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Abstract 

Genetic interactions have been reported to underlie phenotypes in a variety of systems, but the extent to 

which they contribute to complex disease in humans remains unclear. In principle, genome-wide 

association studies (GWAS) provide a platform for detecting genetic interactions, but existing methods for 

identifying them from GWAS data tend to focus on testing individual locus pairs, which undermines 

statistical power. Importantly, the global genetic networks mapped for a model eukaryotic organism 

revealed that genetic interactions often connect genes between compensatory functional modules in a 

highly coherent manner. Taking advantage of this expected structure, we developed a computational 

approach called BridGE that identifies pathways connected by genetic interactions from GWAS data. 

Applying BridGE broadly, we discovered significant interactions in Parkinson’s disease, schizophrenia, 

hypertension, prostate cancer, breast cancer, and type 2 diabetes. Our novel approach provides a general 

framework for mapping complex genetic networks underlying human disease from genome-wide 

genotype data. 
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     Genome-wide association studies (GWAS) have been increasingly successful at identifying 

single-nucleotide polymorphisms (SNPs) with statistically significant association to a variety of diseases
1-5

 

and gene sets significantly enriched for SNPs with moderate association
6-10

. However, for most diseases, 

there remains a substantial disparity between the disease risk explained by the discovered loci and the 

estimated total heritable disease risk based on familial aggregation
11-16

. While there are a number of 

possible explanations for this “missing heritability”, including many loci with small effects or rare 

variants
11-15,17

, genetic interactions between loci are one potential culprit
13,14,16,18,19

. Genetic interactions 

generally refer to a combination of two or more genes whose contribution to a phenotype cannot be 

completely explained by their independent effects
16,20,21

, For example, one example of an extreme genetic 

interaction is synthetic lethality, which is the case where two mutations, neither of which is lethal on its 

own, combines to generate a lethal double mutant phenotype. Genetic interactions allow relatively benign 

variation to combine and generate more extreme phenotypes, including complex human diseases
11-13,16,22

. 

While several studies have reported interactions between genetic variants in various disease contexts
20,23-26

, 

and though efficient and scalable computational tools have been developed for searching for interactions 

amongst genome wide SNPs
20,26-28

, discovering them systematically with statistical significance remains a 

major challenge. For example, recent work estimated through simulation studies that approximately 

500,000 subjects would be needed to detect significant genetic interactions under reasonable 

assumptions
16

, which remains beyond the cohort sizes available for a typical GWAS study or even the 

large majority of meta-GWAS studies. 
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     Genome-wide reverse genetic screens in model organisms have produced rich insights into the 

prevalence and organization of genetic interactions
29,30

. Specifically, the mapping and analysis of the yeast 

genetic interaction network revealed that genetic interactions are numerous and tend to cluster in highly 

organized network structures, connecting genes in two different but compensatory functional modules (e.g. 

pathways or protein complexes) as opposed to appearing as isolated instances
29,31-33

. For example, 

nonessential genes belonging to the same pathway often exhibit negative genetic interactions with the 

genes of a second nonessential pathway that impinges on the same essential function (Fig. 1A). Due to 

their functional redundancy, the two different pathways can compensate for the loss of the other, and thus, 

only simultaneous perturbation of both pathways would result in an extreme loss of function phenotype, 

which could be associated with either increased or decreased disease risk. Importantly, the same 

phenotypic outcome could be achieved by several different combinations of genetic perturbations in both 

pathways (e.g. A-X, A-Z, B-X, B-Y, B-Z, as summarized in Fig. 1B).This model for the local topology of 

genetic networks, called the “between pathway model” (BPM), has been widely observed in yeast genetic 

interaction networks
29,34

. Indeed, as many as ~70% of negative genetic interactions observed in yeast 

occur in BPM structures, indicating that genetic interactions are highly organized and this type of local 

clustering is the rule rather than the exception
31

. Combinations of mutations in genes within the same 

pathway or protein complex also exhibit a high frequency of genetic interaction, a scenario we refer to as 

the “within-pathway model” (WPM)
29,34

. Indeed, ~80% of essential protein complexes in yeast exhibit a 

significantly elevated frequency of within-pathway interactions
35

. In the context of human disease, this 

scenario may arise for an individual inheriting two variants in the same pathway, resulting in reduced flux 

or function of a particular pathway and an increase or decrease in disease risk. 
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     The prevalence of BPM and WPM structures observed in the yeast global genetic network has 

important practical implications that can be exploited to explore disease-associated genetic interactions in 

humans based on GWAS data. Although tests to identify interactions between specific SNP or gene pairs 

are statistically under-powered, we may be able to detect genetic interactions by leveraging the fact that 

pairwise interactions between genome variants are likely to cluster into larger BPM and WPM network 

structures similar to those observed in the yeast global genetic network. Indeed, other studies exploited 

similar structural properties to derive genetic interaction networks from phenotypic variation in a yeast 

recombinant inbred population
36

. We note that the method we propose here is also broadly similar to 

previous approaches that have used gene set enrichment or GO enrichment analysis to interpret SNP sets 

arising from univariate or interaction analyses
6-10,37-40

 or aggregation tests for rare variants
15,41,42

 (See 

Methods). Other existing approaches have successfully identified interactions by reducing the test space 

for SNP-SNP pairs, through either knowledge or data-driven prioritization
43-46

 (See Methods). However, 

to our knowledge, no existing method has been developed to systematically identify between-pathway 

interaction structures based on human genetic data, which is the focus of this study. 

Results 

BridGE: a novel method for systematic discovery of pathway level genetic interactions from GWAS 

     We developed a method called BridGE (Bridging Gene sets with Epistasis) to explicitly search for 

coherent sets of SNP-SNP interactions within GWAS cohorts that connect groups of genes corresponding 

to characterized pathways or functional modules. Specifically, although many pairs of loci do not have 

statistically significant interactions when considered individually, they can be collectively significant if 

there is an enrichment of SNP-SNP interactions between two functionally related sets of genes (Fig. 1B). 

Thus, we imposed prior knowledge of pathway membership and exploited structural and topological 

properties of genetic networks to gain statistical power to detect genetic interactions that occur between or 

within pathways in GWAS associated with diverse diseases. Our algorithm specifically focuses on 

identifying BPM stuctures, where two distinct pathways are bridged by several SNP-level interactions 
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connecting them, as well as WPM structures, where interactions densely connect between SNPs linked to 

genes in the same functional module or pathway. 

     Our approach involves five main components (See Methods, Fig. 1C): (I) Data processing 

consisting of sample quality control and adjustment for population substructure between the cases and 

controls to avoid false discoveries due to population stratification
47,48

. Linkage disequilibrium (LD) was 

also accounted for by pruning the full set of SNPs into a subset, as LD could otherwise result in spurious 

BPM structures. (II) SNP-SNP interaction networks were constructed based on SNP-SNP interactions 

scored under different disease model assumptions (additive, recessive, dominant, or combined recessive 

and dominant models). The additive disease model was implemented as previously described, and 

SNP-SNP interaction scores were derived based on likelihood ratio tests for models with and without an 

interaction term
20

. Interactions based on recessive and dominant disease models were estimated using a 

hypergeometric-based metric that directly tests for disease association for individuals that are either 

homozygous (recessive and dominant models) or heterozygous (dominant only) for the minor allele at two 

loci and compares the observed degree of association to the marginal effects of both loci. (III) The 

SNP-SNP network was thresholded by applying a lenient significance cutoff to generate a low-confidence, 

high-coverage SNP-SNP interaction network. This binary network is expected to contain a large number 

of false positive interactions, but it enables assessment of the significance of SNP-SNP interactions 

collectively at the pathway level. (IV) Pairs of pathways (for BPMs) or single pathways (for WPMs), as 

defined by curated functional standards
49-51

, were tested for enrichment of SNP-SNP pair interactions 

connecting between them (or within the single pathway) with a chi-squared test, compared to both the 

global interaction density (       
 ) and the marginal interaction density of the two pathways (      

 ), as 

well as a permutation test (     ) conducted by randomly shuffling the SNP-pathway assignment. These 

tests produced three statistics to measure the significance of each candidate BPM or WPM. (V) Finally, a 

sample permutation strategy was applied to estimate false discovery rate, to correct for multiple 

hypothesis testing and assess the significance of the candidate BPMs or WPMs. Multiple hypothesis test 
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correction is conducted only at the level of pathway or pathway pairs; the number of hypothesis tests 

performed for all possible pathways and all possible between-pathway combinations is substantially less 

than the number of tests for all possible SNP pairs (~10
5 
as compared to ~10

11
), which increases our power 

for discovering interactions relative to approaches that operate on individual SNP-SNP interactions. As 

part of BridGE, in addition to discovering BPM and WPM structures, we can also identify individual 

pathways that have significantly elevated marginal density of SNP-SNP interactions even where the 

interaction partners do not necessarily have clear coherence in terms of pathways (called PATH structures, 

See Methods). In this case, we are not focused on pathway-pathway interactions but simply assess whether 

a particular pathway is a highly connected hub and associated with numerous SNP-level interactions. 

These five steps enabled us to extract statistically significant pathway-level interactions that can be 

associated with either increased risk of disease when pairs of minor alleles linked to two pathways occur 

more frequently in the diseased population or, conversely, decreased risk of disease when pairs of minor 

alleles annotated to two pathways occur more frequently in the control population.  

Discovery of between-pathway interactions in a Parkinson’s disease cohort 

     We first applied BridGE to identify between pathway interactions in a genome-wide association 

study of Parkinson’s disease (PD)
52

, denoted as PD-NIA (Supplementary Table 1). Recent work estimated 

a substantial heritable contribution to PD risk across a variety of GWAS designs (20%~40%)
53,54

, and 

although a relatively large number of variants have been individually associated with PD, the loci 

discovered to date explain only a small fraction (6%–7%) of the total heritable risk 
53

. The PD-NIA cohort 

used in this analysis consists of 519 patients and 519 ancestry-matched controls after balancing the 

population substructure (See Methods). We compiled a collection of 833 curated gene sets (MSigDB 

Canonical pathways)
55

 representing established pathways or functional modules from KEGG
49

, BioCarta
50

 

and Reactome
51

 (Supplementary Table 2) and found that 658 of these pathways were represented in the 

PD-NIA cohort after filtering based on gene set size (minimum: 10 genes or SNPs, maximum: 300 genes 

or SNPs). After using both SNP-pathway membership permutations (NP=150,000) and sample 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182741doi: bioRxiv preprint 

https://doi.org/10.1101/182741
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

permutations (NP=10) to establish global significance and correct for the multiple hypotheses tested (See 

Methods), BridGE reported 173 total significant BPMs at a false discovery rate (FDR) of   0.25 

(                  using a combined disease model (QQ plot in Fig. 2A, Supplementary Table 3). 

Due to overlap among the pathways, these could be summarized by a less redundant set of 23 BPMs 

involving 32 unique pathways (a maximum overlap coefficient of 0.25, Fig. 3, Supplementary Table 4, 

See Methods). Some of the identified BPMs persisted at even the most stringent FDR cutoffs (FDR   

0.05). For example, a high confidence BPM was identified between the Golgi associated vesicle 

biogenesis gene set and FcεRI signaling. More specifically, we observed 2281 SNP-SNP interactions 

between the vesicle biogenesis and FcεRI signaling gene sets (Fig. 2B), which is 1.5-fold higher than the 

expected number of SNP-SNP interactions (1510) based on the global density SNP-SNP interaction 

network and 1.3- and 1.2-fold higher than expected given the marginal density of the two pathways (5.9% 

and 6.5%), respectively (         
           ,         

           ,               , Fig. 

