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ABSTRACT. Inference of demographic history from genetic data is a primary goal of 48 

population genetics of model and non-model organisms. Whole genome-based approaches such 49 

as the Pairwise/Multiple Sequentially Markovian Coalescent (PSMC/MSMC) methods use 50 

genomic data from one to four individuals to infer the demographic history of an entire 51 

population, while site frequency spectrum (SFS)-based methods use the distribution of allele 52 

frequencies in a sample to reconstruct the same historical events. Although both methods are 53 

extensively used in empirical studies and perform well on data simulated under simple models, 54 

there have been only limited comparisons of them in more complex and realistic settings. Here 55 

we use published demographic models based on data from three human populations (Yoruba 56 

(YRI), descendants of northwest-Europeans (CEU), and Han Chinese (CHB)) as an empirical 57 

test case to study the behavior of both inference procedures. We find that several of the 58 

demographic histories inferred by the whole genome-based methods do not predict the genome-59 

wide distribution of heterozygosity nor do they predict the empirical SFS. However, using 60 

simulated data, we also find that the whole genome methods can reconstruct the complex 61 

demographic models inferred by SFS-based methods, suggesting that the discordant patterns of 62 

genetic variation are not attributable to a lack of statistical power, but may reflect unmodeled 63 

complexities in the underlying demography. More generally, our findings indicate that 64 

demographic inference from a small number of genomes, routine in genomic studies of non-65 

model organisms, should be interpreted cautiously, as these models cannot recapitulate other 66 

summaries of the data. 67 

 68 

 69 
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INTRODUCTION 70 

The Pairwise Sequentially Markovian Coalescent (PSMC) and related methods have 71 

become a popular tool to estimate the history of a population from genetic variation data 72 

(McVean and Cardin 2005; Li and Durbin 2011; Schiffels and Durbin 2014). These methods use 73 

whole genome sequences from one to four individuals to infer the demographic history of an 74 

entire population. Specifically, they estimate the local time to the most recent common ancestor 75 

(TMRCA) for small regions in the genome, then use the distribution of these coalescent times to 76 

infer an overarching demographic history. For instance, if many regions of the genome coalesce 77 

at a specific time, it may be evidence for a population contraction, which would reduce the 78 

number of genetic lineages. The great appeal of these methods is that they do not rely on deep 79 

sequencing of multiple individuals in a population; instead, a single genome can be used to infer 80 

the demographic history of an entire population. PSMC and its successors have been used to 81 

infer the demographic histories and split times of many human populations (Li and Durbin 2011; 82 

Kidd et al. 2012; Schiffels and Durbin 2014; 1000 Genomes Project Consortium 2015; Henn et 83 

al. 2016), and were recently featured in three prominent articles that reconstructed human history 84 

using whole genome sequencing data from over 20 populations (Malaspinas et al. 2016; Mallick 85 

et al. 2016; Pagani et al. 2016).  86 

PSMC plots have also become a cornerstone of many studies of non-model organisms 87 

lacking resources for the sequencing of numerous individuals, including archaic hominins 88 

(Meyer et al. 2012; Prufer et al. 2014), great apes (Prado-Martinez et al. 2013), wild boars and 89 

domestic pigs (Groenen et al. 2012; Bosse et al. 2014), canids (Freedman et al. 2014; Wang et 90 

al. 2016), horses (Orlando et al. 2013), over 38 bird species (Nadachowska-Brzyska et al. 2013; 91 
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Hung et al. 2014; Nadachowska-Brzyska et al. 2015; 2016; Murray et al. 2017), pandas (Zhao et 92 

al. 2012), dromedaries (Fitak et al. 2016), flowering plants (Albert et al. 2013; Ibarra-Laclette et 93 

al. 2013; Holliday et al. 2016), and even woolly mammoths (Palkopoulou et al. 2015). 94 

Despite their wide-spread prominence, there is concern over the validity of demographic 95 

models obtained from this set of whole genome-based methods. Particularly, Mazet et al. (2015) 96 

found that PSMC captures the inverse instantaneous coalescent rate (IICR) rather than an 97 

absolute measure of population size. The IICR corresponds to the effective population size if the 98 

population is panmictic, but it can differ from the population size due to gene flow and 99 

population structure which affect the time to coalescence between subgroups. Thus, population 100 

structure can give a false signal of population growth or contraction – a notorious problem in 101 

demographic inference (Ptak and Przeworski 2002; Chikhi et al. 2010; Peter et al. 2010; 102 

