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 31 
Abstract: Dominance is a fundamental concept in molecular genetics and has implications for 32 

understanding patterns of genetic variation, evolution, and complex traits. However, despite its 33 

importance, the degree of dominance has yet to be quantified in natural populations. Here, we 34 

leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the 35 

distribution of fitness effects and dominance coefficients of new amino acid changing mutations. 36 

We find that more deleterious mutations are more likely to be recessive than less deleterious 37 

mutations. Further, this pattern holds across gene categories, but varies with the connectivity and 38 

expression patterns of genes. Our work argues that dominance arose as the inevitable 39 

consequence of the functional importance of genes and their optimal expression levels. 40 

 41 

One sentence summary: We use population genomic data to characterize the degree of 42 

dominance for new mutations and develop a new theory for its evolution. 43 

 44 

Main Text: The relationship between the fitness effects of heterozygous and homozygous 45 

genotypes at a locus, termed dominance, is the major factor that determines the fate of new 46 

alleles in a population and has far reaching implications for genetic diseases and evolutionary 47 

genetics (1–4). Several models have been theorized for the mechanism of dominance, starting 48 
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 3 

with R.A. Fisher's model, which suggests that dominance arises via modifier mutations at other 49 

loci and that these loci are subject to selection (5). In response, S. Wright argued that selection 50 

would not be strong enough to maintain these modifier mutations. He proposed a different model 51 

(termed the “metabolic theory”), later extended by Kacser and Burns, predicting most mutations 52 

in enzymes will be recessive because the reduced activity of mutant alleles can be masked by the 53 

wild type allele in heterozygotes (6, 7). An alternative model, posited by Haldane and further 54 

developed by Hurst and Randerson, suggested that recessivity is a consequence of selection for 55 

higher amounts of enzyme product because enzymes expressed at higher levels are able to 56 

tolerate loss of function (LoF) mutations (8, 9). 57 

 58 

The Wright and Haldane models predict that there is a negative relationship between the 59 

dominance coefficient (h) and the selection coefficient (s), such that more deleterious mutations 60 

will tend to be recessive, while Fisher’s model makes no such prediction. Drosophila mutation 61 

accumulation lines showed evidence of this relationship, providing the first empirical evidence 62 

that Fisher's theory may not hold (10–12). While the predictions of the Wright and Haldane 63 

models may be applicable to enzymes, they fail to explain the mechanism of dominance in 64 

noncatalytic gene products (13). Further, the extent to which these estimates apply to the 65 

majority of mutations occurring in natural populations remains to be tested. While population 66 

genetic approaches to estimate the degree of dominance from segregating genetic variation exist 67 

(14, 15), they have not been widely applied to empirical data nor have they been used to test 68 

models regarding the evolution of dominance.  69 

  70 
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A major challenge to studying dominance in natural populations is that h is inherently 71 

confounded with the distribution of fitness effects (DFE) such that different values of h and 72 

DFEs can yield similar patterns in the genetic variation data in a single outcrossing population 73 

(Fig. 1A). However, these same models can be distinguished from each other by studying 74 

organisms that undergo self-fertilization as selection will have the chance to immediately act on 75 

recessive homozygotes (Fig. 1B). Here, we leverage this fact by developing a composite 76 

likelihood approach, which uses the site frequency spectrum (SFS) of the outcrossing A. lyrata 77 

and the selfing A. thaliana (Fig. 1C) to co-estimate the DFE and distribution of h for new 78 

nonsynonymous mutations on recently published datasets from both species (16–18).  79 

 80 

We compare the fit of 3 distinct models of dominance effects to the SFS from both populations 81 

of Arabidopsis (Fig. 1D). We find that a model where mutations are slightly recessive (inferred 82 

h=0.46) results in a significantly better fit than assuming a model where all mutations are 83 

additive (Fig. 2A). The third model allows h to depend on s (Fig. 1D), and we infer that this 84 

model fits the SFS significantly better than a model with a constant h (P<1×10-15; Fig. 2A) (18). 85 

Importantly, mutations that are more deleterious also tend to be more recessive (Fig. 2B). For 86 

example, mutations with s<-0.001 have an h<0.025, suggesting that even moderately deleterious 87 

mutations are quite recessive. However, because very strongly deleterious mutations (s<-0.01) 88 

are unlikely to be segregating in the data, we have limited resolution to infer the dominance 89 

effects for such mutations.  90 

 91 

To determine whether our statistical framework is sensitive to certain confounders and can 92 

reliably distinguish between competing models, we carried out extensive forward simulations 93 
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based on the demographic models inferred from our data (table S1, fig. S1)(18). The distribution 94 

of the likelihood ratio test (LRT) statistic in simulations where all mutations were additive 95 

resembled the predicted asymptotic chi-square distribution when comparing the constant h≠0.5 96 

model to the additive model (df=1, Fig. 2C) as well as when comparing the h-s relationship 97 

model to the additive model (df=2, Fig. 2D). Importantly, none of the LRT statistics were as 98 

large as those seen empirically (Fig. 2A), suggesting a conservative simulation-based P-value 99 

<0.01. When simulating data under the constant h model (h=0.46, Fig. 2C) as well as the h-s 100 

relationship model, we find that the distribution of the LRT statistic is much greater than that of 101 

the null data (Fig. 2D). These simulations suggest we have excellent power to distinguish 102 

between models given the demographic history, sample size, and amounts of genetic variation 103 

present in these species. Lastly, our simulations show that differing DFEs between A. thaliana 104 

and A. lyrata would not provide false evidence of the h-s relationship (18) (fig. S2, tables S2 and 105 

S3). In sum, it is unlikely that our conclusion of extensive recessivity of mutations and the 106 

relationship between dominance effects and selective effects is driven by artifacts of our 107 

inference procedure. 108 

 109 

We next sought to test which theoretical model for the evolution of dominance can explain our 110 

data. Fisher’s theory for the evolution of dominance predicts that h should show no relationship 111 

to the degree of deleteriousness of a mutation (5). Our finding of the h-s relationship is not 112 

consistent with this theory. The metabolic theory (7) predicts that mutations in catalytic genes 113 

ought to be more recessive than those in genes unlikely to be involved in enzyme kinetics. We 114 

classified genes based on Gene Ontology (GO) category and inferred the DFE and h on specific 115 

gene sets (18) (tables S3 and S4). Overall, we find that catalytic genes display similar patterns of 116 
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polymorphism (fig. S4) and an h-s relationship, as seen genome-wide (Fig. 3A). Genes encoding 117 

structural proteins (herein “structural genes”), which are unlikely to be involved in enzyme 118 

kinetics, however, show a higher proportion of rare variants in the SFS (fig. S4) and appear to be 119 

less recessive than catalytic genes (Fig. 3A). In other words, for a given selection coefficient, 120 

mutations in catalytic genes tend to be more recessive than those in structural genes. On the 121 

surface, this finding appears to support the prediction of the metabolic theory of dominance. 122 

However, we infer that the h-s relationship model fits the structural genes better than the constant 123 

h model or the additive model (Fig. 3C, table S3). Thus, even structural genes show evidence of 124 

recessive mutations, which is not predicted under the metabolic theory model. We note that this 125 

finding has previous experimental support in yeast (13, 19). 126 

 127 

To investigate other mechanisms that could lead to recessive mutations in structural genes, we 128 

classified genes based on their expression level and degree of connectivity in networks (18). 129 

Overall, we found that structural genes tended to be more highly expressed and have more 130 

network connections than other types of genes (Fig. 3B). We next tested whether the parameters 131 

of the h-s relationship differed across these different functional categories (Fig. 3C and 3D, figs. 132 

S7 and S8, tables S3 and S4). While the h intercept did not differ across any of the categories 133 