2C). In contrast to the significance of this BPM, none of the individual SNPs supporting this BPM were 

significant on their own after multiple hypothesis correction based on single-locus tests on this cohort (Fig. 

2B). Furthermore, none of the individual SNP-SNP interactions between the two pathways were 

significant when tested independently under an additive disease model (Fig. 2D, FDR ≥0.94), or recessive 

or dominant models (See Methods) (Supplementary Fig. 1). Thus, the variants involved in this 

pathway-pathway interaction observed in the Parkinson’s disease PD-NIA cohort, would be missed based 

on traditional univariate analysis or interaction tests that focus on individual SNP pairs, but were highly 

significant when assessed collectively by BridGE.  

     Furthermore, few of the pathways that we discovered as parts of significant BPMs (Fig. 3, 

Supplementary Table 4) would be discovered using approaches based on pathway enrichment tests of 

single locus effects
6,7

. For example, only three pathways were enriched among the single-locus effects 

associated with PD (Golgi associated vesicle biogenesis, Clathrin-derived vesicle budding and the Rac-1 

cell motility signaling pathway; Supplementary Table 5) at the same FDR applied to the discovery of 
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BPMs (FDR   0.25), and only one of these was represented as part of a BPM identified by our analysis 

(Supplementary Table 4). We failed to identify any of the remaining 31 BPM-involved pathways through 

gene set enrichment analysis of single locus effects. 

Strikingly, the large majority (22 of 23) of discovered BPMs were associated with decreased risk for 

Parkinson’s disease (Fig. 3). This may suggest that, in the case of Parkinson’s disease, genetic interactions 

may be more frequently associated with protective effects, or alternatively, simply that there is more 

heterogeneity across the population in genetic interactions leading to increased risk, which would limit our 

ability to discover such interactions. Several BPM interactions were highly relevant to the biology of 

Parkinson’s disease. In particular, the FC epsilon receptor I (FcεRI) signaling pathway represented a hub 

in the pathway interaction network (Fig. 3). FcεRI is the high-affinity receptor for Immunoglobulin E and 

is the major controller of the allergic response and associated inflammation. In general, immune-related 

inflammation has been frequently associated with Parkinson’s disease and several immuno-modulating 

therapies have been pursued, but it remains unclear whether this is a causal driver of the disease or is 

rather a result of the neurodegeneration associated with disease progression
56,57

. There has been relatively 

little focus on the specific role of FcεRI in Parkinson’s, but recent observations support the relevance of 

this pathway to the disease
58

. For example, Bower et al. reported an association between the occurrence of 

allergic rhinitis and increased susceptibility to PD
59

. Furthermore, reduction of IL-13, one of the cytokines 

activated by FcεRI and a member of the FcεRI signaling pathway, was shown to have a protective effect 

in mouse models of PD
60

, and galectin-3, which is known to modulate the FcεRI immune response, was 

shown to promote microglia activation induced by α-synuclein, a cellular phenotype associated with 

PD
61,62

. These observations indicate that a hyperactive allergic response may predispose indviduals to PD, 

and suggest that protective interactions reported by our method may result from variants that subtly reduce 

the activity of this pathway. Aberrant events in the Golgi and related transport processes have been known 

to play an important role in the pathology of various neurodegenerative diseases, including Parkinson’s 

disease
63,64

. Also, glycolytic and gluconeogenic metabolic intermediates have been found to be 

cytoprotective against 1-methyl 4-phenylpyridinium (MPP+) ion toxicity in Parkinson’s disease
65

. Our 
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BridGE approach also identified three protective interactions involving the IL-12 and STAT4 signaling 

pathway, a pro-inflammatory cytokine that plays a major role in regulating both the innate and adaptive 

immune responses
66

. Specifically, microglial cells both produce and respond to IL-12 and IFN-gamma, 

and these comprise a positive feedback loop that can support stable activation of microglia
67,68

, a hallmark 

of Parkinson’s disease, particularly in later stages
69-73

. The prevalence of the FcεRI and IL-12 interactions 

among the discovered interactions suggests a major role for immune signaling as a causal driver of PD. 

     In addition to significant between-pathway interactions, we also discovered 3 significant WPMs 

associated with Parkinson’s disease risk: golgi-associated vesicle biogenesis (         
             , 

        
             ,               , and         ), collagen mediated activation cascade 

(         
             ,         

             ,               , and         ), and the HCMV 

and MAP kinase pathway (         
             ,         

            ,               , and 

        ) (Fig. 3, Supplementary Table 4). In all three cases, minor allele combinations within the 

pathways were associated with decreased risk of PD. All three of these pathways were also implicated in 

high confidence protective BPM interactions with other pathways suggesting they play important roles in 

PD risk.  

 

Replication of pathway-pathway interactions in an independent Parkinson’s disease cohort 

     To validate our findings, we determined if the BPM interactions discovered in the PD-NIA cohort 

could be replicated in an independent PD cohort (PD-NGRC)
74

; 1947 cases and 1947 controls, all of 

European ancestry; subjects overlapping with PD-NIA cohort were removed). Indeed, 8 of the 173 total 

BPM interactions discovered in the PD-NIA cohort were nominally significant in the PD-NGRC based on 

all three significance criteria (         
        ,         

        ,           ) (See Methods). To assess 

the significance of this level of replication across the entire set of discoveries, we compared the number of 

observed replicated BPMs at several different FDR cutoffs to the number expected by chance, which was 

estimated based on 10 random sample permutations of the validation cohort (See Methods). Indeed, this 
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analysis confirmed that the discovered interactions replicated more frequently than expected (Fig. 4A, 

Supplementary Table 6). For example, at an FDR cutoff of 0.05, the number of replicated BPMs was ~7 

fold higher than expected (p = 0.02). BPMs identified at more stringent FDR cutoffs showed a stronger 

tendency to replicate in the independent cohort (Fig. 4A, Supplementary Table 6), including the 

top-ranked BPM interaction we discovered between Golgi associated vesicle biogenesis and the FC 

epsilon receptor I (FcεRI) signaling pathway. Intriguingly, another between-pathway interaction for the 

FcεRI signaling pathway, with a Glycolysis/gluconeogenesis gene set, also replicated (Supplementary 

Table 6). 

     While we confirmed replication of a significant fraction of the discovered interactions at the 

pathway level, this does not necessarily imply that the individual SNP pairs supporting these 

pathway-level effects are shared across cohorts. For the 8 BPMs that were validated in the PD-NGRC 

cohort, we evaluated the significance of the overlap between the specific SNP-SNP pair interactions 

supporting each of the validated BPMs in the PD-NIA and the PD-NGRC cohorts and contrasted the 

observed overlap to comparable statistics from 10 random sample permutations of the PD-NGRC cohort. 

Several individual BPMs exhibited significant overlap in their supporting SNP-SNP interactions, and 

collectively, the set of 8 replicated BPMs were strongly shifted toward higher than expected SNP-SNP 

interaction overlap (See Methods) (          ) (Fig. 4B, see Supplementary Table 6 for a list of 

SNP-SNP pairs in common across cohorts). However, despite statistically significant overlap among 

SNP-SNP interactions identified in replicated BPMs, the extent of the observed overlap in terms of 

fraction of pairs was relatively low for most cases, with all of them exhibiting an overlap coefficient of 

less than 0.15 (See Methods) (Fig. 4C). Thus, the same pathway-pathway interaction may be supported by 

different sets of SNP-SNP interactions in different populations, or alternatively, this may reflect that the 

power for reliably pinpointing specific locus pairs is limited. In either case, these results highlight the 

primary motivation for our method: genetic interactions, in particular those in a BPM structure, can be 

more efficiently detected from GWAS when discovered at a pathway or functional module level rather 

than at the level of individual genomic loci. 
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Discovery of pathway-level genetic interactions in five other diseases 

     We applied BridGE more broadly to an additional twelve GWAS cohorts representing seven 

different diseases (Parkinson’s disease, schizophrenia, breast cancer, hypertension, prostate cancer, 

pancreatic cancer and type 2 diabetes)
75-80

 (Supplementary Table 1) (See Methods). Including PD-NIA, of 

the thirteen cohorts, analysis of eleven cohorts (covering six different diseases) resulted in significant 

discoveries for at least one of the three types of interactions (BPM, WPM or PATH) at FDR   0.25. 

More specifically, significant BPMs were discovered for eight cohorts (covering six different diseases), 

significant WPMs for six cohorts (covering four different diseases) and significant PATH structures for 

six cohorts (covering three different diseases) at FDR   0.25 (Fig. 5, Fig. 6A, Supplementary Tables 

S7-S20). The number of interaction discoveries per cohort varied substantially, from as low as two in one 

of the schizophrenia cohorts to as many as 50 interactions in one of the breast cancer cohorts. While we 

tested multiple disease models (additive, dominant, recessive, and combined dominant-recessive), the 

most significant discoveries for the majority of diseases examined were reported when using a dominant 

or combined model as measured by our SNP-SNP interaction metric (See Methods). The relative 

frequency of interactions under a dominant vs. a recessive model may be largely due to our increased 

power to detect interactions between SNPs with dominant effects compared to recessive effects (See 

Methods). 

We obtained appropriate replication cohorts for three additional diseases beyond Parkinson’s 

disease, including prostate cancer, breast cancer and schizophrenia, and were able to successfully replicate 

discovered genetic interactions for all three diseases (Supplementary Table 21 replication summary). For 

example, three of eleven BPMs (FDR 0.25) discovered in the ProC-CGEMS prostate cancer cohort were 

replicated in the ProC-BPC3 cohort (7.5-fold enrichment, p = 0.01) while three of ten WPMs discovered 

from the ProC-BPC3 cohort (FDR 0.25) could be replicated in ProC-CGEMS (3-fold enrichment, p = 

0.0001). For breast cancer, six of 108 significant BPMs (FDR   0.20) discovered from the BC-MCS-JPN 

cohort replicated in the BC-MCS-LTN cohort (2-fold enrichment, p = 0.07) and the sole significant PATH 
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interaction discovered from the BC-MCS-LTN cohort replicated in the BC-MCS-JPN cohort. For 

schizophrenia, one of eight signficant BPMs discovered from the SZ-GAIN cohort replicated 

(fold-enrichment > 10, p = 0.02), and the top significant WPM (FDR   0.1) also replicated in the 

SZ-CATIE cohort. 

     The vast majority of the genetic interactions we discovered appear to be disease-specific (Fig. 5, 

Supplementary Table 7), and many of the pathways implicated in genetic interactions showed strong 

relevance to the corresponding disease. For example, we identified several cancer-related gene sets 

involved in replicated BPMs predicted to affect breast cancer risk, including p53 signaling, a basal cell 

carcinoma gene set, as well as an increased-risk interaction between MTA-3 related genes and T cell 

receptor activation initiated by Lck and Fyn. MTA-3 is a Mi-2/NuRD complex subunit that regulates an 

invasive growth pathway in breast cancer
81

, and Lck and Fyn are members of the Src family of kinases 

whose expression have been found to be associated with breast cancer progression and response to 

treatment
82-84

.  

