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Abstract

Recent rise of single-cell studies revealed the importance of understanding the role of
cell-to-cell variability, especially at the transcriptomic level. One of the numerous sources
of cell-to-cell variation in gene expression is the heterogeneity in cell proliferation state.
How cell cycle and cell size influences gene expression variability at single-cell level is not
yet clearly understood. To deconvolute such influences, most of the single-cell studies
used dedicated methods that could include some bias. Here, we provide a universal and
automatic toxic-free label method, compatible with single-cell high-throughput RT-qPCR.
This led to an unbiased gene expression analysis and could be also used for improving
single-cell tracking and imaging when combined with cell isolation. As an application for
this technique, we showed that cell-to-cell variability in chicken erythroid progenitors was
negligibly influenced by cell size nor cell cycle.

Introduction
It has been known for decades that isogenic cells can differ from each other in their molecular
composition [1, 2]. The refinement of molecular techniques together with computational ap-
proaches has recently allowed to get a quantitative view on this cell-to-cell variability. This
strongly highlighted the importance of understanding the causes in such variations, leading to
a recent turning point in single-cell studies [3, 4, 5, 6].
A leading source of cell-to-cell variability, or noise, can be attributed to stochastic gene expres-
sion, which can be decomposed into "intrinsic" and "extrinsic" sources [7, 8]. The first source
can be visualized as the variation in expression levels of identically-controlled genes in a single-
cell, whereas the second one affects the expression levels of a given gene between different cells
[9]. Intrinsic noise finds its origins in stochastic processes such as diffusion or reactions involv-
ing a low-copy number of molecules. It happens especially during transcription and translation
processes [7, 10, 11]. Extrinsic noise can be explained by differences in the internal states of a
cell population such as cellular age, cell cycle stage or protein subcellular localization [12]. All
these factors will contribute to cell-to-cell variability.
It has been shown that stochastic gene expression takes various biological meaning. For bac-
teria, in a fluctuating environment, generating an heterogeneous cell population can be much
more beneficial than an homogeneous population [13, 14]. For HIV virus, the control of stochas-
tic fluctuations determined the latency or the activation of the infection phase [15].
In a cell fate context, stochastic gene expression could drive cells into the differentiation process
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[16]. For example the lineage choice can be viewed as a stochastic decision process [17]. In
line with this view, it has been shown that during the erythroid differentiation process, we can
observe an increase in cell-to-cell variability among genes expression that may participate to
the decision making process within differentiation [18].
It is thus important to precisely identify the sources of gene expression variability involved in
these phenomena in order to understand their role, and to discard potential confounding effects.
Flow cytometer FSC parameter can be used as a proxy for cell size, therefore cell size variability
in a population can be remove by performing FSC-based cell sorting. Moreover cell cycle-based
extrinsic noise can be eliminated experimentally by inducing cell cycle arrest in a specific phase
[19] but may result in non physiological alterations. Otherwise cell cycle variability can be iden-
tified and suppressed by fluorescent-labeling of cell cycle-specific genes, however this method
requires genetical alteration of the investigated cells [20]. Other studies, based on computa-
tional approach, deconvolute the cell cycle variables in order to normalize their single-cell gene
expression data. Most of them use cell cycle marker genes to train algorithms that can predict
cell cycle stage of individual cells [21, 22, 23]. However, these genes have different function or
timing according to cell type, even in a same organism [24].
In this article, we propose a more direct approach that consists in measuring morphological
parameters in a high-throughtput single-cell RT-qPCR study. Using a non-cytotoxic double-
staining technique we measured automatically cell cycle phase and cell size of every single-cell
isolated from a primary chicken erythroid progenitor cell population [25]. We demonstrated
that the labelling had no detectable effects at the single-cell transcriptomic level in those pri-
mary progenitors, suggesting that this technique could be an useful tool for molecular single-cell
based studies.
We finally showed that in our cellular system neither cell size nor cell cycle state could be
deemed responsible for the cell-to-cell variation we observed, ruling out their potential con-
founding effects.