Gattepaille et al. 2013; Heller et al. 2013; Mazet, Rodriguez, and Chikhi 2015; Mazet, 103 

Rodriguez, Grusea, et al. 2015; Orozco-terWengel 2016). Given these possible confounders, the 104 

degree to which whole genome-based plots derived from PSMC and its successors correspond to 105 

actual population size changes, rather than other demographic phenomena, remains unclear.  106 

 An alternative approach to infer population demography from genetic data uses the site 107 

frequency spectrum (SFS). The SFS represents the distribution of alleles at different frequencies 108 

in a sample of individuals from a population (Nielsen 2000; Wakeley 2009). The distribution of 109 

single nucleotide polymorphisms (SNPs), ranging from rare ‘singletons’ which appear only once 110 

in the sample, to high-frequency variants that may appear in the majority of individuals, is 111 

directly affected by the demographic history of the population (Nielsen 2000; Wakeley 2009). 112 

Population contractions (‘bottlenecks’) can lead to a dearth of rare variants (Nei et al. 1975), 113 
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whereas a rapid population expansion can lead to an overabundance (Tajima 1989; Slatkin and 114 

Hudson 1991; Keinan and Clark 2012). The SFS is a sufficient statistic for unlinked SNPs and 115 

has been used extensively in population genetic inference of demography (Nielsen 2000; 116 

Polanski and Kimmel 2003; Adams and Hudson 2004; Marth et al. 2004; Keinan et al. 2007; 117 

Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013). SFS-based demographic 118 

inference has been implemented in programs such as ∂a∂i (Gutenkunst et al. 2009), moments 119 

(Jouganous et al. 2017), fastsimcoal2 (Excoffier et al. 2013), stairway plot (Liu and Fu 2015), 120 

fastNeutrino (Bhaskar et al. 2015), and others (Schraiber and Akey 2015). The SFS requires less 121 

sequence data per individual than the whole genome methods, but requires a greater number of 122 

individuals to be studied, with a minimum of ten per population typically used (Gutenkunst et al. 123 

2009; Excoffier et al. 2013). While the SFS is impractical if one can only sequence one or two 124 

individuals per population, population genomic studies based on many short loci scattered 125 

throughout the genome are beginning to be carried out on non-model organisms. RAD-seq data 126 

or gene transcript data from RNA-seq can readily be used for SFS-based demographic inference 127 

(McCoy et al. 2014; Trucchi et al. 2014; Sovic et al. 2016).  128 

 SFS-based and whole genome-based methods may have different strengths and 129 

weaknesses for demographic inference (Schraiber and Akey 2015). Theoretical and empirical 130 

data show that SFS-based approaches using large numbers of individuals can accurately estimate 131 

recent population growth (Nelson et al. 2012; Tennessen et al. 2012; Gazave et al. 2013; 132 

Bhaskar et al. 2015; Gao and Keinan 2016). In contrast, whole genome-based methods are less 133 

able to do so (Li and Durbin 2011). Recently, however, Schiffels and Durbin (2014) developed 134 

the multiple sequentially Markovian coalescent (MSMC), an extension to PSMC that uses the 135 
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SMC' algorithm (Marjoram and Wall 2006) and can infer demography from two, four or eight 136 

haplotypes (also known as PSMC' when inferring from two haplotypes). The incorporation of 137 

multiple genomes in MSMC is specifically meant to improve estimates of recent growth 138 

(Schiffels and Durbin 2014). 139 

The SFS may be limited in the degree to which it can detect ancient bottlenecks > 2Ne 140 

(effective population size) generations ago and in its ability to detect population declines 141 

(Bunnefeld et al. 2015; Terhorst and Song 2015; Boitard et al. 2016). Whole genome-based 142 

approaches are not constrained a priori by the number of population size changes as is common 143 

in the SFS-based approaches (but see the “stairway plot” approach of Liu and Fu (2015)). They 144 

therefore often give information about events occurring millions of years ago, but the reliability 145 

of those results remains uncertain (Li and Durbin 2011). Further, demographic models inferred 146 

from human populations using the SFS were unable to recapitulate the empirical distribution of 147 

identity by state (IBS) tracts across the genome, while PSMC-derived models and a new IBS-148 

derived model were better able to match the IBS tract distribution (Harris and Nielsen 2013). 149 