(Fig. 3D, fig. S7), we found that the h-s decay rate, or slope, of the relationship between h and s 134 

did vary across some groupings.  Specifically, the decay rate was significantly larger for catalytic 135 

genes than for any of the other categories, again indicating that mutations in these genes tend to 136 

be more recessive than those in other genes. Genes that were more highly expressed and those 137 

that tended to be more connected had a smaller decay parameter, indicating that mutations in 138 

these genes tended to be more additive (Fig. 3C and 3D). Strikingly, we could not reject a model 139 
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where structural genes had the same decay parameter as highly connected genes and non-140 

structural genes that are both highly connected and have high levels of expression (Fig. 3D). 141 

These results argue that structural genes do not appear to have a unique h-s relationship. Rather 142 

they share the properties of other genes that are both highly connected and have a high level of 143 

expression.  144 

 145 

Our results motivate further development of a more general model for dominance. We extended 146 

the model of Hurst and Randerson (9). In our model, fitness, f(x), for a given level of gene 147 

expression x, is described by: 148 

𝑓 𝑥 = (!!!"#$%&$'#×!"#$%)(!!!"#$×!)
!!!"#$%

, 149 

where the intercept relates to the functional importance of a given gene and together with the 150 

scale, determines the optimal expression level of the gene. We assume that gene expression 151 

comes at a fixed cost per unit expression level. We compute s and h from this model based on 152 

how reducing the expression level by one half (for heterozygotes) or completely (for the 153 

homozygotes) affects fitness (18) (fig. S11). Under this model, a non-essential gene where few 154 

molecules are needed for optimal function (solid blue curve in Fig. 4A) will have a wild-type 155 

fitness at a low expression level (solid point). Reducing the amount of active protein by one half 156 

(the assumed impact of a deleterious heterozygous mutation) will only slightly decrease fitness, 157 

resulting in a recessive mutation. In contrast, for an essential gene where many molecules are 158 

needed, the fitness function will be much flatter and the optimal expression will be much higher 159 

(dashed yellow curve in Fig. 4A). Here, reducing the amount of active protein by one half will 160 

result in a larger decrease in fitness, implying that mutations will be more additive. Simulations 161 

under our model (18) recapitulate the key features seen in our empirical data (Fig. 4B and Fig. 162 
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4C). Specifically, while all genes are predicted to show a h-s relationship under our model (fig. 163 

S12), this relationship will be less-steep in genes with a higher optimal expression level (orange 164 

points in Fig 4B), indicating that for a given selection coefficient, genes with high expression 165 

will tend to be more additive. Stratifying by realized gene expression level shows qualitatively 166 

similar patterns—mutations in genes with higher expression levels are predicted to be more 167 

additive (Fig. 4C). 168 

 169 

Overall, our work provides a fine-scale molecular population genetic demonstration using 170 

genetic variation data from natural populations that more deleterious mutations tend to be more 171 

recessive than less deleterious mutations. Further, while finding some support for the popular 172 

metabolic network theory of dominance, we find that it is insufficient to explain patterns of 173 

dominance in all types of genes. Rather, our results support a more general model for the 174 

occurrence of dominance. Specifically, our findings suggest that dominance and the h-s 175 

relationship arose as a natural and inevitable outcome of the functional importance of genes and 176 

their optimal expression level. In addition, under our model, dominance can evolve in haploid 177 

organisms, passing a previous test of the evolution of dominance that rejected both Fisher's and 178 

Haldane's original models (20). 179 

 180 

Our findings have implications for evolutionary and medical genetic studies. First, many 181 

deleterious mutations tend to be recessive, and may accumulate in heterozygotes and be 182 

maintained in populations, which could increase the role of population history in affecting 183 

patterns of deleterious mutations and the genetic load (1, 2). Second, the location of a gene in a 184 

biological network and optimal expression level will influence both the selection coefficient and 185 
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degree of dominance of that mutation, indicating that mutations in certain genes may be more 186 

prone to having fitness effects and being potentially involved in complex traits, consistent with 187 

the recently proposed omnigenic model (21).  188 
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 242 

Fig 1. The effect of dominance and mating system on the site frequency spectrum (SFS). 243 

(A) The SFS from an outcrossing species simulated under different DFEs and h values. Note that 244 

different combinations of DFEs and values of h yield similar SFS. (B) The SFS for the same 245 

DFEs and values of h as in (A)  for a highly selfing species. Differences in h result in large 246 

differences in the SFS in selfing species, allowing us to reliably co-estimate the DFE and h. (C) 247 

A schematic of the species history between A. thaliana and A. lyrata. (D) Examples of the 248 

relationship between h and s under the three different models of dominance tested here. 249 
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 250 

Fig 2. Genome-wide estimates of dominance. (A) Likelihood ratio test statistics (Λ) and P-251 

values when comparing different models of dominance. The h-s relationship fits the data 252 

significantly better than the additive model and significantly better than a model with a single 253 

dominance coefficient. (B) Inferred relationship between h and s based on whole genome data. 254 

More nearly neutral mutations tend to be more dominant than strongly deleterious mutations. (C, 255 

D) Simulations demonstrating the performance of our inference procedure. (C) Likelihood ratio 256 

tests comparing a constant h model to an additive model. When data are simulated under an 257 
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additive model (green), Λ nearly follows a chi-square (1 df) distribution (red line). However, 258 

when the data are simulated under a model with h=0.46 (tan), the distribution of Λ is 259 

substantially larger, indicating excellent statistical power. (D) Likelihood ratio tests comparing 260 

the h-s relationship model to an additive model. When data are simulated under an additive 261 

model (green), Λ nearly follows a chi-square (2 df) distribution (red line). However, when the 262 

data are simulated under the h-s relationship model (tan), the distribution of Λ is substantially 263 

larger, indicating excellent statistical power.  264 

265 
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 266 
Fig 3. Distribution of dominance per gene category. (A) h-s relationship inferred for different 267 

gene categories. Bootstrap replicates are shown in lighter colors. (B) Expression profiles are 268 

correlated with gene connectivity. Note that structural genes have higher connectivity and 269 

expression than do other types of genes. Background refers to genes not in catalytic or structural 270 

GO categories. (C) Differences in the decay rate of h across gene categories. 95% confidence 271 

intervals (CI) are shown. Larger decay rates indicate that for a given value of s, mutations tend to 272 

be more recessive. (D) Z-scores for tests of differences in decay rate (upper triangle) and 273 

intercept (lower triangle) between different categories of genes. Color indicates degree of 274 
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significance (red is more significant). Comparisons not significantly different after Bonferroni 275 

correction are denoted by “X”s.  276 

277 
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 278 
Fig 4. A new, comprehensive model for the evolution of dominance. (A) The relationship 279 

between fitness and expression level (arbitrary units). Note, a fitness cost for increasing gene 280 

expression is assumed (see 18). (B) Predicted h-s relationship when many molecules (orange) 281 

and few molecules (blue) are needed. (C) Predicted h-s relationship when the expression level is 282 

high (orange) and low (blue). Note that the patterns predicted in (B and C) mirror those seen 283 

empirically in our analysis.  284 

B"A"
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Materials and Methods 302 
Data 303 

We collected sequencing data for 13 A. lyrata plants from Novikova et al 2016 (16) and 304 
sequencing data for 16 A. thaliana plants from Durvasula et al 2017 (17). We aligned accessions 305 
to their respective genomes (A. thaliana to TAIR10 (22) and A. lyrata to the JGI reference 306 
sequence v1.0 (23)) using BWA-MEM (BWA 0.7.7-r441) (24) with a penalty of 15 for unpaired 307 
read pairs. We removed duplicated reads using Picard v2.7 and performed local indel 308 
realignment using Genome Analysis Toolkit (GATK v3.6) IndelRealigner (25). We called SNPs 309 
using UnifiedGenotyper and filtered variants using the recommendations from GATK: 310 

 311 
QualByDepth < 2.0 || FisherStrand > 60.0 || RMSMappingQuality < 40.0 || 312 

MappingQualityRankSumTest < -12.5 || ReadPosRankSum < -8.0 || StrandOddsRatio > 3.0 || 313 
HaplotypeScore > 13.0 314 