Results

Cellular morphological automatic measuring

We first attempted to measure cell size manually on C1 images acquired using light microscopy.
This proved to be extremely unreproducible and prone to suffer strong experimenter-dependent
biases (not shown). To avoid this bias we therefore decided to use cellular as well as nuclear
staning.
For this, we choose the two fluorescent dyes, CFSE and Hoechst 33342. CFSE (5-(and 6)-
carboxyfluorescein diacetate succinimidyl ester) stably incorporates into cells by coupling both
intracellular and cell-surface proteins. It emits high fluorescence intensity and has low toxic-
ity. CFSE concentration is halved with each cellular division, and is widely used to measure
proliferation. In this study, it was used as a cell area marker in tandem with Hoechst 33342
[26] as a nuclear marker. The latest rapidly permeates cells and binds to the minor groove of
DNA at AT-rich sequences. Like CFSE it can be used without detergent treatment or fixation.
Moreover, both markers had been already used for microscopy before performing a RT-qPCR
[27, 28]. The use of two different lasers allowed revealing Hoechst and CFSE staining (Figure
1a and 1b) merged in Figure 1c. This double-staining allowed us to automatically measure cell
size (CFSE), nucleus size (Hoechst) and the amount of DNA (Hoechst fluorescence intensity).
Each individual cell was trapped in the Microchip device. Therefore images were analyzed trap-
by-trap in order to eliminate data generated from empty or multi-cell-composed traps. We then
automatically retrieved cell size and nucleus size, and inferred their respective volumes.
We can observe that the cell volume is very poorly correlated with the nucleus volume (Fig-
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ure 2a). Therefore cell size by itself does not seem to be a good proxy for determining cell
cycle position probably because it integrated other unknown parameters. Both cell and nucleus
volume density distributions confirm that cell size spans a much larger range than the nucleus
size which displays the classical 2n/4n distribution (Figure 2b). Nuclear volume was clearly
more correlated with Hoechst fluorescence intensity than cell-volume (Figure 2a & 2c). The
nucleus volume can therefore be considered as a good indicator for the position of the cell in the
cell cycle. Furthermore it should be noted that volume is a purely geometrical object that does
not depends upon intensity and therefore is not influenced by the laser bleaching, as Hoechst
fluorescence intensity parameter.
We therefore described a double-staining procedure compatible with microscopy associated at
the C1 system to measure, for each trapped cell, their size and cell cycle state independently.

Figure 1: CFSE/Hoechst double staining is compatible with C1 technology. Typical
labeling of T2EC nucleus (a) and cytoplasm/membrane (b) stained by Hoechst 33342 and CFSE
respectively. (c) Merged image of a and b. Cells were isolated with the C1 system and observed
using a Nikon microscope with 2 different lasers. The scale bar represents 10µm.

Staining effect

First, we assessed the influence of the double-staining procedure on gene expression at the pop-
ulation level by performing RT-qPCR on 5 selected genes known to be involved in erythroid
differentiation or metabolism. The relative value of these gene expressions did not change sig-
nificantly compared to unstained cells (Figure 3). These results suggested that cell and nucleus
staining, with CFSE and Hoechst, had no major influence on T2EC mean gene expression.
In order to extend this double-staining approach to high-throughput single-cell gene expression
analysis, we also need to discard possible modifications visible only at the individual-cell level,
like cell-to-cell variation in gene expression induced by the staining step.
Therefore we performed high-throughput RT-qPCR on single cells using 92 genes that cover
various functions as metabolism, differentiation process and proliferation [18]. We compared
30 single stained cells and 47 single unstained cells in the same microchip. Another plate was
done in the same conditions to check the reproducibility. Data was analyzed using a PCA-
based dimensionality reduction algorithm (Figure 4). The PCA does not show any separation
between stained and unstained cells. Moreover, the two first principal components (PC1 and
PC2) explained less than 12 % of the variability. These results suggested that the staining did
not affect the expression of these 92 genes in T2EC even when examined at the single-cell level.
Finally as an application example for our double-staining approach, we investigated the influ-
ence of cell cycle and cell size on cell-to-cell variability among our 92 gene expressions using
the coupling of labeling and gene expression measurements at the single-cell level.
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(a) Scatter plot showing the relation between cell
volume and nucleus volume. Each point represents
a cell. Spearman correlation test was performed,
the result of which is displayed in the left upper
corner.
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nucleus volumes (blue curve).