However, the IBS-derived model did not predict the empirical SFS.  150 

Due to these different strengths and weaknesses of approaches using a single type of data, 151 

new methods have been developed which attempt to combine linkage disequilibrium (LD) 152 

information and the SFS (Bunnefeld et al. 2015; Boitard et al. 2016; Terhorst et al. 2017; 153 

Weissman and Hallatschek 2017). One of the most recent is Terhosrt, Kamm and Song’s (2017) 154 

method, SMC++, which combines a PSMC-like approach with the SFS to condition an SFS 155 

calculated from many individuals on the distribution of TMRCA from a single unphased 156 

genome. This approach is fast and potentially very powerful, but has the same barrier to entry for 157 
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those studying non-model organisms as the other SFS methods, as it requires sequence data from 158 

many individuals.  159 

Due to anthropological and biomedical interest, humans are an organism that has been 160 

extensively studied using numerous demographic inference methods and provide a means to 161 

quantitatively compare these demographic inference approaches using the same empirical 162 

populations. Gutenkunst et al. (2009) and Gravel et al. (2011) carried out SFS-based inference of 163 

human demography using the diffusion approximation in ∂a∂i, while Li and Durbin (2011) and 164 

Schiffels and Durbin (2014) estimated human demography from the same populations using 165 

PSMC and MSMC, respectively. Although the results are in some ways generally similar, the 166 

demographic models inferred for three human populations using MSMC (Schiffels and Durbin 167 

2014) differ from demographic models for the same populations derived from SFS-based 168 

methods (Gutenkunst et al. 2009). MSMC infers ancient ancestral sizes and periods of growth 169 

and decline (the characteristic “humps” in MSMC trajectories) that were not detected in the SFS-170 

derived models as well as inferring greater recent growth (Figure 1). The models inferred using 171 

MSMC also vary depending on the number of genomes used for the inference (Figure 1).  172 

Terhorst et al. (2017) analyzed the same populations with the combined whole genome 173 

and SFS method, SMC++, finding an ancestral size more in line with Gutenkunst et al.’s (2009) 174 

model, but with greater recent growth and ancestral bottlenecks more resembling the MSMC 175 

models (Figure 1). The reasons why these approaches to demographic inference yield different 176 

estimates remain poorly understood. 177 

 Here we leverage humans as a model system to perform an empirical comparison of the 178 

performance of whole genome, SFS, and combined methods of demographic inference. 179 
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Specifically, we determine which published models of human demography described above 180 

(Figure 1) best fit the empirical distributions of genome-wide heterozygosity, LD decay, and the 181 

observed SFS.  182 

We find that the models inferred using the SFS or the combined method SMC++ 183 

accurately recapitulate heterozygosity and the observed SFS. Among the MSMC models inferred 184 

by Schiffels and Durbin (2014), only the MSMC models based on a single genome were able to 185 

accurately recapitulate heterozygosity, and none of the MSMC models predicted an SFS that 186 

matched the empirical SFS. None of the demographic histories accurately predicted LD decay, 187 

but the histories derived from MSMC using four genomes (8 haplotypes), the SFS, and SMC++ 188 

based models fit better than the MSMC models based on one or two genomes. Our results 189 

provide a cautionary tale against the literal interpretation of demographic models inferred using 190 

one type of data, instead arguing for considering multiple summaries of the data when making 191 

detailed demographic inferences in non-model species. 192 

 193 

METHODS 194 

Published demographic models used in this study 195 

We determined which, if any, of the published models of human demography (Figure 1) 196 

described below could accurately predict multiple summaries of the genetic variation data. 197 

Demographic models that fit the data well should produce patterns of genetic variation that 198 

match the empirical patterns in the data. We focused on three human populations: Utah residents 199 

with Northern and Western European ancestry from the Centre d’Etude du Polymorphism 200 
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Humain (CEPH) collection (CEU), Han Chinese in Beijing, China (CHB), and Yoruba in Ibadan, 201 