 315 
We annotated SNPs using SnpEff v4.3a (26). We used gene annotations (TAIR10) to filter 316 

only coding sequences (CDS) and created site frequency spectra (SFS) for synonymous and 317 
nonsynonymous variants separately. We calculated folded SFSs in order to avoid assigning an 318 
ancestral allele, which is difficult to do in these species due to extensive genome rearrangements 319 
(23).We downsampled the SFS in A. lyrata from 13 entries to 11 using a hypergeometric 320 
downsampling scheme (27).  321 

We ensured that population structure did not affect our frequency spectra by performing 322 
principal components analysis (PCA) and checking the distribution of pairwise differences 323 
between samples. We removed samples that were highly related within each species as 324 
determined by outliers in the number of pairwise differences and individuals that cluster very 325 
closely on the PCA run on the genotypes (28) (Fig. S3). When two accessions were closely 326 
related, we retained one individual selected at random. For the A. thaliana dataset, we removed 327 
samples 35601, 35513, 35600, 37469 and for the A. lyrata dataset, we removed samples 328 
SRR2040788, SRR2040795, SRR2040829. 329 

We annotated each coding site according to the gene name and gene ontology (GO) term 330 
and subset the data into different GO term categories to perform our inference of dominance and 331 
the DFE separately on these categories. We annotated each gene based on connectivity and gene 332 
expression. Connectivity was determined by the STRING database v10 (29). We downloaded the 333 
A. thaliana (organism 3702) protein network data and restricted our analysis to high confidence 334 
(>0.7) interactions. Connectivity is then equally subdivided into three categories: low 335 
connectivity, intermediate connectivity, and high connectivity (e.g. Fig. 3). We obtained 336 
expression data for A. thaliana from the 1001 Epigenomes project (NCBI GEO: GSE80744; 337 
(30)), which provides a processed read count matrix for each gene across all accessions. We 338 
obtained the median expression value across all accessions, and arrived at a single value for each 339 
gene. Expression level is then equally subdivided into three categories: low expression, 340 
intermediate expression, and high expression (e.g. Fig. 3). 341 

 342 
Models of dominance and likelihood ratio test 343 

We test three different models of the relationship between the selection coefficient of a 344 
mutation (s) and the dominance coefficient (h). Here, s and h are defined such that the fitness of 345 
the homozygous wild-type genotype is 1, the fitness of the heterozygous genotype is 1+hs, and 346 
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the fitness of the homozygous mutant genotype is 1+s. The first model assumes that h is 0.5 and 347 
does not depend on s (additive model). The second model assumes that h is independent of s, but 348 
different from 0.5 (constant h model). This model allows for dominant or recessive mutations. 349 
The third model assumes a functional relationship between h and s (h-s relationship model). We 350 
model this relationship with two parameters according to the following equation: 351 

 352 
ℎ = 𝑓 𝑠 = !

!
!!"#$%&$'#

!!!"#$!
  (1) 353 

 354 
The first parameter, θintercept , defines the value of h at s = 0. The second parameter, θrate, 355 

defines how quickly h approaches zero with decreasing negative selection coefficient (see Fig. 356 
1D). We assume that θrate is positive. Large positive values of θrate imply that f(s) quickly 357 
approaches h=0, and even slightly deleterious mutations are recessive. Small positive values of 358 
θrate imply that only strongly deleterious mutations are recessive. 359 

Overall, we assume that the DFE of new mutations (i.e. the distribution of s) follows a 360 
gamma distribution (31–33). Thus, the additive model has two DFE parameters (shape and scale 361 
of the gamma DFE) and no dominance parameters, since we fix h to be 0.5. The constant h 362 
model has one additional parameter, the value of h. The h-s relationship model has two 363 
additional parameters, θintercept and θrate. Note that when θrate approaches zero, the h-s relationship 364 
model of eq. 1 converges to the constant h model, and when θrate approaches zero and θintercept 365 
approaches 0.5, the model converges to the additive model. Thus, the three models are nested, 366 
and we can formulate a likelihood ratio test based on maximum log likelihoods (LL) comparing 367 
the three different dominance models. The test statistic Λ is defined as 2(LLH1 – LLH0), where 368 
H0 is the null hypothesis (either additivity or constant h) and H1 is the alternative hypothesis 369 
(either constant h or h-s relationship). The statistic Λ is asymptotically chi-square distributed, 370 
with degrees of freedom equal to the difference in the number of parameters between the null 371 
and the alternative model. Thus, we formulate three different tests:  372 

 373 
1. Testing the constant h model (H1) against the additive model (H0). 374 
2. Testing the h-s relationship model (H1) against the additive model (H0). 375 
3. Testing the h-s relationship model (H1) against the constant h model (H0). 376 

 377 
Population genetic inference of dominance using data from a single outcrossing population 378 

We developed a Poisson random-field model of polymorphisms (14) for estimating the 379 
parameters in the models described above. We assume that nonsynonymous mutations are under 380 
the effects of purifying selection, and we assume that synonymous mutations are neutral. We 381 
present two approaches to estimate these parameters from the data: 1) estimating dominance 382 
using data from a single outcrossing population (e.g. A. lyrata), and 2) using data from both an 383 
outcrossing (e.g. A. lyrata) and a highly inbreeding population (e.g. A. thaliana) simultaneously 384 
to estimate dominance. We start by presenting the first approach. 385 

To account for the effects of changes in population size on the nonsynonymous SFS that 386 
might confound estimates of selection, we first estimate a demographic model using the 387 
synonymous SFS (34). Selection parameters are then estimated conditional on the estimated 388 
demographic model. Previous work has shown that this approach leads to unbiased estimates of 389 
the selection parameters by controlling for background selection, selective sweeps, and hidden 390 
population structure (32, 35). 391 
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In short, we infer the parameters of a population size change model using the synonymous 392 
site frequency spectrum (SFS) under the Poisson Random Field framework (see Huber et al. (32) 393 
and Kim et al. (35) for details). For both species that we analyzed (A. lyrata and A. thaliana), a 394 
three-epoch model with three discrete size changes fits better to the synonymous SFS than a two-395 
epoch model or a constant population size model (Table S1, Fig. S1). Thus, all subsequent 396 
inferences use the three-epoch model. 397 

Conditional on the estimated demographic parameters of the three-epoch model, we next 398 
use the nonsynonymous SFS to estimate the selection parameters, i.e. the shape and scale 399 
parameter of a gamma distributed DFE (ΘDFE), and the rate and intercept parameter of the h-s 400 
relationship, Θh = {θintercept,	
  θrate}. We use the Poisson likelihood to estimate the combined 401 
vector of parameters {ΘDFE, Θh}. The likelihood is calculated as  402 
	
  403 

L Θ!"#,Θ! Θ!, θ,X! = ![!!|!!,!!"#,!!,!]!!
!!!

!!!
!!! e!![!!|!!,!!"#,!!,!]	
   	