     We also identified and replicated multiple prostate cancer risk-associated interactions that involved 

DNA repair, PD-1 (Programmed cell death protein 1) signaling, and insulin regulation pathways. 

Consistent with our findings, metabolic syndrome has been recently associated with prostate cancer
85

, and 

serum insulin levels have been shown to correlate with risk of prostate cancer
86

. We also identified a 

replicating interaction associated with decreased risk of prostate cancer between the p38 MAPK signaling 

and AKAP95 chromosome dynamics pathways. P38 MAPK signaling has been associated with a variety 

of cancers
87

, and AKAP95 is an A kinase-anchoring protein involved in chromatin condensation and 

maintenance of condensed chromosomes during mitosis
88

 whose expression has been previously 

implicated in the development and progression of rectal and ovarian cancers
89

. We also discovered and 

replicated two WPMs associated with prostate cancer risk. The first involves the antigen processing and 

presentation pathway (associated with increased risk) and a second involving a gene set associated 

activation of ATR in response to replication stress (associated with decreased risk). Both of these 

pathways have strong relevance to cancer risk
90,91

. 
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     For schizophrenia, we discovered and replicated a BPM interaction comprising a gene set associated 

with the HIV life cycle and a vitamin and cofactor metabolism pathway. Interestingly, a recent large 

Danish schizophrenia study reported that schizophrenia patients are at a 2-fold increased risk of HIV 

infection, and conversely, that individuals infected with HIV exhibited increased risk of schizophrenia, 

especially in the year following diagnosis
92

. Our finding suggests a common genetic basis between risk 

factors for schizophrenia and host response to the HIV virus, which may help to explain the observed 

co-morbidity of these diseases. We also discovered and replicated a protective WPM for schizophrenia in 

the nicotinate and nicotinamide metabolism pathway. Nicotinic acid (vitamin B3) supplements have been 

pursued as a treatment for schizophrenia dating back to the 1950s
93

. Interestingly, after an initial series of 

reports of promising treatments, several follow-up studies had difficulty reproducing the beneficial effects 

of nicotinic acid
94

, which could be a result of modifier effects within this pathway.   

     Although we did not conduct replication analyses for hypertension or type 2 diabetes, we found that 

many of the pathways involved in interactions from the discovery cohorts were also highly relevant to the 

corresponding disease. For example, in the hypertension cohort, we identified a risk-associated BPM 

interaction involving hypoxia inducible factor (HIF) signaling, whose aberrant expression has been 

previously associated with hypertension
95

. Two BPMs and one WPM, all associated with increased risk, 

involved the Rho cell motility signaling pathway, which has been previously implicated in the 

pathogenesis of hypertension
96

. For type 2 diabetes, we discovered BPMs associated with protective 

effects involving an autoimmune thyroid disease gene set, glycosaminoglycan biosynthesis, and the 

mTOR signaling pathway, all of which have strong links to diabetes
97-99

. In summary, BridGE was able to 

detect all possible types of pathway-level genetic interactions (BPM, WPM and PATH) across several 

diverse disease cohorts, highlighting the utility of our method and the potential for genetic interactions to 

underlie complex human diseases. 

 

Simulation study to evaluate the power of BridGE approach 
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Several of our results indicate that the additional power gained by aggregating SNPs connecting between 

or within pathways is critical for discovering genetic interactions from GWAS, at least based on the 

cohort sizes analyzed here. To fully explore the limits of our approach, we carried out a simulation study 

to estimate the statistical power afforded by the BridGE method with respect to sample size, interaction 

effect size, minor allele frequency, and pathway size, all of which should affect the sensitivity of detection 

of pathway-level genetic interactions. 

     We focused our power analysis on the detection of BPMs, which comprise most of our discoveries. 

Briefly, our simulations involved two components: one in which individual SNP-SNP pairs were 

embedded in a simulated population cohort with varying allele frequency 
100

, and another component that 

simulated the rate of detection of increasingly larger BPM interaction structures given the corresponding 

level of false positives in the SNP-level network as determined by the first component (See Methods). 

Indeed, we found that each of the evaluated parameters (sample size, interaction effect size, minor allele 

frequency, and pathway size) affected the power of our approach (Fig. 6B). As expected, the sensitivity of 

our method increases with increasing pathway size, which is a key motivation for the approach. For 

example, our power analysis indicated that a minimum cohort size of 5000 individuals (2500 cases, 2500 

controls) is required to detect a 25×25 BPM (i.e. two interacting pathways with 25 SNPs mapping to each 

pathway) that confers a 2X increase in risk with a minor allele frequency (MAF) of 0.05 (FDR < 25%) 

while a 300x300 BPM with the same effect size would require only 1000 individuals (500 cases, 500 

controls) for detection at the same level of significance (simulation results for more stringent FDR cutoffs). 

As expected, the sensitivity of the approach also increases for interactions involving SNPs with higher 

MAF. For example, the same 25x25 BPM involving variants at MAF of 0.15 conferring 2X increase in 

risk can be detected from cohorts as small as 2000 individuals (1000 cases, 1000 controls), and a 300x300 

BPM with these characteristics could be detected from a cohort as small as 500 individuals (250 cases, 

250 controls). A key parameter affecting these power estimates is the assumed biological density of 

interactions, which we define as the fraction of SNP-SNP pairs crossing two pathways of interest that 

actually have a functional impact on the disease phenotype relative to all possible SNP-SNP pairs. We 
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assumed a density of 5% for the power analysis reported here (analysis based on 2.5% and 10% are 

included in Supplementary Fig. 2), meaning that the fraction of SNP-pairs that have the potential to jointly 

influence the phenotype comprise only a small minority of all possible SNP pairs. In practice, we 

anticipate that this frequency varies substantially across different pathways, depending on the frequency of 

functionally deleterious SNPs that are present in the population for each pathway. A higher density of 

functionally deleterious SNPs will result in higher sensitivity of our approach and vice versa, a lower 

density of functionally deleterious SNP combinations can substantially reduce the sensitivity of our 

approach (Supplementary Fig. 3). Notably, while statistical power increases with pathway size (i.e. 

number of SNPs mapping to each pathway), this is only true under the assumption that the SNPs (and the 

corresponding genes) actually contribute in a functionally coherent manner to the particular pathway or 

functional module. On the real disease cohorts, we discovered interactions for a large range of pathway 

sizes (Supplementary Fig. 4), suggesting there are even relatively small functional modules (e.g. less than 

20 associated SNPs) that have sufficiently strong interaction effects to be detected. In general, these power 

analyses confirm that our approach is sufficiently powered to discover pathway-level genetic interactions 

at moderate effect size (~1.5-2X increased/decreased risk) for relatively small cohorts (~1000 or more 

individuals), which suggests it could be broadly applied to discover interactions in hundreds of existing 

GWAS cohorts that have been previously analyzed using only univariate approaches
101

. 

 

Discussion 

     We described a novel and systematic approach for discovering human disease-specific, 

pathway-level genetic interactions from genome-wide association data. Results from eleven GWAS 

cohorts representing six different diseases confirmed that interaction structures prevalent in genetic 

networks of model organisms are indeed apparent in human disease populations and that these structures 

can be leveraged to discover significant genetic interactions either between or within biological pathways 

or functional modules. Genetic interactions discovered for these six diseases have the potential to 
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contribute substantially to our understanding of their genetic basis. For example, to date, there have been 

approximately 85 singly associated loci (p ≤1.0×10
-7

) and one genetic interaction (between FGF20 and 

MAOB) reported for Parkinson’s Disease
102,103

. Here, we discovered 23 more pathway level genetic 

interactions, emphasizing the potential of our approach to expand our knowledge of the contribution of 

genetic variation associated with diseases such as PD. Indeed, many of the pathways discovered by our 

approach have not been previously implicated in these diseases. For example, the median percentage of 

BridGE-identified pathways for which there was at least one linked SNP reported in dbGaP across the six 

diseases was 22% (Supplementary Table 22), indicating that the large majority of our discoveries 

represent novel insights that could not be made using standard single-locus approaches. 

     The are several ways the BridGE method could be expanded and improved upon to better detect 

genetic interactions. First, our approach currently depends on literature-curated collections of biological 

pathways as a major input. The potential of our method to detect genetic interactions within or between 

well-defined pathways and functional modules could be substantially improved as more complete curated 

or data-derived functional standards are developed and integrated with the approach, which will be a focus 

of future work. Second, to avoid spurious network structures related to SNPs that map to genes located in 

close physical proximity or linkage disequilibrium (LD), we sampled a conservatively sized subset of tag 

SNPs to run our analysis for each dataset. This conservative approach has undoubtedly missed functional 

variants that may contribute to disease risk. More sophisticated approaches for retaining a larger set of tag 

SNPs while still controlling for LD structure could improve the sensitivity of our method. Finally, we 

emphasize that our study focuses exclusively on detecting pathway level genetic interactions between 

common variants assayed by typical GWAS. Continued development to examine the contribution of rare 

variants or interactions between rare variants and other loci, or to leverage the full set of variants 

identified through whole-genome or exome sequencing represent logical extensions of the BridGE 

approach. 
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     Developing mechanistic or clinically actionable disease insights based on the genetic interactions 

we have discovered will require additional strategies that build on pathway-level discoveries to generate 

more targeted hypotheses, followed by functional studies in disease models. One potential strategy to 

generate more targeted hypotheses involves leveraging an approach like BridGE to find pathways with 

robust disease-associated genetic interactions followed by a more targeted search for individual SNP-SNP 

or gene-gene pairs within these pathways that explain these structures. Our analysis of the Parkinson’s 

cohort indicated that there is indeed significant overlap among the strongest SNP-SNP interactions 

underlying replicated pathway level interactions, supporting the potential utility of this hierarchical 

approach.  

     The extent to which genetic interactions contribute to the genetic basis of human disease has been 

the subject of recent debate
16,104,105

. This debate is in part fueled by differences in language among 

geneticists that regularly encounter physiological epistasis between specific alleles and statistical 

geneticists who instead study statistical epistasis, which measures the non-additive component of genetic 

variance in a population
104,106

. The target of our method is to discover disease-relevant physiological 

epistasis between sets of specific alleles in biological pathways based on population genetic data. Robust 

estimates of the additional heritability explained by pathway level genetic interactions discovered by our 

method will be a focus of future work, but we anticipate this still remains just one of many contributions 

to heritability. Even in cases where the contribution to disease heritability is modest, genetic interactions 

define genetically distinct disease subtypes and point toward new insights about disease mechanism that 

can seed the search for new, targeted therapies. Also, recent studies suggest that accurately predicting the 

phenotypes of individuals from genotypes can depend critically on understanding interactions between 

genetic loci
104,107

, and thus, progress in personalized genome interpretation and medicine depends on our 

understanding of how specific alleles interact to cause phenotypes. Our work establishes a new paradigm 

for approaching this problem and provides a systematic method for detecting genetic interactions that can 

be applied to existing population genetic data for a variety of human diseases. 
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Methods 

1. Brief Summary of existing methods 

Although efficient and scalable computational tools have been developed for searching for interactions 

amongst genome wide SNPs
26-28,108

, detecting them with statistical significance remains a major challenge.  