Nigeria (YRI). 202 

The first set of demographic models was jointly inferred for the three populations in ∂a∂i 203 

by Gutenkunst et al. (2009) using a three-population joint SFS based on data from intronic 204 

regions. Their model parameters were made available both in ∂a∂i and Hudson’s ms (Hudson 205 

2002) format, and include gene flow between the three populations (here referred to as the 206 

“Gutenkunst” model).  207 

The next nine models were inferred by Schiffels and Durbin (2014) using whole genome 208 

Complete Genomics (Drmanac et al. 2010) sequence data of two, four and eight statistically 209 

phased genomic haplotypes (1, 2 and 4 individual genomes) per population to infer demographic 210 

histories using MSMC (here referred to as the “MSMC 2-Haplotype”, “MSMC 4-Haplotype”, 211 

and “MSMC 8-Haplotype” models; Supplementary Note 1). 212 

To analyze their models with ∂a∂i, we converted these nine demographic models (CEU, 213 

CHB, YRI populations, each based on two, four and eight haplotypes) into step-wise models of 214 

population size changes over small time intervals (Supplementary Note 2, Figure S1).  215 

 The final set of models was inferred by Terhorst et al. (2017) in SMC++, a combined 216 

SFS plus whole genome approach. For the whole genome portion of the analysis, they used high 217 

coverage sequence data from Complete Genomics, and generated an SFS based on a combination 218 

of 1000 Genomes and Complete Genomics whole genome data for each population (Drmanac et 219 

al. 2010; 1000 Genomes Project Consortium 2015; Terhorst et al. 2017). We converted these 220 

SMC++ models to ∂a∂i and ms format in the same manner as the MSMC models (here referred 221 

to as the “SMC++” models; Supplementary Note 2).  222 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182899doi: bioRxiv preprint 

https://doi.org/10.1101/182899
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Heterozygosity predicted by demographic models 223 

 We compared the distribution of expected heterozygosity from data simulated under each 224 

demographic model to empirical 1000 Genomes data from the same populations in order to 225 

determine which models most accurately predict this broad summary of the data (Figure 2; 226 

Table S1). While heterozygosity is a summary of the SFS, we considered it valuable to examine 227 

both statistics since information regarding the spatial correlation among SNPs along the genome 228 

is lost in the genome-wide SFS. The distribution of heterozygosity across windows of the 229 

genome retains some spatial information and is more similar to what is used by the MSMC 230 

inference approach. 231 

Empirical heterozygosity: 1000 Genomes data from the CEU, CHB and YRI populations were 232 

downloaded. Ten unrelated individuals per population (see Supplementary Note 3 for sequence 233 

IDs) were randomly chosen so that comparisons could be made with Gutenkunst et al.’s (2009) 234 

empirical SFS based on 10 individuals, described below. For all our empirical analyses, only 235 

sites that passed the 1000 Genomes “Strict Mask” filter were considered (1000 Genomes Project 236 

Consortium 2015). 237 

Expected heterozygosity per site (π) was calculated in non-overlapping 100kb windows 238 

from the whole genome data (Supplementary Note 3) as: 239 

𝜋 =
𝑛

𝑛 − 1
 
∑ 2𝑝𝑖(1 −𝐿

𝑖=1 𝑝𝑖)

𝐿
  240 

where p is the frequency of one allele, L is the total number of callable sites in the window, and n 241 

is number of sampled chromosomes (n = 20 for 10 diploid individuals). 242 

Because genetic variation can be affected by linked natural selection (Gazave et al. 2014; 243 

Schrider et al. 2016), we also calculated expected heterozygosity for a set of 6333 x 10kb neutral 244 
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windows that were selected using the Neutral Region Explorer (NRE) (Arbiza et al. 2012) 245 

(Supplementary Note 3; Figure S2). The NRE is a useful tool that allows for the quick 246 

identification of putatively neutral regions that have high recombination rates and high B-values 247 

(indicating less linked selection). For the full set of parameters used in selection of putatively 248 

neutral regions, see Supplementary Note 3.  249 

Simulated heterozygosity: For each demographic model, whole genome data for 10 individuals 250 

were simulated in MaCS (Chen et al. 2009) over 20,000 x 100kb independent blocks, each with 251 

a different recombination rate drawn from the distribution of recombination rates calculated by 252 