   (2)	
  404 

	
  405 
Here, ΘD is a vector of demographic parameters, Xi is the count of SNPs with frequency i in 406 

the sample (the entries of the SFS), θ is the population mutation rate, and n is the sample size. 407 
We set Θ! to the maximum likelihood estimates of the demographic parameters Θ!, and θ to the 408 
nonsynonymous population scaled mutation rate, θ!" = 4N!µμL!". We estimated θ!" from θ! by 409 
accounting for the difference in synonymous and nonsynonymous sequence length. 410 

The expected values of Xi refer to the expected entries of the SFS given demography and 411 
selection parameters. We used the software ∂a∂i (27) to compute the expected SFS for a 2-412 
dimensional grid of 1 million pairs of Nes and h values on grid that is exponential in Nes and 413 
linear in h (see also Cubic spline interpolation to speed up the computation of cached SFS). We 414 
vary h from zero (completely recessive) to one (completely dominant), and Nes from -Ne (i.e. 415 
lethal) to -1x10-4 (effectively neutral). This set of site frequency spectra is then used to calculate 416 
the expected SFS for an arbitrary distribution of Nes and h values. This is done by numerically 417 
integrating over the respective spectra weighted by the gamma distribution. Since we assume one 418 
Nes value corresponds to a single h value (equation 1), this is a one-dimensional integration. The 419 
numerical integration was done using the ‘numpy.trapz’ function as implemented in ∂a∂i.  420 

Numerical optimization is used to find the parameters of the DFE and dominance model 421 
that maximize the Poisson likelihood (equation 2). For this optimization step, we use the BFGS 422 
algorithm as implemented in the ‘optimize.fmin_bfgs’ function of scipy. To avoid finding local 423 
optima, we repeated every estimation approach from 1000 uniformly distributed random starting 424 
parameters. Our approach allows us to estimate the parameters of any arbitrary distribution of 425 
Nes values and any arbitrary function that relates h to s (or Nes).  426 

To summarize, our inference of dominance and DFE parameters (Θh, ΘDFE) consists of the 427 
following steps: 428 

 429 
1. Infer the parameters of a demographic model and the effective (ancestral) population 430 

size for the outcrossing population. 431 
2. Conditional on the demographic model, compute the expected SFS for a 2D grid of 432 

h and Nes values.  433 
3. Start at a certain vector of dominance and DFE parameters (Θh, ΘDFE). Note that the 434 

DFE here is defined in units of s, not Nes. 435 
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4. Compute the DFE in units of Nes by scaling the DFE from step 3 by the respective 436 
ancestral population size.  437 

5. Compute the h value for the grid of Nes values according to eq. 1 and the parameters 438 
Θh. Then use the 2D lookup table generated in step 2 to find the closest SFS for each 439 
pair of h and Nes. Integrate those SFS after weighting according to the DFE to find 440 
the expected SFS given the DFE and h-s relationship. 441 

6. Given the expected and the empirical SFS for the outcrossing population, compute 442 
the log likelihood according to eq. 2. 443 

7. By repeating steps 3-6, the log likelihood can be calculated for an arbitrary set of 444 
parameters. Maximum likelihood parameters are computed numerically by 445 
maximizing the likelihood using iterative non-linear optimization methods such as 446 
BFGS or Nelder-Mead (36). 447 

 448 
The ancestral effective population size in step 4 is calculated from the demographic model. 449 

Fitting the demographic model to the synonymous SFS provided an estimate of θS = 4NeµLS for 450 
synonymous sites, where µ is the neutral per base-pair mutation rate and LS is the synonymous 451 
sequence length. Using this formula, we estimated Ne by setting the neutral mutation rate to 7 x 452 
10-9 (37). Note that when partitioning our data into different gene categories and estimating the 453 
selection parameters for each category separately, we also allow for a different ancestral Ne and 454 
demographic estimates in those categories to control for different levels of background selection 455 
in different genomic regions (38–41). 456 

Finally, we can compute the likelihood at the maximum likelihood parameter values for the 457 
three different dominance models (i.e. additive model, constant h model, and h-s relationship 458 
model), and compute the likelihood ratio test statistic Λ, which will allow for model comparison. 459 

 460 
Cubic spline interpolation to speed up the computation of cached SFS 461 

Step 2 in our inference method involves computing a lookup table of one million SFS for a 462 
wide range of 1000x1000 pairs of Nes and h values. Although each single computation of a SFS 463 
is relatively fast, it is computationally expensive to compute the total of one million SFS with 464 
∂a∂i. We sped up this computation by utilizing the fact that the SFS across close Nes and h values 465 
is fairly smooth. Thus, we only compute the expected SFS for a coarse grid of 50 x 20 Nes and h 466 
values, and then interpolate the entries of the SFS for a much finer grid of 1000 x 1000 Nes and h 467 
values. The interpolation is done using the CubicSpline function of the python package 468 
scipy.interpolate. Each frequency of the SFS is interpolated separately in a two-step process: 469 
first, each frequency is interpolated for 1000 positions along the Nes axis, keeping h constant, 470 
leading to a grid of 1000 x 20 SFS. Then, each frequency is interpolated along the h axis, 471 
keeping Nes constant, leading to the final grid of 1000 x 1000 SFS. Examples of the cubic spline 472 
interpolation of frequency classes of the SFS along the Nes and h axes demonstrate that the 473 
interpolation works well for a wide range of h, Nes, and minor allele frequency (MAF) values 474 
(Fig. S5 and S6). 475 
 476 
Population genetic inference of dominance using data from an outcrossing and a highly inbred 477 
population 478 

The nonsynonymous SFS for different values of h can be very similar when modifying the 479 
selection coefficient accordingly (see Fig. 1A). This suggests that the power for estimating 480 
dominance might be small when using only data from a single outcrossing population. This can 481 
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be seen in Fig. S2A, where simulations with h=0.5 (H0) are compared to simulations with a 482 
constant h of 0.46 (H1). Such a small difference in h leads to a considerable overlap in the 483 
distribution of the likelihood ratio test statistic Λ between simulations under H0 and H1, and 484 
there is no power to discriminate those two hypotheses. 485 

We propose to increase power for detecting the true dominance model, and improve 486 
parameter estimation, by combining data from an outcrossing species with data from a selfing 487 
species. The main factor determining the SFS of the outcrossing species is the difference in 488 
fitness between the homozygous wild-type and the heterozygous genotype, having fitnesses 1 489 
and 1-hs, respectively. The difference in fitnesses between these two genotypes affects the SFS 490 
because deleterious mutations are segregating at low frequencies and thus random mating rarely 491 
produces homozygous derived genotypes. On the other hand, for a strongly selfing species, 492 
genotypes mostly are in the homozygous state due to the high level of inbreeding. The main 493 
factor determining the SFS in the selfing species is the difference in fitness between the two 494 
homozygous genotypes, having fitnesses 1 and 1-s, respectively. Thus, the data from the 495 
outcrossing species mainly provides information about the product of h and s, whereas the data 496 
from the selfing species provides information about s independent of h. Combining information 497 
from both datasets therefore should allow us to estimate dominance with higher accuracy than 498 
either species alone.  499 

To extend our inference to an inbreeding/outcrossing pair of populations, we need to 500 
calculate the likelihood of the parameters given the nonsynonymous SFS of both populations. 501 
When the two species are strongly diverged such that they do not share ancestral polymorphisms, 502 
the allele frequencies are independent and the likelihood can be computed as the product of the 503 
probability of the outcrossing SFS (SFSO) and the probability of the inbreeding SFS (SFSI). In 504 
terms of log-likelihoods (LL), this equates to: 505 

 506 
𝐿𝐿 Θ! ,Θ!"#    𝑆𝐹𝑆! , 𝑆𝐹𝑆! ,Θ!,!, θ! ,Θ!,!, θ! =507 

𝐿𝐿! Θ! ,Θ!"# 𝑆𝐹𝑆! ,Θ!,!, θ! +   𝐿𝐿! Θ! ,Θ!"# 𝑆𝐹𝑆! ,Θ!,!, θ!   (3) 508 
 509 
The first term of the sum, the log likelihood of the selection parameters (Θh and ΘDFE) given 510 

the outcrossing SFS, is computed using the approach developed above for the case of a single 511 
outcrossing population. To calculate the log likelihood for the inbreeding SFS (the second term 512 
of the right hand side of equation 3), we need to account for the effect of inbreeding on the SFS. 513 
For strongly inbred species such as A. thaliana with a selfing rate of at least 97% (42), we 514 
assume that the inbreeding coefficient F is effectively 1. In this case, the diffusion equation 515 
model reduces to a scaled additive model. This can be derived from the formulas of the mean and 516 
variance of the change in frequency at an allele frequency p: M(p) and V(p). In the most general 517 
case, with arbitrary inbreeding and dominance, these two quantities are (43): 518 
 519 

M(p) = s p (1-p){(1-F) [h + (1-2h) p] + F} (4a) 520 
V(p) = p (1-p) (1+F) / (2N)   (4b) 521 