There are previous methods that have approached this problem, although from different perspectives than 

the method proposed here. We briefly summarize those methods and describe the novelty of our approach 

relative to this body of existing work.  

     Three general directions taken by previous methods for genetic interaction analysis that are the most 

similar to our approach are: (1) gene set enrichment-based approaches applied to loci derived from 

univariate tests, (2) gene set enrichment-based approaches applied to SNP-level summary statistics from 

interactions, and (3) methods that use pathways as a prior to study SNP or gene level interactions or reduce 

the number of hypothesis tests. 

(1) Gene set enrichment-based approaches applied to loci derived from univariate tests:  Gene set 

enrichment analysis (GSEA) was originally developed for case-control gene expression datasets
55,109

 but has 

previously been adapted to summarize sets of loci (and their linked genes) derived from univariate tests 

applied to GWAS datasets
6,7

. There are two key differences between these approaches and the method we 

propose. First, traditional approaches for GSEA start from univariate statistics of genes or SNPs, while our 

approach is built on interactions between pairs of SNPs that could have little or no single locus association 

with a disease phenotype. Second, approaches for GSEA target the enrichment of single gene/SNP 

associations in each individual pathway while our approach explores the enrichment of SNP-SNP 

interactions crossing each pair of pathways (between-pathway model or BPMs). 

(2) Gene set enrichment-based approaches applied to SNP-level summary statistics from interactions:  The 

gene set enrichment approach has also been applied beyond loci derived from univariate analysis. Another 

class of methods first measure genetic interactions based on pairwise SNP analysis, derive summary 

statistics at the individual SNP level based on specific interaction properties, and follow this with gene set 

enrichment analysis (GSEA) using pathway-associated SNP (or gene) interaction-based scores. For 
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example, one such approach was recently applied to a bipolar study and a sporadic Amyotrophic Lateral 

Sclerosis study
110,111

. In this study, whole genome SNPs were first filtered based on their ECML scores
112

 

and only the top 1000 SNPs with the strongest main effects and gene-gene interactions were retained for 

studying SNP-SNP interactions. Then, a SNP-SNP interaction network was constructed using a logistic 

regression model, and SNPs were ranked based on their network centrality in this network. Finally, 

candidate pathways were evaluated using a gene-set enrichment analysis based on pathway members’ 

rankings. A similar GO enrichment approach was applied to the sporadic Amyotrophic Lateral Sclerosis 

study
111

, but SNP interaction strength was first estimated using a multiple dimension reduction (MDR) 

model and then summarized at a gene by enrichment analysis. GO annotation enrichment approaches were 

then applied to these gene-level scores. Again, these studies have not introduced the key concept that 

motivates our method: that genetic interactions connect coherently across pairs of distinct pathways. 

(3) Methods that use pathways as a prior to study SNP or gene level interactions or reduce the number of 

hypothesis tests:  Another strategy implemented by other existing methods to address the multiple 

hypothesis testing challenge presented by pairwise SNP analysis is to reduce the number of hypothesis tests, 

based on a variety of different criteria
113

. These methods typically employ a filtering step, either data 

driven
43-45

 or knowledge driven
46,114

, before applying statistical analysis of interactions. Other illustrative 

examples of this class of approaches are from a recent autism spectrum disorder study where all possible 

SNPs were tested for interactions with the Ras/MAPK pathway
39

, and a melanoma risk study where 

SNP-SNP interactions were studied within the five pathways that are significant based on the traditional 

individual SNP based-GSEA analysis
40

. Most studies implementing this approach investigate interactions 

among a small set of genetic variants (genes or SNPs) that either statistically demonstrate evidence for 

individual association with the disease phenotype or are known to be relevant to the disease based on prior 

knowledge. Hence, systematic detection of genetic interactions among novel genes, or genes that show no 

marginal association will not be detected by these approaches. 

     In summary, existing approaches are related to the proposed approach in the general sense that they 

leverage existing knowledge of pathways or other sets of functionally related sets of genes to either perform 
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enrichment on univariate effects or interaction-based SNP summary statistics (e.g. interaction degree), or 

simply use pathways as a prior to reduce the number of SNP pairs tested for interactions. To our knowledge, 

no existing methods explicitly test for higher-level interactions connecting within or between multiple 

pathways and are sufficiently powered to perform this systematically across comprehensive pathway 

databases. 

2. Genome-wide association studies (GWAS) datasets 

Twelve GWAS datasets, representing 13 different cohorts covering seven diseases, were used in this paper: 

Parkinson’s disease (PD-NIA: phs000089.v3.p2, PD-NGRC: phs000196.v1.p1), breast cancer (BC-CGEMS-EUR, 

BC-MCS-JPN and BC-MCS-LTN: phs000517.v3.p1), schizophrenia (SCHZ-GAIN: phs000021.v3.p2; 

SCHZ-CATIE: CATIE study), hypertension (HT-eMERGE: phs000297.v1.p1; HT-WTCCC: cases are from 

EGAD00000000006, controls are from EGAD00000000001 and EGAD00000000002), prostate cancer 

(ProC-CGEMS: phs000207.v1.p1; ProC-BPC3: phs000812.v1.p1), pancreatic Cancer (.PanC-PanScan: 

phs000206.v3.p2) and Type 2 Diabetes (T2D-WTCCC: cases are from EGAD00000000009, controls are from 

EGAD00000000001 and EGAD00000000002). These data sets were obtained from three resources: dbGaP
101

, 

Wellcome Trust Case Control Consortium or the National Institute of Mental Health (NIMH)
115

. Details of each 

dataset (e.g. sample size, genotyping platform) are summarized in Supplementary Table 1. 

3. Data processing 

We used the same set of pre-processing steps for all GWAS data sets analyzed in this paper. Each of the steps is 

outlined in detail in the sections that follow. 

3.1 Sample quality control  

We first controlled data quality using the standard PLINK inclusion procedure with the following parameters: 0.02 

as the maximal missing genotyping rate for each individual/SNP (--mind, --geno), 0.05 as the minimum minor allele 

frequency (--maf), and 1.0      as the Hardy-Weinberg equilibrium cutoff (--hwe 1e-6).  

     To identify outlier samples that were not consistent with the reported study population, we mapped SNPs in 

each GWAS dataset to Genome Reference Consortium GRCh37
116

 and combined the samples with the 1000 

Genomes data
117

 (all ancestry groups). We then used PLINK to perform multi-dimensional scaling (MDS) analysis. 

Based on the MDS plot, we removed samples that were not tightly clustered with the corresponding ancestry groups 
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in the 1000 Genomes data. For the two Parkinson’s disease cohorts, we followed the previous study
118

 to remove 

samples that are likely outliers. For these cohorts, duplicate subjects were kept in just one cohort with priority given 

to PD-NIA over the PD-NGRC cohort, so that we could retain as many samples as possible for the smaller cohort.  

3.2 Population stratification  

Checking relatedness among individuals  

Relatedness among each pair of subjects was tested by calculating IBD
119

. For subject pairs with a proportion IBD 

score greater than 0.2, one was randomly chosen and removed from the data, and the other was kept.  

Matching population structure between cases and controls 

Because spurious allelic associations can be discovered due to unknown population structure
47,120,121

, recent GWAS 

analyses suggest the use of a procedure to ensure balanced population structure between cases and controls
119

. Here, 

all subjects were clustered into groups of size 2, each containing one case and one control that are from the same 

sub-population (based on pairwise identity-by-state distance and the corresponding statistical test), as is implemented 

in PLINK
119

.  

     Future extensions of our method could include parameters capturing population structure directly in the model 

for genetic interactions, for example, as is described in
122

 . The primary concern in developing and applying our 

current approach was to ensure that population structure was not introducing spurious between-pathway interactions, 

so we took this relatively conservative approach to adjust for population stratification. More sophisticated 

approaches could reduce the number of samples lost in filtering based on population stratification and improve the 

sensitivity of the method. 

3.3 Filtering SNPs in linkage disequilibrium (LD) 

For each data set, we selected all SNPs that could be mapped to at least one of the 6744 genes in the collection of 

pathways used in the pathway-pathway interaction search. A SNP was mapped to all genes that overlap with a +/- 

50kb window centered at the SNP, and then mapped to pathways to which the corresponding gene(s) were annotated. 

For the purposes of computing pathway-level statistics, a SNP was only associated once with each pathway, even if 

it mapped to multiple genes in the pathway. 

     To avoid the discovery of trivial bipartite structures, SNPs in linkage disequilibrium (LD) need to be removed 

before between or within-pathway enrichment of SNP-SNP interactions is conducted. Two general approaches can 
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be pursued towards this goal: 1) removing SNPs in LD before calculating pairwise SNP-SNP interactions; and 2) 

removing structures that emerge as a result of SNPs in LD after calculating pairwise SNP-SNP interactions.  

     The first alternative is more likely to miss informative SNP-SNP interactions than the second because it only 

considers a subset of all SNPs, but is more computationally efficient and scalable. It is worth noting that a 

biclustering algorithm pursuing the second approach was designed in
36

 to condense a yeast SNP-SNP interaction 

network into an LD-LD network. The algorithm described in that work took the SNP-SNP interaction matrix as input 

and searched for sets of consecutive SNPs that had a statistically significant number of across-set SNP-SNP 

interactions based on a hypergeometric test. The algorithm was applied on a yeast SNP-SNP interaction network 

(originally constructed in
123

) with 1977 SNPs, where the LD effect was assumed to be localized to less than 60 SNPs 

for computational reasons
1
. We attempted to apply this algorithm to the human genotype datasets used in this paper 

and observed that the algorithm could handle about 1500 SNPs with a threshold of σ below 60) but not beyond. For 

example, on a data set with 2000 SNPs, the program did not finish in two days with σ = 100. Given issues with 

scalability of this approach, we adopted the first alternative, which is to select a subset of SNPs that are not in LD. 

To accomplish this, we used a procedure in PLINK
119

 to select a subset of unlinked SNPs from each GWAS dataset, 

specifically “-indep-pairwise 50 5 0.1”. With this procedure, PLINK searches each window of 50 SNPs with a 

sliding step of 5 SNPs, and selects a subset of SNPs with pairwise r
2
 below 0.1 within each sliding window. After 

this procedure, ~15,000-20,000 SNPs were left in each dataset, and the highest r
2
 between any pair of SNPs within 

any window of 1Mb is lower than the commonly used threshold for controlling LD (r
2
 < 0.2)

7,124
, demonstrating that 

the LD was effectively controlled. Note that by using a stringent r
2
 threshold of 0.1, we are undoubtedly ignoring 

many informative SNPs. However, we chose this conservative approach to minimize the chance that spurious BPMs 

resulted from remaining LD structure. Future work that explores less conservative approaches to handling SNPs in 

LD would be worthwhile. 

     For diseases that we tested for replication of discovered interactions on independent cohorts of the same 

ancestry, to make the discovery and replication analysis consistent for these instances, cohorts were first combined 

and then processed using the procedures described above to select the subset of SNPs on which the analysis was run. 