0

250

500

750

1000

1e+06 2e+06 3e+06

N
uc

le
us

 v
ol

um
e

Hoechst fluorescence intensity

ρs = 0.92
p-value = 3.217 e-16

n=37

(c) Scatter plot showing the relation between
Hoechst fluorescence intensity and nucleus volume.
Each point represents a cell. Spearman correlation
test was performed, the result of which is displayed
in the left upper corner.

Figure 2: Analysis of cell and nucleus size measurements

Cell cycle stage and cell size had no impact on T2EC gene expression

For each single cell, we measured the size (CSFE staining), the position in the cell cycle (Hoechst
staining) and the mRNA amount (Biomark array). Thereby we could assess whether there were
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Figure 3: Real-time PCR gene expression analysis of stained and unstained cells.
Total RNA was extracted from T2EC cells stained or not. Reverse transcription and real-time
PCR analyses, with specific primers [18], were performed to quantify the amount of GLOBIN
(β-GLOBIN), SLC (SLC25A37), HSP (HSP90AA1), CRIP2 and LDHA mRNA (Cq for cycle
of quantification). The fold variations represented here correspond to the ratio of mRNA of
staining cells compared to unstained cells. The black line corresponds to the null variation
between the two conditions. The vertical bars represent the standard error of the mean value
(n=3).
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Figure 4: Principal Component Analysis of single cell expression data acquired
on stained or unstained cells. Projection of 77 T2EC single-cell stained or not onto PC1
and PC2 results in a cloud of points without any clear separation. Percentages shown are the
percentage of variance explained by each component.

any correlation between morphological and molecular parameters. Among all genes analyzed,
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none presented a significant spearman correlation between its expression level among single
cell volumes or cell cycle : all p-values were above the 5 % threshold. These results confirmed
that neither cell size nor the position in cell cycle were relevant parameters in explaining the
cell-to-cell variations observed for the 92 genes examined. This information is important for
stochastic single-cell-based gene expression analysis, for which these morphological parameters
can be excluded of the potential sources of variability between cells.

Conclusion
In various transcriptome analyses, the question of the influence of cell proliferation on measures
have to be assessed [29]. In this study, we propose a way to measure the influence of these
factors on a panel of 92 genes without affecting their transcription.
We performed a non-cytotoxic CFSE/Hoechst double-staining compatible with the C1 system.
This approach allowed automatic identification and measure of morphological parameters. Used
in tandem with the Biomark system, gene expression quantification was then performed. We
showed that the double staining did not impact gene expression in our cells. We measured the
influence of cell cycle and cell size on a high number of gene expressions. In T2EC, correlation
tests between gene expression and these two morphological factors were negative.
The uncorrelated cell size with the total transcript levels has been already shown using flow
cytometry sorting of individual cells combined with Biomark system [29].
This method can be used to measure the influence of cell cycle and cell size on single-cell gene
expression analysis without any potential misleading cell state effects induced by cell cycle
synchronization methods [29, 30]. It could be also an alternative method to avoid artificial
cell sorting according to their size or their cell cycle phase, which could be interesting for low
amount of cells.
Furthermore, beyond cell size and cell cycle issues, this method can be used to track at least
two different cell populations while loading them simultaneously on the same C1 microchip.

Methods

Cell culture

T2EC were extracted from bone marrow of 19 days-old SPAFAS white leghorn chickens embryos
(INRA, Tours, France). These cells were maintained in α-MEM medium supplemented with 10
% Foetal bovine serum (FBS), 1 mm HEPES, 100 nm β-mercaptoethanol, 100 U/mL penicillin
and streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and 1 mm dexamethasone as previously
described [25].

Double-staining

Cells were incubated in their initial medium for 30 min with CFSE (Life Tech.) at 5µm and
Hoechst 33342 (Life Tech.) at 5 µg/mL at 37◦C in a tube protected from light. After 2 washings
in Phosphate-buffered saline (Life Tech.), cells were loaded in the C1 system (Fluidigm).