 522 
In the case of additive mutations in an outcrossing population (F=0, h=0.5), these quantities 523 

become: 524 
 525 

M(p) = s p (1-p) / 2   (5a) 526 
V(p) = p (1-p) / (2N)   (5b) 527 
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In the case of a highly inbred population with arbitrary dominance (F=1), these quantities 528 
become independent of h: 529 

 530 
M(p) = s p (1-p)    (6a) 531 
V(p) = p (1-p) / (N)   (6b) 532 

 533 
The equations for the case of F=1 (eq. 6a,b) is just a scaled version of the equations for 534 

additive mutations in an outcrossing population (eq. 5a,b), with twice the change in mean allele 535 
frequency (eq. 6a), and twice as much drift (eq. 6b). This allows us to use the framework of ∂a∂i, 536 
developed for outcrossing populations, and apply it to data from highly selfing populations.  537 

We need to take into account the effect of inbreeding on M(p) and V(p) according to eqs. 538 
6ab. The effective population size that we estimate with ∂a∂i based on the synonymous SFS is 539 
already taking into account the effect of inbreeding on V(p), since it is the population size that 540 
effectively generates the same amount of drift as the standard Wright-Fisher outcrossing model 541 
assumed by ∂a∂i (i.e. eq. 5b). Next, we multiply s by a factor of 2 to find the effective selection 542 
coefficient se. Finally, we use these effective parameters, se and Ne, to compute the expected SFS 543 
for the highly selfing population using the framework of ∂a∂i. 544 

The full inference of a common set of dominance and DFE parameters (Θhs, ΘDFE) is similar 545 
to the steps outlined above for a single outcrossing population.  546 

 547 
1. Infer the parameters of a demographic model and the effective (ancestral) population 548 

size for both the inbreeding and the outcrossing populations. This is done 549 
independently for the two populations. 550 

2. Conditional on the demographic model of the outcrossing population, compute the 551 
expected SFS for a 2D grid of h and Nes values. For the inbreeding population, 552 
compute the expected SFS for a 1D grid of Nes values, fixing h to 0.5.  553 

3. Start at a certain vector of dominance and DFE parameters (Θh, ΘDFE). Note that the 554 
DFE here is defined in units of s, not Nes. 555 

4. Compute the DFE in units of Nes by scaling the DFE with the respective population 556 
size separately for the inbreeding and the outcrossing population. For a gamma 557 
distributed DFE, this amounts in multiplying the scale parameter by Ne. 558 

5. For the inbreeding population, additionally scale the DFE from step 3 by a factor of 559 
2 to derive the effective DFE in units of Nese. 560 

6. For the outcrossing population, compute the h value for the grid of Nes values 561 
according to eq. 1 and the parameters Θh. Then use the 2D lookup table generated in 562 
step 2 to find the closest SFS for each pair of h and Nes. Integrate those SFS after 563 
weighting according to the DFE to find the expected SFS given the DFE and h-s 564 
relationship. 565 

7. Compute the expected SFS for the inbreeding population by integrating across the 566 
1D lookup table of SFS after weighting each SFS according to the DFE in units of 567 
Nese. Note that h is fixed to 0.5. 568 

8. Given the expected and the empirical SFS for both the inbreeding and the 569 
outcrossing populations, compute the log likelihood according to eqs. 2 and 3. 570 

9. By repeating steps 4-8, the log likelihood can be calculated for an arbitrary set of 571 
parameters. Maximum likelihood parameters are computed numerically by 572 
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maximizing the likelihood using iterative non-linear optimization methods such as 573 
BFGS or Nelder-Mead (36). 574 

 575 
Bootstrapping and testing model parameters 576 

Our maximum likelihood approach of inferring the DFE and dominance parameters only 577 
returns a point estimate, and does not include a measure of the uncertainty of the estimate. 578 
Further, since the approach numerically optimizes the likelihood and estimates demographic 579 
parameters, numerical errors might lead to a larger uncertainty in parameters than expected based 580 
on the shape of the likelihood function. Thus, we follow a non-parametric bootstrapping 581 
approach by Poisson resampling both the synonymous and nonsynonymous empirical SFS and 582 
re-estimating the demographic and selection parameters for each resampling. From 20 583 
bootstrapped parameters we then compute the standard error and the 95% confidence interval 584 
(Fig. 3C). To test for difference in certain parameters between gene categories, we computed a z-585 
score by dividing the difference in the estimate by the estimated standard error of the difference. 586 
The P-value is then computed based on the standard normal distribution (Fig. 3D). 587 
 588 
Robustness in establishing the h-s relationship 589 

The negative relationship between h and s, such that more deleterious mutations are more 590 
recessive, was first reported by a series of mutation accumulation (MA) experiments in 591 
Drosophila (10, 11), and later supported by two studies in yeast (13, 19). However, the validity 592 
of the results was questioned (19, 44). Further, the more comprehensive and detailed study in 593 
yeast restricts their h-s relationship models such that more deleterious mutations are only 594 
allowed to become more recessive than less deleterious mutations, but not more dominant (19). 595 
Such a study, by definition, cannot find support for a positive relationship between h and s, 596 
because the model did not allow for such a relationship. Thus, based on previous work, it has not 597 
clearly been established that more deleterious mutations become more recessive.  598 

Therefore, we also tested an alternative model where h converges to one instead of zero, i.e. 599 
more deleterious mutations are more dominant than less deleterious mutations: 600 

 601 

ℎ = 𝑓!"#$%&!#'($ 𝑠 = 1−
1

1
(1− 𝜃!"#$%&$'#)

− 𝜃!"#$𝑠
 

 602 
However, this model does not improve fit to the SFS over a constant h model or the h-s 603 
relationship model of equation 1. When using only data from A. lyrata, then the log likelihood of 604 
the alternative h-s relationship model (LL = -405.1) is similar to that of the constant h model (LL 605 
= -404.9), and much lower than the log likelihood of the h-s relationship model of equation 1 606 
(LL = -218.8). The small estimated θrate parameter (3,980) suggests that this model is equivalent 607 
to the constant h model where h does not change with s. Similar results are obtained with our 608 
two-population inference, using data from both A. lyrata and A. thaliana. Again, the log 609 
likelihood of the alternative h-s relationship model (LL = -885.2) is similar to that of the constant 610 
h model (LL = -885.3), and much lower than the log likelihood of the h-s relationship model of 611 
equation 1 (LL = -399.7). The extremely small estimated θrate parameter (0.26) suggests that this 612 
model is equivalent to the constant h model. Thus, in summary, we conclude that a model where 613 
more deleterious mutations become more dominant does not fit the SFS as well as a model where 614 
more deleterious mutations become more recessive.  615 
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Robustness of inference to model mis-specifications 616 
When we make simultaneous use of data from both outcrossing (A. lyrata) and inbreeding 617 

(A. thaliana) species for inferring dominance, we implicitly make the assumption that the DFE is 618 
the same in both species. However, for highly diverged species such as humans and Drosophila, 619 
it was shown recently that the DFE, in units of s, is significantly different (32). One potential 620 
concern is that differences in the DFE between species could lead to falsely inferring an h-s 621 
relationship when the true model is additivity.  622 