After selection of SNPs, population stratification and discovery of interactions was then performed independently. 

We followed this procedure for three of the diseases analyzed, Parkinson’s disease, schizophrenia, and breast cancer. 
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For prostate cancer, our access to ProC-CGEMS and ProC-BPC3 was gained at different times, so SNPs used in 

ProC-BPC3 were selected based on the CGEMS cohort. A summary of all processed datasets used in this study is 

included in Supplementary Table 1. 

3.4 Selection of Pathways 

833 human pathways (gene sets) were collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
125,126

, 

Biocarta
127

, and Reactome
51

  (Supplementary Table 2). We excluded any pathway from our analysis with less than 

10 or more than 300 genes, or less than 10 or more than 300 SNPs, mapping to the pathway after LD control to avoid 

pathways that were too small to provide sufficient statistical power or too large to provide specific biological 

insights.  

4. SNP-SNP genetic interaction estimation 

MM, Mm and mm are used to denote the three genotypes of each SNP, i.e., majority homozygous, heterozygous and 

minority homozygous, respectively. Our method implements multiple disease models, which affect how interactions 

are estimated at the SNP-SNP interaction level. A minor allele (m) at each locus could be additive, dominant or 

recessive in the context of different diseases. For the additive model, we used the standard logistic regression-based 

model implemented in CASSI
28

 to quantify the interaction between two SNPs coded as follows, mm=2, Mm=1, 

MM=0. In this model, the goodness-of-fit was compared between a standard logistic regression model with an 

interaction term between the two loci of interest and a standard logistic regression without an interaction term, and 

the significance of the interaction was measured by a likelihood ratio test
28

. We refer to this type of SNP-SNP 

interaction as an additive-additive (AA) model based interaction. In the dominant model, a SNP is encoded as mm=1, 

Mm=1, MM=0. In the recessive model, a SNP is encoded as mm=1, Mm=0, MM=0. Because the minor allele could 

have recessive (R) or dominant (D) contribution to disease at two different loci comprising an interaction, four types 

of SNP-SNP interactions were examined: recessive-recessive (RR), dominant-dominant (DD), recessive-dominant 

(RD), and dominant- recessive (DR) model-based interaction for each pair of SNPs. The interactions under these 

four models can also be estimated by a logistic regression-based model similar to the AA case described above 

except with the appropriate encoding of the SNP genotypes. Alternatively, the RR, DD, DR and RD interactions can 

be estimated by explicit statistical tests (e.g. hypergeometric tests) of the association between a specific genotype 

combination of two SNPs and a disease of interest, where this association is compared to the association between 

each of the individual SNPs and the disease (marginal effect). Interactions estimated by logistic regression based 
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models directly capture non-additive effects between two SNPs considering different combinations of SNP 

genotypes. In contrast, interactions estimated by explicit statistical tests have the flexibility of specifically testing 

certain combinations of genotypes for association with the phenotype. We explored alternative approaches both in 

representing different disease models and in the estimation of SNP-SNP interactions, and found that RR, DD, DR 

and RD interactions estimated by explicit statistical tests more likely led to the discovery of significant BPMs/WPMs 

in the context of our BridGE approach. The measure we developed based on explicit statistical tests, called hygeSSI, 

is described in detail below. The relationship between hygeSSI and logistic regression based models is explored in 

more depth in section 8.  

4.1 hygeSSI 

We designed a hypergeometric-based measurement (hygeSSI) to estimate the interactions between two binary-coded 

SNPs (dominant or recessive as described above). The hypergeometric p-value for a pair of binary-coded SNPs with 

respect to a case-control cohort is calculated as follows: 

                                 

    
 
 
 
  

   
   

 

 
 
 
 

 

   

 

Where    and    are two SNPs; M is the total number of samples; N is the total number of samples in class C; K 

is the total number of samples that have genotype T; X is the total number of samples that have genotype T in class 

C. 

     We use           and           to represent the individual SNP    and   ’s main effects and             , 

            ,              and              to represent the effects of all pairs of combinations. With a 

nominal p-value threshold (      ), we first require a SNP pair to have significant association with the phenotype 

(              ). In addition, we specifically exclude instances where other allele combinations show significant 

association with the trait, i.e. we require:                ,                and               . 

Given a binary-coded SNP pair (     ) and a binary class label C, the following measure hygeSSI (Hypergeometic 

SNP-SNP Interaction) was defined to estimate the genetic interaction between two SNPs    and    (specifically 

for P11): 
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     As described in a recent comprehensive review
20

, algorithms based on logistic/linear regression, multifactor 

dimensionality reduction (MDR)
128

, entropy or information theory
129

 have been developed to measure genetic 

interactions. All of these approaches quantify the synergistic effect of SNP pairs by comparing the relative strength 

of the association between a pair of SNPs and a disease trait with the strength of the associations between two 

individual SNPs and the disease trait. A few of these alternatives were tested in the context of our method and did 

not provide the significant results we achieved with the metric above. We designed the above hygeSSI measure 

because it explicitly captures the interaction between combinations of specific genotypes of two loci. 

4.2 Construction of SNP-SNP interaction networks 

We constructed SNP-SNP interaction networks to serve as the basis for the pathway level BPM tests based on each 

of the disease model assumptions described above. An additive-additive (AA) interaction network was constructed 

by the described logistic regression based approach, where SNP-SNP edge scores were derived from the –log10 

p-value resulting from the likelihood ratio test. The recessive-recessive (RR) and dominant-dominant (DD) 

interaction networks were computed based on the hygeSSI metric described above, and only positive interactions 

were kept in the network (i.e. where the joint effect of the SNP-SNP pair under the corresponding disease model was 

stronger than any marginal or alternative combination of SNPs). In addition to the above three networks, we also 

constructed a hybrid SNP-SNP interaction network in which interactions under recessive and dominant disease 

model could coexist. To do this, we integrated all four networks (RR, DD, RD and DR) into a single network 

(RD-combined) by taking the maximum hygeSSI among the four interaction networks for each pair of SNPs.  

5. Measuring pathway-pathway interactions 

5.1 Estimating pathway-pathway interactions based on the SNP-SNP interaction network 

For each pair of pathways, we want to test if the number of SNP-SNP interactions between them is significantly 

higher than expected given the overall density of the SNP-SNP network as well as the marginal interaction density of 

the two pathways involved. enrichment analysis based on SNP-SNP interactions is much more computationally 

challenging, and thus we choose to binarize the hygeSSI values (based on a lenient threshold ) to make follow up 

computation efficient and scalable. After binarization, we divided the SNP-SNP interaction network into two 
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networks based whether the joint mutation of a SNP pair is more prevalent in the case or control group, which we 

refer to as the risk and protective networks, respectively.  

     For each pathway-pathway interaction, we first removed the common SNPs shared between two pathways. 

Then, we test if the observed SNP-SNP interaction density between two pathways is significantly higher than 

expected globally (the global network density) and locally (the marginal density of SNP-SNP interactions of the two 

pathways). Specifically, the marginal density of a pathway is calculated as the SNP-SNP interaction density between 

the SNPs mapped to the pathway and all other SNPs in the network. We computed a chi-square statistic to test 

differences from both global and local density, namely chi-square global (       
   and chi-square local (      

  . The 

chi-square test assumes the SNP-SNP interactions in a network are independent, which may not be true for a variety 

of reasons. So, in addition to these chi-square statistics, we use permutation tests to derive an empirical p-value for 

each pathway-pathway interaction. To do this, we randomly shuffled the SNP-pathway membership (NP = 

100,000-200,000 times), and for a given pathway-pathway interaction (    ), we compared its observed        
  

and       
  with the values from these random permutations (        

  and        
 ) to obtain a permutation-based 

p-value.  

            
          

         
                 

        
          

  
 

We used (     ) together with (       
 ) and (      

 ) for BPM discovery as further described in detail in the next two 

sections.  

5.2 Correction for multiple hypothesis testing 

Because a large number of pathway pairs (all possible pathway-pathway combinations) are tested in the search for 

significant BPMs, correction for multiple hypothesis testing is needed. To estimate a false discovery rate, we 

employed sample permutations (NP = 10 times) to derive the number of expected BPMS discovered by chance at 

each level of significance. We randomly shuffled the original case-control groups 10 times while maintaining the 

matched case-control population structure. For each permuted dataset, the same, complete pipeline for BPM 

discovery was performed, including calculation of the SNP-SNP interaction network after permutation, which was 

then thresholded at a fixed interaction density matching the density chosen for the real sample labels. From these 

sample permutations, we obtained three null distributions (        
 ,        

 , and        , from which we estimated the 

false discovery rate (FDR) for each BPM (e.g.,     ). Specifically, we compared the number of BPMs observed in 
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each real dataset that have better overall statistics than      with the corresponding random expectation estimated 

from the three null distributions derived from sample permutations (        
 ,        

 , and        : 

           
           

         
                 

        
                                 

          
         

                
        

                             
 

     A simpler approach to estimate FDR would be to use only the SNP permutation-based p-value,       , in the 

above formula. However, we chose to use all three measurements (       
 ,       

  and      ) because we observed 

that in some cases the permutation-based p-value alone did not provide enough resolution to differentiate among top 

BPMs (this could be improved with additional SNP permutations, but this is computationally expensive).         
  

and       
  provide higher resolution measures of significance of each BPM and, when combined with the 

permutation-based p-value, can differentiate among the top-most significant discoveries. 

We emphasize that we have used a hybrid permutation strategy to assess significance of the discovered structures. 

The primary permutation applied was to permute the SNP labels, for which 100,000-200,000 permutations were used 

for each dataset analyzed. The sample (case-control label) permutation approach mentioned above was used in 

addition to the SNP permutation strategy to estimate our false discovery rate across all discovered interactions. For 

each of the 10 sample permutations, we ran the full set of 100,000-200,000 SNP permutations. This hybrid approach 

provides a robust estimate of significance of the discovered pathway interactions and properly corrects for multiple 

testing. 

     We also conducted a study to explore the sensitivity of our FDR estimation on the number of sample 

permutations. Specifically, for the PD-NIA dataset, we performed 1000 sample permutations (and 200,000 SNP 

permutations within each of these) to derive an estimate of FDR for discoveries in this dataset (Supplementary Table 

25). As shown in Supplementary Fig. 5, the FDRs estimated from 10 sample permutations show reasonable 

agreement to FDRs estimated from 1000 sample permutations (Pearson’s correlation of 0.81). 

