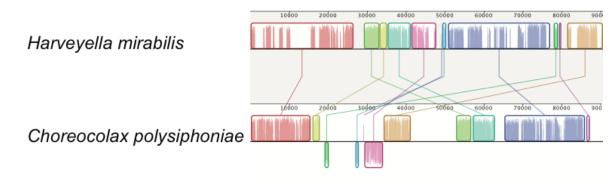

668

	Archaeplastic parasites	Neoplastic parasites
Evolutionary origins	Monophyletic clades	Independent evolutionary
		events
Proliferation through host	Mitotically dividing	Directly infect an individual
	rhizoidal filaments that	host cell and subsequently
	directly fuse with host cells	spread from host cell to host
		cell via cell fusions
Site of nuclear DNA	Mitotically dividing	Host derived heterokaryon
replication	parasite rhizoidal filaments	cells
Mitochondrion	Maintain complete and	Maintain complete and
	conserved native	conserved native
	mitochondrion	mitochondrion
Plastid	Retain a native plastid with	Utilize a host derived
	reduced genetic capacity	dedifferentiated plastid
	(loss of photosynthesis	which is incorporated into
	genes)	parasite spores

669


- 672 **Figure 1.** Maximum likelihood phylogeny of the parasites *Choreocolax polysiphoniae*,
- 673 Harveyella mirabilis, Leachiella pacifica, and 54 free-living members of the Ceramiales.
- This analysis provides full support for a clade of parasites arising within the
- 675 Rhodomelaceae. Support values shown as Bayesian posterior probability/RAxML
- 676 bootstrap/IQ-TREE UFboot.
- 677
- 678




680 Figure 2. The plastid genome of the parasitic red alga, *Harveyella mirabilis* is 90,654

basepairs and contains 84 protein-coding genes (Green), the 5S, 16S, and 23S rRNAs

- 682 (Red), and 23 tRNAs (Pink). All genes involved with photosynthetic functions, except
- 683 *pet*F, have been lost. The *fts*H gene is truncated but may still be transcribed, however
- 684 *glt*B is a non-functional pseudogene (Yellow).
- 685
- 686

- 700
- 701 **Figure 4.** Mauve alignment of the plastid genomes from the parasites *Harveyella*
- 702 *mirabilis* (top) and *Choreocolax polysiphoniae* (bottom). This alignment identifies 11
- 103 locally collinear blocks (LCBs) among these parasite plastid genomes, highlighting the
- high level of genome fragmentation and rearrangements evident in the two parasite
- 705 plastids.
- 706