However, we found additional support for the of h-s relationship model. First, we see 623 
significant support for an h-s relationship over an additive or constant h model even when basing 624 
our inference only on the outcrossing A. lyrata data (Table S2). Further, the estimates of the DFE 625 
and dominance parameter estimates agree reasonably with each other across different ways of 626 
doing the inference. Specifically, estimates made using only A. lyrata, agree with those using A. 627 
lyrata and A. thaliana combined, although in the former case, the confidence limits are wider 628 
(Fig. S8). Second, we explored the effect of different DFEs on our inference procedure using 629 
simulations. We ran simulations under an additive model, with parameters of the DFE taken 630 
from separate estimates of the DFE in each species (for details see the next section). Then, on 631 
each simulated dataset, we fit the demographic and selective models. Lastly, we compute the 632 
sum of log likelihoods (LLO +LLI), assuming a unique additive DFE in both species (true model). 633 
Then we compare this log likelihood to the log likelihood that assumes the same DFE, but an h-s 634 
relationship (incorrect model). We find that the additive log likelihood always sums up to a 635 
larger value than the log likelihood assuming the same DFE, but an h-s relationship. This pattern 636 
in the simulations contrasts with what is seen in the actual empirical data. For the empirical data, 637 
we find that the log likelihood of the additive model with unique DFEs (LLO +LLI = -466 - 84 = -638 
550) is smaller (i.e. a worse fit) than the log likelihood assuming the same DFE, but an h-s 639 
relationship (LL = -400, see Table S3). This suggests that the additive model has a worse fit than 640 
an h-s relationship model, even when the assumption of an identical DFE in both species is 641 
relaxed. In summary, analyses of simulated data suggest that it is possible to distinguish between 642 
different DFEs between species and a true h-s relationship. It is unlikely for our inference 643 
framework to infer a spurious h-s relationship due to differences in the DFE between species. 644 

Another assumption of our approach is that the inbreeding coefficient F of the selfing 645 
population equals 1. We tested robustness to this assumption by simulating SFS data for a selfing 646 
population with selfing rate at the lower end of what has been estimated for A. thaliana (97%; 647 
(42, 45–47)). We then compared this SFS to an SFS that is simulated under full selfing (F=1), 648 
and found that the SFS match up well. Similar results are found for even lower selfing rates of 649 
90% or 85% (Fig. S9). Moreover, we found that our approach leads to unbiased estimates when 650 
simulating data under a selfing rate of 97% (Fig. S10). Thus, an inbreeding rate of 97% is high 651 
enough to ensure unbiased estimation of dominance parameters with our approach. 652 
 653 
Simulation setup 654 

To test our inference procedure, we simulated data using the forward simulation software 655 
PReFerSim (48), but changed the source code of the software to allow for an h-s relationship 656 
according to eq. 1. We simulate genome-wide data under the three-epoch model, with 657 
θSynonymous,Inbreeding=41,800, θNonsynonymous,Inbreeding=96,600, θSynonymous,Outcrossing=131,600, and 658 
θNonsynonymous,Outcrossing=304,000. Here, θ	
  is	
  4NeμL,	
  where L is the respective synonymous or 659 
nonsynonymous sequence length, µ is the neutral mutation rate, and Ne is the ancestral 660 
population size. Further, we simulated smaller sets of data that reflect the relatively small 661 
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number of structural genes, with all values of θ being 10 times smaller. The simulation 662 
parameters for the DFE, the demographic model, and the h-s relationship are taken from the 663 
empirical estimates from the genome-wide data (see Table S1 and S3). However, the simulations 664 
are downscaled to a 50-fold smaller population size than estimated to increase the speed of the 665 
simulations (32). After simulating the respective synonymous and nonsynonymous SFS under 666 
both inbreeding and outcrossing, we estimate the demographic parameters, the DFE parameters, 667 
and the dominance parameters using our method. 668 

We simulated 100 replicates of the following scenarios: First, we simulated under the 669 
additive model, assuming the same DFE in both populations. After running the inference, this 670 
leads to the null distribution of the test statistic Λ (Fig. 2C and 2D). Second, we simulated under 671 
the constant h model. This leads to the distribution of Λ under the alternative hypothesis of 672 
constant h (Fig. 2C). Finally, we simulated under the h-s relationship model. This leads to the 673 
distribution of Λ under the alternative hypothesis of an h-s relationship (Fig. 2D). We find that 674 
we can estimate the true parameters of the h-s relationship under all simulation scenarios (Fig. 675 
S10). 676 

The two simulated null distributions of Λ in Fig. 2C and 2D follow closely to the 677 
expectation under the asymptotic theory, with only a slightly larger mean and standard deviation: 678 
the expected mean and standard deviation of a chi-square distribution with df=1 is 1 and 1.9, the 679 
observed mean and standard deviation of Λ	
  in	
  Fig.	
  2C	
  is	
  1.9	
  and	
  2.9.	
  The expected mean and 680 
standard deviation of a chi-square distribution with df=2 is 2 and 2, the observed mean and 681 
standard deviation of Λ	
  in	
  Fig.	
  2D	
  is	
  2.1	
  and	
  4.9. 682 

 683 
Model for how the evolution of optimal gene expression explains dominance patterns 684 

Our model of how optimal gene expression leads to dominance is an extension of the model 685 
of Hurst and Randerson (9). In this model, dominance is a direct consequence of optimized gene 686 
expression. Fitness is modeled as a function of gene expression. Higher gene expression leads to 687 
higher fitness, but the gain from increasing gene expression is lower for higher levels of gene 688 
expression than for lower levels of gene expression (diminishing returns function). For 689 
enzymatic genes, this relationship was shown to be a consequence of metabolic pathway 690 
dynamics, assuming that the output of the system (flux) is directly related to fitness (7). For 691 
genes encoding structural proteins, it is imaginable that after enough protein is produced to build 692 
certain structures in the cell or the extracellular matrix, additional protein does not improve its 693 
functional role any further.  694 

To formalize such a type of diminishing returns function, Hurst and Randerson assume a 695 
simple functional relationship between expression level and fitness, f(x) = x/(1+x), where x is the 696 
expression level (arbitrary units), and f is the fitness. Further, they assume that per unit of x, there 697 
is a cost associated with gene expression. In biological systems, these costs could be related to 698 
spending cellular resources (amino acids and nucleotides), allocation of cellular machineries 699 
(RNA polymerase and ribosome), or energy consumption (49). The expression cost is included 700 
as a parameter that quantifies the reduction in fitness per unit of gene expression, such that f(x) = 701 
x/(1+x)(1-cost*x). For simplicity, we assume that the cost per unit of gene expression is the same 702 
for every gene. 703 

We now extend this model in two ways. First, the Hurst and Randerson model assumes that 704 
the fitness at zero expression level is zero. However, experiments in bacteria, yeast and a number 705 
of other organisms have shown that a considerable proportion of genes are non-essential, such 706 
that fitness would not reduce to zero when the gene is not expressed (50). We include an 707 
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intercept parameter in the model that determines the fitness when the gene is not expressed. An 708 
intercept close to one indicates that the gene is non-essential and can be removed with only little 709 
reduction in fitness, whereas a value close to zero indicates that the gene is essential for survival 710 
or reproduction. Second, we add a scale parameter that allows for varying rates of increase in 711 
fitness with expression level (Fig. S11). We define the scale parameter as the expression level at 712 
which fitness is exactly in the middle between the fitness at zero expression and at infinite 713 
expression (assuming no expression costs). In biological terms, this parameter is related to the 714 
amount of protein needed by the organism to function properly. For structural proteins, many 715 
molecules might be needed to build structures in or out of the cell, which would be reflected in a 716 
large scale parameter. For enzymatic proteins, a single protein can catalyze the same chemical 717 
reaction over and over again, thus only a small amount of molecules might be needed and the 718 
scale parameter would be small. The relation between expression level and fitness is then a 719 
function of cost, intercept, and scale: 720 
 721 

𝑓 𝑥 = (!!!"#$%&$!"×!"#$%)(!!!"#$×!)
!!!"#$%

 (7) 722 
 723 
The optimal gene expression under this model can be computed by setting the derivative of 724 

f(x) to zero and solving for (positive) x: 725 
 726 

𝑥!"# =   
!"#$%×!"#$×(!!!"#$%&$'#)×(!!!"#$%×!"!")