5.3 Selection of disease models and density thresholds 

The method we proposed for pathway-level detection of genetic interactions is general in the sense that any disease 

model (e.g. RR, DD, RD-combined, and AA) or interaction statistic could be used to discover pathway-level 

interactions. In this study, we focus on prioritizing a single disease model per disease cohort for full analysis by our 

pipeline to limit the complexity of data analysis across the 13 GWAS cohorts we explored with our method. Here, 

we describe the strategy we used to select the disease model to focus on for each GWAS dataset. 
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     To prioritize the disease model and SNP-SNP interaction network density threshold for each data set, we first 

performed a pilot experiment in which we examined combinations of different disease models and different density 

thresholds, but with fewer SNP permutations (Supplementary Table 23). To exclude SNP pairs with little or weak 

interactions from our analysis, we required each SNP pair’s hygeSSI score to be at least 0.2 before applying 

density-based binarization. For each combination, we  performed 10,000 SNP-pathway membership permutations 

(as compared to 100,000-200,000 for a complete run) to estimate FDRs using a similar procedure as that described in 

section 5.2, except that SNP permutations were used to estimate FDR instead of sample permutations, as sample 

permutations are much more computationally expensive. Based on this pilot experiment in each cohort, we chose the 

disease model and density threshold combination that resulted in the lowest estimated FDR for the top-most 

significant pathway-pathway interaction. The rationale of using such a pilot experiment is to identify the disease 

model that is most likely to discover significant pathway-level interactions while limiting the computational burden 

of applying our approach to several GWAS cohorts under multiple disease models. Based on these pilot experiments, 

which were performed for all 13 cohorts, we ran the complete BridGE pipeline, including 100,000-200,000 SNP 

permutations and 10 sample permutations with the disease model and network density threshold chosen from the 

pilot experiments. The results of pilot experiments for all cohorts are reported in Supplementary Table 23, and all 

full BPM discovery results for all diseases can be found in Supplementary Table 3 and 9-20 as well a summary in 

Suppementary Table 8. We note that for focused application of our approach on a single or small number of cohorts 

of interest, we would suggest exploring all possible disease models with complete runs.  

5.4 Replication in independent cohorts 

The significant BPMs discovered from one cohort could be evaluated in another independent cohort for replication. 

To determine if a discovered BPM was replicated in an independent cohort, we required the BPM to satisfy 

       
                ,       

               , and             on the validation cohort. We also performed 

sample permutation tests (NP=10) for each validation cohort, from which we could generate null distributions for  

       
 ,       

  and       in the validation cohort. Given a set of discovered BPMs (e.g. FDR   0.25), we 

calculated fold enrichment by comparing the number of BPMs discovered from the original dataset that passed the 

validation criteria to the  average number of BPMs that passed the same validation criteria in the random sample 

permutations. More specifically, given a set of significant BPMs (            which were discovered from original 

cohort, the fold enrichment for replication is defined as: 
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     We also evaluated the significance of the fold enrichment by 10,000 bootstrapped BPM sets. Specifically, we 

randomly selected the same number of BPMs and used the above procedure to evaluate the fold enrichment, and we 

repeated this for 10,000 times to generate a null distribution for the fold enrichment scores in the validation cohort. 

We then evaluated the significance of the fold enrichment score for our discovered BPM set based on this empirical 

null distribution. All replication results can be found in Supplementary Table 6 and 21. 

     For the BPMs that replicated in an independent cohort, we further checked if the SNP-SNP interactions 

supporting the discovered pathway-level interactions were similar between the cohort used for discovery and the 

independent cohort used for replication. For example, we used the BPMs discovered from PD-NIA (FDR   0.25) 

and for each BPM replicated in PD-NGRC, we computed the number of SNP-SNP interactions in common between 

the PD-NIA and PD-NGRC interaction networks as supporting interactions for the BPM. We used the same 

permutation approach as that described above for BPM-level validation except that the SNP-SNP interactions 

supporting each BPM were compared between the discovery and validation cohorts by a hypergeometric test. This 

was done for the real validation cohort PD-NGRC first and then repeated 10 times under sample permutations of the 

validation cohort to estimate a null distribution. A Wilcoxon’s rank-sum test was then used to evaluate the 

significance of the SNP-SNP interaction overlap between the replicated BPMs in the real validation cohort and in the 

random sample permuted validation cohorts (Fig. 4B). 

5.5 BPM redundancy 

Due to the fact that many of the curated gene sets overlap, we needed to control for redundancy in the discovered 

BPMs. To do this, in reporting total discoveries, we filtered BPMs based on their relative overlap in terms of 

SNP-SNP interactions using an overlap coefficient. The overlap coefficient between two BPMs is defined as the 

number of overlapping SNP pairs divided by the number of possible SNP pairs in the smaller BPM. 

    For the significant BPMs discovered, we computed all pairwise overlap coefficients and used a maximum 

allowed similarity score of 0.25 as a cutoff. We reported the number of unique BPMs based on the number of 

connected components. For visualization purposes (Fig. 3), we selected representative BPMs from each connected 

component, prioritizing BPMs that validated in the independent cohort (PD-NGRC) for visualization. Significance of 
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the validation of the set of BPMs was evaluated on the entire set of discovered BPMs using the permutation 

procedures described above, which directly accounts for the redundancy among the discovered BPMs. 

6. Measuring within-pathway interactions 

In addition to the between-pathway model (BPM), we also tested for enrichment of genetic interactions within each 

pathway
34

 (within-pathway models, WPMs). All of the measures and procedures described above for BPMs apply 

directly to the WPM case, only we specifically look at SNP pairs connecting genes within the same pathways/gene 

sets instead of between pathway pairs. For WPMs, the false discovery rate and validation statistics were computed 

separately from BPMs. All WPM discovery results can be found in Supplementary Table 3, 9-20. 

7. Identifying pathway hubs in the SNP-SNP interaction network  

Since both “between-pathway model” and “within-pathway model” analysis have been designed to avoid discoveries 

caused by the higher marginal interaction density of the individual pathways, pathways that are frequently interacting 

with many loci across the genome (as opposed to localized interactions with functionally coherent gene sets) are less 

likely to appear in our pathway-pathway or within-pathway interactions. However, such pathways may also be 

disease relevant as they reflect pathways that modify the disease risk associated with a large number of other variants, 

so we also report pathways exhibiting these characteristics with BridGE (we refer to these as “PATH” discoveries in 

BridGE output files). For PATH discovery, the procedure is similar to that for BPMs and WPMs, with a minor 

modification to the scoring of each pathway. Specifically, each pathway is represented by a vector of 

pathway-associated SNPs’ degrees in the SNP-SNP interaction network. We then applied a one-tailed rank-sum test 

to compare each pathway-associated degree vector with the non-pathway-associated degree vector to see if the 

PATH associated SNPs exhibited significantly more interactions than the entire set of SNPs. PATH discovery and 

validation is then done by repeating the same steps as BPM/WPM discovery but replacing the         
  and       

  

statistics with the rank-sum test p-value (in        scale). All PATH discovery results can also be found in 

Supplementary Table 3 and 9-20. Many of these also have clear relevance to the disease cohort in which they were 

discovered. For example, applying BridGE to discover such hub pathways in the context of Parkinson’s disease 

resulted in 3 significant pathways after removing redundancy (FDR ≤ 0.25), including the same Golgi-associated 

vesicle biogenesis gene set as well as the IL-12 and STAT4 signaling pathway (Biocarta) discussed in the main text. 
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8.  Comparison of hygeSSI interactions with logistic regression-based interactions 

We examined if the interactions captured by hygeSSI were non-additive as measured through a standard logistic 

regression-based interaction measure. We applied the logistic regression model on the PD-NIA data and computed 

RR, DD, RD and DR interaction networks (binary encoding as described earlier). We also integrated these 4 logistic 

regression-based networks to form an RD-combined network. Then we checked (1) if the top SNP-SNP interactions 

based on hygeSSI were significant (p≤0.05) in logistic regression based tests, and (2) if the significant BPMs 

discovered from a hygeSSI interaction network show significance (         
        ,         

       , and  

          ) based on SNP-SNP interactions estimated from logistic regression. This analysis revealed that among 

the top 1% hygeSSI interactions, 93% are significant based on a logistic regression-based test for interaction. And 

for the significant BPMs (FDR≤0.05), 100% of them are also significant if only SNP-SNP interactions also 

supported by a logistic regression model are considered. These data suggest SNP-SNP interactions captured by 

hygeSSI do represent non-additive interactions as defined based on a logistic regression model. Detailed results from 

this comparison can be found in Supplementary Table 24. Further evaluation of different disease models and 

different measures for estimating SNP-SNP interactions in the context of BridGE will be the focus of future work. 

9. Evaluation of significance of individual SNP-SNP interaction tests 

For SNP-SNP pairs that supported the between-pathway interaction reported in Fig. 2B, we checked the statistical 

significance of SNP-SNP interaction pairs tested individually. We measured all pairwise additive-additive (AA), 

recessive- recessive (RR), dominant-dominant (DD) interactions. We then performed a permutation test in which 

sample labels were permuted 10 times and for each permutation, all pairwise AA, RR, DD interactions were 

computed for each SNP pair. These permutations were used to estimate a false discovery rate (FDR) for those 

SNP-SNP pairs supporting the reported BPM. No individual SNP-SNP pairs were significant after FDR-based 

multiple hypothesis correction (Fig. 2D, Supplementary Fig. 1). 

10. Pathway enrichment analysis of single locus effects 

To check if the pathways involved in the significant BPMs discovered in PD-NIA were enriched for SNPs with 

moderate univariate association with Parkinson’s disease, we performed single pathway enrichment analysis for the 

same set of 685 pathways used for BPM discovery. In the single pathway enrichment analysis, we used a 

hypergeometric test as the SNP-level statistic for measuring univariate association (risk and protective associations 

were evaluated separately) for three different disease models: 1) recessive; 2) dominant, and 3) a combination of 
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recessive and dominant, in which each SNP were tested for both recessive and dominant disease models and the 

more significant one assigned to each SNP. We then used Wilcoxon’s rank-sum test to check if a pathway was 

enriched for SNPs with higher association than the background (all SNPs). With 10,000 sample permutations, we 

computed FDR for each individual pathway (both risk and protective associations) by using same procedure 

described in 5.2. The results are summarized in Supplementary Table 5. 

11. Comparison of pathways discovered by BridGE with previously reported disease risk loci from 

the GWAS catalog 

To check if previous singly-associated SNPs also appear in our discovered pathway-level interactions, we compared 

our BridGE-discovered pathways with pathways that could be linked to disease risk loci reported in NHGRI-EBI 

GWAS catalog
130

 (Ensembl release version 87, retrieved on Feb 6, 2017). Based on the GWAS catalog, the numbers 

of genes linked to known risk loci (p≤2.0 x 10
-5

) in each disease are: 143 (144 SNPs, Parkinson’s disease), 1009 (824 

SNPs, Schziophrenia), 134 (172 SNPs, Breast cancer), 71 (57 SNPs, Hypertension), 249 (234 SNPs, Prostate cancer) 

and 294 (288 SNPs, Type II diabetes). For each disease, we summarized all pathways that were discovered by 

BridGE (FDR ≤ 0.25) and identified pathways that were implicated by individually associated SNPs reported in the 

GWAS catalog (a SNP mapping to a single gene in a given pathway was assumed to implicate the corresponding 

pathway). For context, for each disease, we also summarize the total number of genes implicated by 

GWAS-identified SNPs, how many these  map to the 833 pathways we used in our study, and how many of them 

can be linked to the significant pathways identified by BridGE. These results are presented in Supplementary Table 

22. 