RT-qPCR at population level

Cell culture were centrifuged and washed with 1X phosphate-buffered saline (PBS) 4h after the
double staining. Total RNA was extracted and purified using RNeasy Mini Kit (Qiagen).
Reverse transcription assays were performed using the Superscript III First-Strand Synthesis
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System (Invitrogen) for 500 ng of total RNA.
Real-time PCR was performed with SYBR Green PCR kit (ClonTech) in the CFX96 real-time
PCR system (Bio-rad). Specific primers were used to quantify to quantify the expression of
genes [18]. For information regarding the specific PCR conditions and primer sequences used,
please contact the authors.

RT-qPCR at single-cell level

C1 isolation, capture and RT and pre-amplification

Cells were diluted with C1 cell suspension reagent (Fluidigm) at a concentration of 4.105

cells/mL. This step was followed by a cell filtration in a cellular sieve (50µm). Cells were
loaded in the C1 IFC (5-10µm trap size, Fluidigm).
The C1 system performed the cell isolation in each microplate chambers of the IFC. Once cells
were isolated, pictures were taken with 2 different lasers (UV laser providing excitation at ∼
350nm and another laser at ∼ 488nm) using a PALM-STORM NIKON Microscope (CIQLE).
This step lasted less than 1 hour before the microplate was back in the C1 system again where
lysis, reverse-transcription and pre-amplification was performed. Primers have been previously
described [18]. cDNA were loaded in a classic 96 well plate and conserved at -20◦C until the
RT-qPCR.

Biomark PCR

Pre-amplified cDNA were mixed with Sso Fast Evagreen Supermix With Low ROX (Bio-Rad)
and DNA binding dye sample loading reagent (Fluidigm). Primers used for pre-amplification
were prepared by pair at 5 µM with the Assay Loading Reagent (Fluidigm) and low EDTA
buffer. An IFC Controller HX (Fluidigm) performed the prime of a 96.96 DynamicArray IFC
Chip (Fluidigm). Then, prepared cDNA and primer pairs were loaded in the inlets of this
microfluidic-based chip. Each condition (stained and unstained cells) was loaded in parallel in
the same microfluidic-based chip to avoid chip-to-chip technical variability.
The IFC Controller HX performed the load of cDNA samples and primers from the inlets into
the chip. The Biomark HD analyzed the chip according to the GE 96 x 96 PCR + Melt v2.pcl
program, thanks to the Data Collection software.
RNA spikes were used as positive control to validate the RT-qPCR experiment.
From this outlet, the Real-Time PCR Analysis software generated cycle of quantification values
(Cq) for each reaction chamber (each cell for all primers).

ImageJ analysis

Each image corresponding at each lasers used were analyzed following a previously described
procedure [31]. We visually confirmed the capture for each well and extracted automaticaly
morphological information using ImageJ. First, we thresholded the image to highlight cells.
Secondly, we applied the analyze particles of ImageJ with correct morphological parameters.
ImageJ selected automatically cells. After checking that all cells were detected by the soft-
ware, we run the measurement of cell area (for CFSE stain), nucleus area and intensity (for
Hoechst stain). The cell-volume (2) was then calculated from area measurements (1) using
these following formulae:

r =

√
S

π
(1)

V =
4

3
× π × r3 (2)
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with r the radius of cell, S the area and V the cell volume in µm3.

Analysis of gene expression

For population RT-qPCR analysis, ratios of gene expression variation between conditions were
calculated following this following formulae [32] :

ratio =
(Eint)

∆Cqint(ctrl−treated)

(Eref )∆Cqref(ctrl−treated)
with E = 10

−1
slope , (3)

the PCR efficiency of gene of interest Eint or referential gene Eref .
For each pair of primers, the efficiency of PCR was determined using a standard curve generated
by a dilution series of the samples.
∆Cq represents the difference between the Cq of control condition (ctrl) and the Cq of treated
condition for the gene of interest ∆Cqint or for the standard gene ∆Cqref . Because of its low
variability between all conditions, HnRNP was used as referential gene in these analyses.
For single-cell RT-qPCR, raw Cq data was then computed using R [33] via a specific script that
was previously described [18]. The output file comprising absolute values of mRNA was used
as a template for all following analysis. Statistical correlations were performed using spearman
tests with Bonferonni correction for multiple tests.

PCA

PCAs were performed using ade4 package [34]. PCA was centered (mean substraction) and
normalized (dividing by the standard deviation). PCA was displayed according to PC1 and
PC2, which are the first and second axis of the PCA respectively.
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