!"#$
− 𝑠𝑐𝑎𝑙𝑒 (8) 727 

 728 
We assume that gene regulatory sequence is optimally evolved, such that genes are 729 

expressed at the level xopt (eq. 8). Next, we investigate the fitness effect of gene mutations that 730 
cause the protein to be non-functional. If the mutation is heterozygous, then the amount of 731 
functional protein is only half of the amount in the wild-type homozygous genotype. If the 732 
mutation is homozygous, then no functional protein is produced. The fitness consequences of 733 
heterozygous mutations are computed by setting gene expression x to xopt/2 in eq. 7. The fitness 734 
consequences of homozygous mutations are commutated by setting x = 0. The selection 735 
coefficient s and the dominance coefficient h are then defined as: 736 

 737 

𝑠 =
𝑓 0 − 𝑓 𝑥!"#

𝑓 𝑥!"#
 

 738 

ℎ =
𝑓 𝑥!"# − 𝑓

𝑥!"#
2

𝑓 𝑥!"# − 𝑓 0
 

 739 
Both s and h are determined by the three parameters: cost, intercept, and scale. We can 740 

investigate the relationship between s and h as a function of these three parameters (Fig. S12).  741 
Two predictions of the model can be noted: First, there is a negative relationship between h 742 

and s. More strongly deleterious mutations are more recessive than less deleterious mutations 743 
(Fig. S12). Note that this is a consequence of selection for optimal gene expression, not because 744 
of direct selection on a dominance modifier. Direct and indirect models of selection for 745 
dominance were criticized by Orr, who has noted that a predominantly haploid organism would 746 
not be able to evolve dominance (20). In at least one such organism, dominance of mutations is 747 
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observed, arguing against models of selection for dominance (20). However, our model does not 748 
rely on evolution in a diploid organism, since it does not rely on selection happening only in the 749 
diploid state (see also Hurst and Randerson). It is thus in agreement with Orr’s finding. Second, 750 
although the model predicts that mutations are recessive, mutations become slightly less 751 
recessive when increasing the scale parameter, i.e. when increasing the optimal expression level 752 
of the gene. This predicts that mutations in genes with high optimal gene expression (many 753 
molecules are needed) would be more additive than genes with low optimal gene expression (few 754 
molecules are needed). This prediction matches our empirical analyses.  We found that gene sets 755 
with high expression level and/or high connectivity (i.e. many molecules needed), tend to be 756 
more additive compared to gene sets having low expression level and/or low connectivity (i.e. 757 
only few molecules needed). Further, we found that mutations in genes encoding structural 758 
proteins tend to be more additive than those in genes encoding catalytic proteins (Fig. 3C). 759 

For the simulations in Fig. 4B and 4C, we simulated 5000 genes with random intercept and 760 
scale parameters and computed h and s of potential mutations in each gene. The cost parameter 761 
was fixed to 0.001. The intercept parameter was sampled from a uniform distribution with values 762 
ranging from 0.9 to 1, reflecting the fact that most new mutations are effectively neutral (35). 763 
The scale parameter was sampled from the absolute values of a normal distribution with mean 764 
and standard deviation of 0.1, leading to variation in the levels of optimal gene expression that is 765 
slightly skewed to lower values (i.e. assuming more genes with small optimal gene expression 766 
than with large optimal gene expression). 767 

768 
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 769 

Fig. S1. Demographic model fit to the synonymous SFS. 770 
MAF is the minor allele frequency. In both species, the three-epoch model (B) fits singletons and 771 
doubletons better than the two-epoch model (A). 772 

773 
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 774 

Fig. S2. Power for discriminating between dominance models using data from a single 775 
outcrossing species (A. lyrata).  776 
(A) Likelihood ratio tests comparing a constant h model to an additive model. When data are 777 
simulated under an additive model (green), Λ nearly follows a chi-square (2 df) distribution (red 778 
line). When the data are simulated under a model with h=0.46 (tan), the distribution of Λ 779 
overlaps considerably, indicating little statistical power. (B) Likelihood ratio tests comparing the 780 
h-s relationship model to an additive model. When data are simulated under an additive model 781 
(green), Λ nearly follows a chi-square (2 df) distribution (red line). However, when the data are 782 
simulated under the h-s relationship model (tan), the distribution of Λ is substantially larger, 783 
indicating good statistical power. 784 
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 786 

Fig. S3. Principal component analysis of population structure. 787 
Principal component analysis (PCA) of the genetic structure of (A) A. lyrata and (B) A. thaliana. 788 
When two accessions were closely related, we retained one individual selected at random. We 789 
also removed accessions that are highly diverged from the majority of individuals. The 790 
accessions that we removed are indicated by red crosses. 791 

792 

●

●●

●●●●

●●
●

●●

●

−0.5 0.0 0.5

−0
.5

0.
0

0.
5

PC1

PC
2

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

−0.6 −0.2 0.2 0.6

−0
.6

−0
.2

0.
2

0.
6

PC1

PC
2

A" B"

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182865doi: bioRxiv preprint 

https://doi.org/10.1101/182865
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 793 

Fig. S4. Folded site frequency spectra (SFS) for different categories of genes.  794 
In both species, structural proteins have the highest proportion of nonsynonymous singletons, 795 
suggesting these genes have experienced a greater effect of purifying selection. 796 
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 799 

Fig. S5. Cubic spline interpolation of the SFS along the Nes axis 800 
Examples of cubic spline interpolation of two entries of the SFS (MAF=1 and MAF=5) for h=0, 801 
h=0.5, and h=1. The blue line is the cubic spline interpolation to the red points, which indicate 802 
the expected values under the diffusion approximation as predicted by ∂a∂i. The demography is 803 
assumed to be a constant size model. In all cases, the interpolation line fits well to the red points.804 
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 805 

Fig. S6. Cubic spline interpolation of the SFS along the h axis 806 
Examples of cubic spline interpolation of two entries of the SFS (MAF=1 and MAF=5) for 807 
slightly deleterious (2Ns=-4.5) and strongly deleterious (2Ns=-475) mutations. The blue line is 808 
the cubic spline interpolation to the red points, which indicate the expected values under the 809 
diffusion approximation as predicted by ∂a∂i. The demography is assumed to be a constant size 810 
model. In all cases, the interpolation line fits well to the red points.811 
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 812 

Fig. S7. Estimation of the intercept parameter of the h-s relationship. 813 
Confidence interval (95%) for the estimate of θintercept for different gene categories, combining 814 
data from A. lyrata and A. thaliana for estimation. Note that the confidence intervals for θintercept 815 
for different categories of genes overlap each other suggesting no difference in this parameter.  816 
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 819 

Fig. S8. Estimation of the intercept and rate parameter of the h-s relationship. 820 
Confidence interval (95%) for the estimate of θrate (A), and θintercept (B), for different gene 821 
categories using only data from A. lyrata for estimation. Similar to Fig. 3C, the structural genes 822 
as well as the high expression & high connectivity genes show the smallest θrate estimate, 823 
whereas catalytic genes, low expression genes, and low connectivity genes show the highest θrate 824 
estimate. However, the confidence intervals are in general larger and more variable between 825 
gene sets than when estimating the parameters using both A. lyrata and A. thaliana (Fig. 3C). 826 
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 829 

Fig. S9. Prediction of the nonsynonymous SFS under full selfing and partial selfing. 830 
Forward simulations of the nonsynonymous SFS for A. thaliana, assuming either full selfing 831 
(F=1) or partial selfing with rates of 97% (F=0.94), 90% (F=0.82), or 85% (F=0.74). All four 832 
SFS agree well, suggesting that selfing in A. thaliana can be modeled by assuming an inbreeding 833 
coefficient of one. The simulations assume a three-epoch demographic model with parameters 834 
from Table S1. An h-s relationship and a gamma DFE is assumed with parameters according to 835 
the genome-wide estimates using both A. lyrata and A. thaliana (Table S3). 836 
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 839 

Fig. S10. Testing the inference of dominance parameters with simulations.  840 
Data are simulated under (A) an additive model (h=0.5), (B) a constant h model (h=0.46), and 841 
(C, D) a h-s relationship model (θrate=19773, θintercept=0.986). True parameter values are indicated 842 
in green and MLEs from 100 replicates are shown as boxplots. Including the selfing species in 843 
the inference considerably improves estimation of the dominance parameters. 844 
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 847 