12. Dependence of interaction discoveries on the assumed disease model 

While we tested multiple disease models (additive, dominant, recessive, and combined dominant-recessive), the most 

significant discoveries for the majority of diseases examined were reported when using a dominant or combined 

model as measured by our SNP-SNP interaction metric
131

. The relative frequency of interactions under a dominant vs. 

a recessive model may be largely due to our increased power to detect interactions between SNPs with dominant 

effects compared to recessive effects. More specifically, individuals with both heterozygous and homozygous (minor 

allele) genotypes at two interacting loci would be affected under a dominant disease model, while only individuals 

with homozygous (minor allele) genotypes would be affected in a recessive disease model. The number of 

individuals homozygous at two interacting loci can be quite small depending on the allele frequency, which limits 
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our power to discover them. Thus, the larger number of discoveries based on a dominant model assumption relative 

to a recessive model is likely a reflection of difference in statistical power and not an indication that genetic 

interactions among alleles with dominant effects are contributing more strongly to disease risk. We observed that 

interactions derived from an additive disease model provided the fewest significant discoveries when used in the 

context of BridGE based on the pilot experiments (Supplementary Table 23). To understand this, we investigated 

whether the SNP-SNP interactions supporting the BPMs discovered under the combined dominant-recessive model 

for the PD-NIA cohort were non-additive when evaluated using a logistic-regression based interaction test as 

opposed to the direct association tests used for our dominant and recessive disease models
131

. Most SNP-SNP 

interactions supporting the PD-NIA discoveries were indeed non-additive when assessed using the logistic regression 

framework, but these were not necessarily ranked among the highest SNP-SNP pairs when assessed in the context of 

a logistic regression model
131

 (Supplementary Table 24), which may explain the difference in results under the 

additive vs. recessive or dominant disease models. An important distinction between the SNP-level interaction metric 

we use is that we specifically identify the small subset of individuals with the appropriate combination of genotypes 

(dominant model: heterozygous for minor allele at two candidate loci; recessive model: homozygous for minor allele 

at two candidate loci), and directly test for association with the disease phenotype, whereas for the additive model, 

an interaction term must explain a sufficient fraction of the variance across the entire population for it to reach 

significance. This distinction may play a role in why we are able to discover pathway-level genetic interactions with 

the metric proposed here but rarely with a standard additive model. It is worth noting that the core of the BridGE 

approach, discovering genetic interactions in aggregate rather than in isolation, is readily adaptable to other disease 

models or other statistical measures of interaction. Further exploration of different disease models as well as 

different statistical measures of interaction
123,132

 would be worthwhile. 

13. Power analysis based on interaction simulation study 

To characterize the power of our BridGE approach with respect to sample size, effect size, minor allele frequency 

and pathway size, we used a two-stage simulation approach. We first generated synthetic GWAS datasets with 

embedded SNP-SNP interaction pairs using GWAsimulator
100

. Specially, we used PD-NIA as input to 

GWAsimulator and embedded SNP-SNP interactions with different minor allele frequencies (e.g. 0.05, 0.1, 0.15, 0.2 

and 0.25) and a range of interaction effects (e.g. d11= d12=d12=d22=1.1, 1.5, 2, 2.5, 3 and 5, where 0, 1, 2 refer to the 

number of minor alleles present in a given genotype for an individual SNP, and d11, d12, d12, and d22 are defined as 
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the relative risk of that genotype--11,12, 21 or 22-- versus 00)
100

. We also varied the number of samples (genotypes) 

in the simulation (e.g. 200, 500, 1000, 2000, 5000 and 10000). In all simulations, we specified the disease prevalence 

to be 0.05, dominance effect for all disease SNPs with PR1=1 (see GWAsimulator for more details)
100

. Under 

different scenarios (combinations of different minor allele frequencies, interaction effects and sample sizes), we 

embedded 100 SNP pairs and measured the percentage of SNP-SNP interactions that were identified by our pairwise 

SNP-SNP interaction measure, hygeSSI at a 1% network density (e.g. SNP-SNP pairs whose hygeSSI is greater or 

equal to the 99th percentile of all possible interactions) (Supplementary Fig. 6). These simulations provide a direct 

measure of the sensitivity and specificity of the SNP-SNP interaction level measure that forms the basis of the 

pathway-level statistics. 

     The SNP-SNP level power statistics were complemented with a second set of simulations in which we directly 

assessed the sensitivity of BridGE in detecting BPMs with different levels of noise in the SNP-SNP level network 

(derived from the process described above). To characterize the statistical power of our approach as a function of 

pathway size, we first generated a synthetic interaction network with the same degree distribution as the PD-NIA DD 

network at 1% density. Then, we embedded a set of non-overlapping BPMs into this SNP-SNP interaction network 

while retaining the same degree distribution and density of the network. Each set had 90 BPMs at 9 different sizes 

(number of SNPs mapped to the two pathways in each BPM: 10×10, 25x25, 50×50, 75x75, 100×100, 150×150, 

200×200, 250×250 and 300×300; and 10 different background densities 0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.025, 

0.03, 0.04 and 0.05. We applied 150,000 SNP-pathway membership permutations to assess the significance of these 

embedded patterns. The SNP permutation-derived p-values of the simulations were reported in Supplementary Fig. 3 

and provide an estimation of BPM density required for detecting interactions between pathways of different sizes. 

We used the average p-values (p = 3.0×10
-5

, SNP-permutation) of the significant BPM discoveries across all GWAS 

cohorts (FDR 0.25) as the discovery significance cutoff for the simulation analysis.  

     We derived power estimates for each combination of parameter settings by integrating the results from above 

two simulation studies. More specifically, we estimated the minimum sample size needed to discover significant 

BPMs at different pathway sizes under each of the scenarios (e.g. minor allele frequency, relative disease risk). To 

connect the two simulation studies, we require a scaling parameter (here, we explored s = 0.025, 0.05 and 0.1) which 

corresponds to the biological density of genetic interactions crossing each pair of truly interacting pathways. This 

represents the fraction of all possible SNP-SNP pairs crossing the pair of pathways of interest for which the 
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combination of variants actually has a functional deleterious impact on the phenotype. This quantity is expected to be 

relatively small, but is difficult to estimate, which is why we have explored three scenarios (s = 0.025, 0.05 and 0.1). 

For a given BPM of a specific size (10×10, 25×25, 50×50, 75×75, 100×100, 150×150, 200×200, 250×250 and 

300×300), from the 2
nd

 simulation, we identified the corresponding BPM density needed for it to rise to the level of 

statistical significance required for a 25% FDR based on the PD-NIA cohort. We then scaled the required density by 

the parameter, s, and based on the 1
st
 set of simulation results, identified the minimum sample size required under 

each scenario (combinations of minor allele frequency, interaction effect, and sample size) to support the discovery 

of the corresponding BPM (results summarized in Fig. 6B).  

     Simulation results for additional scaling parameters (s = 0.1 and s = 0.025) are included in the supplementary 

Supplementary Fig. 2. These plots together provide an estimate of the power of the BridGE approach to detect 

pathway-pathway interaction in these different scenarios. We note that this power analysis was conducted for the 

dominant disease model, which comprises the majority of the BPM interactions discovered across all cohorts. 

Sensitivity of our method under a recessive model assumption is expected to be lower, which is consistent with the 

relative rate of discoveries of both types.  
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Figure Legends 

Figure 1. Between pathway model of genetic interactions. An illustrative example demonstrating the 

concept of the between pathway model of genetic interactions. (A) Two distinct pathways, A→B→C and 

X→Y→Z converge to regulate the same essential function. Independent genetic perturbations in either 

pathway (indicated by blue color with an asterisk) have little or no contribution to a phenotype, but 

combined perturbations in both pathways in the same individual result in a genetic interaction, leading to a 

loss of function phenotype that can be associated with either an increase or decrease in disease risk. (B) 

The bipartite structure of genetic interactions resulting from functional compensation between the two 

pathways shown in (A). Genetic perturbations in any pair of genes across the two pathways combine to 

increase or decrease disease risk. Edges indicate observed interactions at the gene-gene or SNP-SNP level. 

(C) Conceptual overview of the BridGE method for detecting genetic interactions from GWAS data. 

Figure 2. Significant pathway-pathway interactions discovered from the PD-NIA Parkinson’s 

disease cohort. (A) Quantile-quantile (QQ) plot comparing observed p-values (based on SNP-pathway 

membership permutations) for all possible pathway-pathway interactions between the 685 pathways to the 

expected, uniform distribution (log10 scale). The horizontal line at 6.7x10
-6

 reflects the maximum 

resolution supported by 150,000 permutations. (B) Interaction between Golgi associated vesicle 
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biogenesis pathway (Reactome) and Fc epsilon receptor I signaling pathway (KEGG). Two sets of SNPs 

mapped to genes in these pathways are connected by grey lines that reflect SNP-SNP interactions above a 

lenient top-5% percentile cutoff. The two groups of horizontal bars (grouped and colored by chromosome) 

show the -log10 p-values derived from a single locus (univariate) test applied to each SNP individually 

(hypergeometric test), and the two dashed lines correspond to an uncorrected p ≤ 0.05 cutoff, indicating 

that very few of the SNPs show marginal significant association before multiple hypothesis test correction. 

(C) Null distribution of the SNP-SNP interaction density between the Golgi associated vesicle biogenesis 

pathway and Fc epsilon receptor I signaling pathway described in (A) based on 150,000 SNP permutations. 

The observed density for the Golgi associated vesicle biogenesis and Fc epsilon receptor I signaling 

interaction is indicated by the red arrow and was not exceeded by any of the random instances (pperm < 

6.7×10
-6

). (D) Distribution of p-values from individual tests for pairwise SNP-SNP interactions for SNP 

pairs supporting the pathway-pathway interaction, as measured by an additive disease model (-log10 

p-value). None of the SNP pairs are significant after multiple hypothesis correction (dashed line at the 

most significant SNP-SNP pair corresponds to FDR=0.94). 

Figure 3. Global summary of between-pathway and within-pathway interactions discovered from a 

Parkinson’s disease cohort (PD-NIA). Network representation of a set of significant (FDR ≤0.25) 

between-pathway (BPM) and within-pathway interactions (WPM) that are associated with increased (red 

edges) or decreased (green edges) risk of PD. Each node indicates the name of the pathway or gene set, 

and each edge represents a between-pathway interaction or within-pathway interaction (self-loop edges). 

The size of the node reflects the number of interactions edges it has. Replicated interactions are shown as 

bold lines. 

Figure 4. Replication analysis of BPM interactions discovered from PD-NIA in an independent 

cohort (PD-NGRC). (A) Each BPM interaction discovered from the PD-NIA data was tested for 

replication in the PD-NGRC cohort. The collective significance of replication of the entire set of 

interactions discovered in PD-NIA was evaluated by measuring the fraction of significant BPMs 
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discovered from PD-NIA that replicated in the PD-NGRC cohort (blue bars) at five different FDR cutoffs 

(x-axis). The random expectation for the number of replicating BPMs is plotted for comparison and was 

estimated based on 10 random sample permutations (grey bars). (B) Sample permutation-based approach 

to check whether the individual SNP-SNP interactions supporting the replicated pathway-level 

interactions are similar between PD-NIA and PD-NGRC. The significance of the overlap (blue dots) of 

SNP-SNP interactions in each of the BPMs replicated in PD-NGRC was assessed by a hypergeometric 

test. The random expectation for the level of overlap was estimated by measuring the SNP-SNP 

interaction overlap in the same set of BPMs in 10 random sample permutations of the PD-NGRC cohort 

(gray dots) (          , Wilcoxon rank-sum test). (C) Scatter plot of the significance of SNP-SNP 

interaction overlap in each of the replicated BPMs (-log10 hypergeometric p-value) versus a direct measure 

of overlap (overlap coefficient). 