Fig. S11. Gene expression model for the evolution of dominance. 848 
Examples of the computation of selection coefficient (s) and dominance coefficient (h) under our 849 
gene expression model for the evolution of dominance. The expression level of the homozygous 850 
wild type genotype (wt/wt) maximizes fitness after taking expression cost into account. The 851 
expression level of the gene is zero when the mutant is homozygous (mt/mt), and is half the 852 
optimal expression level when the mutant is heterozygous (wt/mt). The corresponding fitness 853 
values allow computation of s and h (see SI text). For non-essential genes, s and h are negatively 854 
related, i.e. the more deleterious mutation has a smaller h value. For mutations in essential genes, 855 
the gene with the higher optimal expression level has a larger h value than the gene with the 856 
lower optimal expression level. 857 
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 860 

Fig. S12. Relationship between h and s under our gene expression model for the evolution 861 
of dominance. 862 
The intercept in the model is varied continuously from 0 to 1, the scale parameter is set to 1, 10, 863 
50, or 100, and the cost of gene expression per expression unit is set to 0.001, or 0.0001. In (A), 864 
the color scheme indicates different values of the intercept, in (B) it indicates different optimal 865 
expression levels (xopt).  866 
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Table S1. Demographic parameter estimates. 869 
Demographic parameter estimates for the two-epoch and the three-epoch model for A. lyrata and 870 
A. thaliana. The effective population size is indicated as Ne, LL is the log-likelihood, and T is the 871 
time length of the epoch in generations.  872 
 873 

 874 
  875 

Model Species

Lyrata
Thaliana
Lyrata
Thaliana

Two4
epoch
Three4
epoch

Ne,ancestral Ne,second7epoch Ne,third7epoch
T(second7
epoch)

T(third7
epoch)

Synonymous7
theta

LL

530,8957 1,797,55677 4 562,6127 4 129,058777777 41095
746,1487 100,218777777 4 568,3447 4 199,771777777 4104
608,5707 6,554,85877 23,584777 462,9527 1,4897777 131,613777777 4218
161,7447 24,07677777777 203,0777 7,420777777 14,53477 41,795777777777 473
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Table S2. Model comparison of dominance models. 876 
Likelihood ratio test statistics (Λ) and P-values when comparing different models of dominance, 877 
using only data from A. lyrata. The h-s relationship fits the data significantly better than the 878 
additive model and significantly better than a model with a single dominance coefficient. 879 
 880 

 881 
  882 

H0 H1 Λ P-value

Additive Constant 
h≠0.5 123 <1x10-15

Additive h-s 
relationship 495 <1x10-15

Constant 
h≠0.5

h-s 
relationship 372 <1x10-15
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Table S3. Maximum likelihood estimates of DFE and dominance parameters 883 
Estimates for the gamma DFE parameters (shape, scale) and the two parameters of the h-s 884 
relationship (θintercept, θrate) for different sets of genes (Genome-wide, catalytic and structural).  885 
 886 

 887 
  888 

Gene$set Data Inference$model Shape Scale θintercept θrate LL
Additive 0.270 0.00042 0.5$(fixed) 0$(fixed) B466
Constant$h 0.292 0.00016 0.998 0$(fixed) B405
hBs$relationship 0.159 0.00911 0.999 52085 B219
Additive 0.155 0.00612 0.5$(fixed) 0$(fixed) B84

Only$A.$lyrata

Only$A.$thaliana
GenomeB
wide

Additive 0.245 0.00064 0.5$(fixed) 0$(fixed) B903
Constant$h 0.245 0.00068 0.467 0$(fixed) B885
hBs$relationship 0.185 0.00263 0.987 39547 B400
Additive 0.398 0.00017 0.5$(fixed) 0$(fixed) B105
Constant$h 0.436 0.00007 0.992 0$(fixed) B99
hBs$relationship 0.200 0.00711 0.988 50736 B74
Additive 0.158 0.01326 0.5$(fixed) 0$(fixed) B68

A.$lyrata$and$A.$
thaliana

GenomeB
wide

Catalytic

Only$A.$lyrata

Only$A.$thaliana
Additive 0.303 0.00048 0.5$(fixed) 0$(fixed) B332
Constant$h 0.307 0.00051 0.427 0$(fixed) B322
hBs$relationship 0.236 0.00167 1.000 46618 B203
Additive 0.407 0.00062 0.5$(fixed) 0$(fixed) B50
Constant$h 0.442 0.00023 0.997 0$(fixed) B48
hBs$relationship 0.268 0.00774 0.872 30106 B43
Additive 0.272 0.00255 0.5$(fixed) 0$(fixed) B31Structural

Only$A.$lyrata

Only$A.$thaliana

Catalytic

A.$lyrata$and$A.$
thaliana

Additive 0.375 0.00082 0.5$(fixed) 0$(fixed) B90
Constant$h 0.369 0.00065 0.763 0$(fixed) B85
hBs$relationship 0.331 0.00119 0.996 18309 B80

Structural

A.$lyrata$and$A.$
thaliana
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Table S4. Maximum likelihood estimates of DFE and dominance parameters for different 889 
expression levels and connectivity 890 
Estimates for the gamma DFE parameters (shape, scale) and the two parameters of the h-s 891 
relationship (θintercept, θrate) for different sets of genes (low and high expression level, and low and 892 
high connectivity).   893 
 894 

 895 
 896 
 897 

898 

Gene$set Data Inference$model Shape Scale θintercept θrate LL
Additive 0.299 0.00020 0.5$(fixed) 0$(fixed) A141
Constant$h 0.327 0.00008 0.982 0$(fixed) A134
hAs$relationship 0.122 0.08521 0.880 93694 A97
Additive 0.132 0.00374 0.5$(fixed) 0$(fixed) A63

Low$
expression

Only$A.$lyrata

Only$A.$thaliana
Additive 0.258 0.00030 0.5$(fixed) 0$(fixed) A514
Constant$h 0.242 0.00027 0.864 0$(fixed) A369
hAs$relationship 0.236 0.00034 0.997 35966 A328
Additive 0.381 0.00033 0.5$(fixed) 0$(fixed) A244
Constant$h 0.423 0.00012 0.997 0$(fixed) A228
hAs$relationship 0.212 0.00931 0.999 36169 A177
Additive 0.186 0.01944 0.5$(fixed) 0$(fixed) A62

Low$
expression

A.$lyrata$and$A.$
thaliana

High$
expression

Only$A.$lyrata

Only$A.$thaliana
Additive 0.265 0.00183 0.5$(fixed) 0$(fixed) A756
Constant$h 0.281 0.00211 0.268 0$(fixed) A540
hAs$relationship 0.200 0.01356 0.990 33765 A264
Additive 0.317 0.00030 0.5$(fixed) 0$(fixed) A151
Constant$h 0.349 0.00011 0.993 0$(fixed) A143
hAs$relationship 0.177 0.00819 0.967 44449 A106
Additive 0.164 0.00508 0.5$(fixed) 0$(fixed) A57

High$
expression

A.$lyrata$and$A.$
thaliana

Low$
connectivity

Only$A.$lyrata

Only$A.$thaliana
Additive 0.270 0.00056 0.5$(fixed) 0$(fixed) A320
Constant$h 0.268 0.00054 0.545 0$(fixed) A316
hAs$relationship 0.222 0.00118 0.998 36278 A226
Additive 0.361 0.00040 0.5$(fixed) 0$(fixed) A151
Constant$h 0.394 0.00015 0.999 0$(fixed) A142
hAs$relationship 0.217 0.00794 0.850 35996 A104
Additive 0.171 0.01507 0.5$(fixed) 0$(fixed) A101

Low$
connectivity

A.$lyrata$and$A.$
thaliana

High$
connectivity

Only$A.$lyrata

Only$A.$thaliana
Additive 0.295 0.00093 0.5$(fixed) 0$(fixed) A433
Constant$h 0.294 0.00095 0.504 0$(fixed) A433
hAs$relationship 0.235 0.00290 0.991 28801 A288

High$
connectivity

A.$lyrata$and$A.$
thaliana
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