Figure 5. Between-pathway and within-pathway interactions discovered from 6 different diseases. 

Network representation of a set of significant between-pathway (BPM) or within-pathway (WPM) 

interactions (FDR ≤ 0.25) that are associated with increased (red edges) and decreased (green edges) risk 

of corresponding diseases. Replicated interactions are shown as bold lines. Discoveries from different 

diseases are indicated by different background colors. Only the most significant 10 BPM/WPMs are 

shown for each GWAS cohort (see Supplementary Table 4, 9-20 for complete list) 

Figure 6. Summary of discoveries across all disease cohorts and power analysis. (A) The number of 

discoveries made in each of the disease cohorts evaluated, the disease model under which discoveries 

were made, and the direction of the disease association is reported. A complete list of interactions 

discovered is available as Supplementary Table 4, 9-20 (B) Power analysis of the effect of minor allele 

frequency (MAF), BPM size, interaction effect size, and sample size on the discovery of between-pathway 

interactions. Colors in the heatmap indicate the estimated minimum number of samples needed for 

discovering significant BPMs of different sizes under each scenarios (MAF at 0.05, 0.1, 0.15, 0.2, 0.25; 

interaction effects at 1.1, 1.5, 2.0, 3.0, 5.0; BPM sizes at 25×25, 50×50, 75×75, 100×100, 125×125, 
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150×150, 200×200, 250×250, 300×300). All power analyses were conducted using a significance 

threshold required to meet an FDR < 0.25 (SNP-permutation p < 3.0×10
-5

) based on an average of the 

significant BPM discoveries across all analyzed GWAS cohorts. 

 

Supplementary Figure Legends 

 

Supplementary Figure 1. Distribution of p-values from individual tests for pairwise SNP-SNP 

interactions for discovered Parkinson’s disease BPM. SNP pairs supporting the pathway-pathway 

interaction between the Golgi associated vesicle biogenesis gene set (Reactome) and Fc epsilon receptor I 

signaling pathway (KEGG) discovered from the PD-NIA Parkinson’s disease cohort were evaluated for 

association with PD based on a recessive and dominant disease model. The distribution of maximum -log-

10 p-value of the two models for each SNP pair is plotted. None of the SNP pairs are significant after 

multiple hypothesis correction (dashed line at the most significant SNP-SNP pair corresponds to 

FDR=0.95). 

Supplementary Figure 2. Power analysis of the effect of minor allele frequency (MAF), BPM size, 

interaction effect size, and sample size on the discovery of between-pathway interactions. The plot is 

same as Fig. 6B, but the biological densities used are 2.5% (A) and 10% (B). 

Supplementary Figure 3. Power simulation of the effect of pathway size and interaction density on 

the discovery of between-pathway interactions. The BPM significance (       p-value derived from 

150,000 SNP permutations) is plotted for 100 embedded BPMs of different sizes and SNP-SNP 

interaction densities (online method). The gray plane indicates the p-value cutoff corresponding to the 

average SNP permutation p-values (p = 3.0×10
-5

) of the significant BPM discoveries across all GWAS 

cohorts (FDR 0.25). Bars exceeding this plane represent BPMs that would have been discovered in this 

cohort and provide an estimate of sensitivity of the approach.  

Supplementary Figure 4. Distribution of sizes for discovered BPMs. The size of each candidate BPM 

was measured as the total number of possible SNP-SNP pairs between the two pathways. The distribution 
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of sizes of all possible pathway-pathway pairs is plotted in (A) and only significant BPMs (FDR ≤ 0.25) 

from the PD-NIA cohort are plotted in (B). BPMs discovered by BridGE span a large range of sizes.  

Supplementary Figure 5. Comparison of false discovery rates derived from 10 sample permutations 

vs. 1000 sample permutations using PD-NIA dataset. BPMs that are significant (FDR 0.25) based on 

either 10 sample permutations or 1000 permutations were plotted to show the agreement between two 

permutations.  

Supplementary Figure 6. Power simulation of the effect of sample size, interaction effect size and 

minor allele frequency on the discovery of SNP-SNP interactions0, The discovery rates of 100 

embedded SNP-SNP interactions in the synthetic datasets with different sample sizes were plotted and 

colored with corresponding interaction effect size. Each subplot is corresponded to a different minor allele 

frequency assumption: (A) MAF=0.05, (B) MAF=0.1, (C) MAF=0.15, (D) MAF=0.2, (E) MAF=0.25. 

 

List of Supplementary Tables 

Supplementary Table 1. Information about the 13 genome-wide association studies (GWAS) data 

sets used in this study. 

Supplementary Table 2. List of 833 gene sets from KEGG, BioCarta and Reactome. 

Supplementary Table 3. BridGE results from PD-NIA cohort based on recessive/dominant 

combined disease model. 

BridGE results are reported for the PD-NIA cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the combined recessive-dominant disease model. 

Supplementary Table 4. List of BPMs and WPMs after filtering for redundancy for the PD-NIA 

cohort. 
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This file contains a list of BPMs obtained from the PD-NIA cohort after controlling for redundancy based 

on a maximum overlap coefficient of 0.25. These correspond to the set visualized in Fig. 3A of the 

manuscript. 

Supplementary Table 5. Pathway enrichment analysis for single locus effects for PD-NIA. 

Pathway enrichment analysis on single locus effects was computed for several different disease models 

and subsets of SNPs. Each of the following tabs appears in this file: (A) combined disease model, LD 

controlled SNP set, (B) dominant disease model, LD controlled SNP set, (C) recessive disease model, LD 

controlled SNP set, (D) combined disease model, genome-wide SNP set, (E) dominant disease model, 

genome-wide SNP set, (F) recessive disease model, genome-wide SNP set. 

Supplementary Table 6. Replication statistics and lists of replicated BPMs for BridGE discoveries 

from PD-NIA. 

BPMs discovered from the PD-NIA cohort were tested for replication in the independent PD-NGRC 

cohort. Tab (A) contains a summary of replication statistics and tab (B) contains a list of replicated BPMs. 

Supplementary Table 7. Summary of between and within-pathway interactions discovered across 

six diseases. This file contains a list of BPMs and WPMs (top 10) discovered across six diseases. These 

correspond to the set visualized in Fig. 5 of the manuscript. 

Supplementary Table 8. Summary of interactions discovered across 13 GWAS cohorts. 

The number of between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, 

and hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) 

(PATH) discovered are reported for each of the 13 GWAS cohorts at a range of FDR cutoffs. 

Supplementary Table 9. BridGE results from PD-NGRC cohort based on dominant disease model. 

BridGE results are reported for the PD-NGRC cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the dominant disease model. 
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Supplementary Table 10. BridGE results from SZ-GAIN cohort based on combined disease model. 

BridGE results are reported for the SZ-GAIN cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately.These results were 

derived using the combined recessive-dominantdisease model. 

Supplementary Table 11. BridGE results from SZ-CATIE cohort based on recessive disease model. 

BridGE results are reported for the SZ-CATIE cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately.These results were 

derived using the recessivedisease model. 

Supplementary Table 12. BridGE results from BC-CGEMS-EUR cohort based on recessive disease 

model. 

BridGE results are reported for the BC-CGEMS-EUR cohort, with the following tabs (in order):  

summary of discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) 

interactions, and hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the 

genome) (PATH). Decreased risk (protective) and increased risk (risk) interactions are listed separately. 

These results were derived using the recessive model. 

Supplementary Table 13. BridGE results from BC-MCS-JPN cohort based on dominant disease 

model. 

BridGE results are reported for the BC-MCS-JPN cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the dominant model. 
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Supplementary Table 14. BridGE results from BC-MCS-LTN cohort based on dominant disease 

model. 

BridGE results are reported for the BC-MCS-LTN cohort, with the following tabs (in order):  summary 

of discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, 

and hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) 

(PATH). Decreased risk (protective) and increased risk (risk) interactions are listed separately. These 

results were derived using the dominant model. 

Supplementary Table 15. BridGE results from HT-eMERGE cohort based on dominant disease 

model. 

BridGE results are reported for the HT-eMERGE cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the dominant model. 

Supplementary Table 16. BridGE results from HT-WTCCC cohort based on combined disease 

model. 

BridGE results are reported for the HT-WTCCC cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the recessive-dominant combined model. 

Supplementary Table 17. BridGE results from ProC-CGEMS cohort based on dominant disease 

model. 

BridGE results are reported for the ProC-CGEMS cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 
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Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the dominant model. 

Supplementary Table 18. BridGE results from ProC-BPC3 cohort based on dominant disease 

model. 

BridGE results are reported for the ProC-BPC3 cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the dominant model. 

Supplementary Table 19. BridGE results from PanC-PanScan cohort based on dominant disease 

model. 

BridGE results are reported for the PanC-PanScan cohort, with the following tabs (in order):  summary 

of discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, 

and hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) 

(PATH). Decreased risk (protective) and increased risk (risk) interactions are listed separately. These 

results were derived using the dominant model. 

Supplementary Table 20. BridGE results from T2D-WTCCC cohort based on combined disease 

model. 

BridGE results are reported for the T2D-WTCCC cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the recessive-dominant combined model. 

Supplementary Table 21. Replication statistics and lists of replicated BPMs, WPMs or PATHs for 

BridGE discoveries from prostate cancer, breast cancer and schizophrenia. 
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BPMs, WPMs and PATHs discovered from the each disease cohort were tested for replication in the 

corresponding independent cohort, for each of the three diseases. Both a summary of replication statistics 

and a list of replicated BPMs, WPMs or PATHs are reported, with one disease cohort per tab. 

Supplementary Table 22. Comparison between BridGE pathways and SNPs reported in the GWAS 

catalog.  

Summary of the comparison (A) and list of pathways identified by BridGE with FDR 0.25 and their 

association with GWAS SNPs for the six diseases studied: (B) Parkinson’s disease, (C) Schizophrenia, (D) 

Breast cancer, (E) Hypertension, (F) Prostate cancer and (G) Type II diabetes. 

Supplementary Table 23. Results of pilot experiments for 13 GWAS cohorts. 

As described in methods, all 13 cohorts on which BridGE was applied were first explored in pilot runs in 

which a smaller number of SNP permutations. Based on initial estimates of FDR, the disease model and 

density combination with strongest statistical significance were run in full. Pilot results from all 13 cohorts 

are included in this file, one per tab. 

Supplementary Table 24. Summary of evaluation of hygeSSI SNP-SNP interactions by a logistic 

regression-based interaction test. 

Supplementary Table 25. BridGE results from PD-NIA cohort based on recessive/dominant 

combined disease model using 1000 sample permutations. 

BridGE results are reported for the PD-NIA cohort, with the following tabs (in order):  summary of 

discoveries, between-pathway model (BPM) interactions, within-pathway model (WPM) interactions, and 

hub pathways (pathways exhibiting elevated density of SNP-SNP interactions across the genome) (PATH). 

Decreased risk (protective) and increased risk (risk) interactions are listed separately. These results were 

derived using the combined recessive-dominant disease model. 
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