Phung et al. (2016) from the pedigree-based genetic map assembled by the deCODE project 253 

(Kong et al. 2010). Additionally, 6300 x 10kb independent blocks per 10 individuals were 254 

simulated for comparison to the neutral regions from the 1000 Genomes dataset (1000 Genomes 255 

Project Consortium 2015). Each 10kb block was simulated using a recombination rate matched 256 

to that of one of the empirical neutral 10kb windows, linearly interpolated from the deCODE 257 

project (Kong et al. 2010). For both sets of simulations, the expected heterozygosity across the 258 

10 individuals was calculated using the equation above in msstats (Hudson 2002). 259 

 260 

Linkage disequilibrium decay predicted by demographic models 261 

We calculated LD between pairs of SNPs using genotype data from 10 individuals from 262 

each of the four populations in the 1000 Genomes Project data. We removed singletons and sites 263 

where all ten individuals were homozygous for the reference allele and then calculated genotype 264 

r2 using vcftools (Danecek et al. 2011). All pairs of SNPs were then placed into bins based on 265 

their physical distance (bp) between each other, from 0-1000bp (bin 1) to 50,000-51,000bp (bin 266 
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51). Within each bin, the average r 2 was calculated by dividing the sum of r 2 values of each pair 267 

of SNPs in the bin by the total number of SNP pairs in that bin.  268 

 The same procedure was carried out for the data simulated in MaCS (Chen et al. 2009) 269 

that were used for the calculations of heterozygosity above. The MaCS output was converted to 270 

vcf format using a custom bash script. Genotype r2 was calculated in vcftools (Danecek et al. 271 

2011) for each 100kb simulated window, the SNP pairs were binned by distance, and average r2 272 

was calculated as described above. The MSMC 8-Haplotype YRI and MSMC 4-Haplotype CEU, 273 

CHB and YRI models have extremely large ancestral sizes, and so their simulations involve so 274 

many SNPs that the LD calculations become highly computationally intensive. Therefore, for 275 

these models only 5000 x 100kb blocks were used for LD decay calculations, with 20,000 x 276 

100kb blocks used for the other models. We experimented with down-sampling the results and 277 

found no change in the LD decay curve due to the smaller amount of data. 278 

To demonstrate that the use of the SMCʹ approximation in the MaCS (Chen et al. 2009) 279 

simulator was not biasing our estimates of LD, we simulated data in the manner described above 280 

under a simple model of extreme population decline (from 100,000 ancestral individuals to 1000) 281 

using both MaCS and MSMS (Ewing and Hermisson 2010) (which does not use the SMCʹ 282 

approximation) and ran it through the same LD decay pipeline used for our other simulated data 283 

(Figure S3).  284 

 285 

SFS predicted by demographic models 286 

We used the diffusion approximation in ∂a∂i (Gutenkunst et al. 2009) to calculate the 287 

expected SFSs under the Gutenkunst, MSMC 2-Haplotype, MSMC 4-Haplotype, MSMC 8-288 
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Haplotype, and SMC++ models for the CEU, CHB and YRI populations. We compared the SFSs 289 

expected under each of these models both to the empirical SFS used by Gutenkunst et al. (2009) 290 

to infer the demographic histories of these three populations (“Observed (Gutenkunst)”, Figure 291 

4-5) as well as to the SFSs based on low-coverage 1000 Genomes whole genome sequencing 292 

data (“1000 Genomes (Whole Genome)”, Figure 6) and SFSs based on putatively neutral 293 

regions in the 1000 Genomes dataset (“1000 Genomes (Neutral)”, Figure 6). We assessed the fit 294 

of different models to the observed SFS by comparing their log-likelihoods (see below, 295 

Supplementary Note 4; Table 1, S2-S4).  296 

 297 

Empirical SFSs: The primary empirical SFSs used in our comparisons were produced by 298 

Gutenkunst et al. (2009) and used to infer the joint demographic histories of CEU, CHB and YRI 299 

populations in their study (“Observed (Gutenkunst)”). As described in their supplementary 300 

information, the joint SFS represents 4.04Mb of Sanger sequencing data from 10 diploid 301 

individuals per population for a total of 17,446 segregating SNPs polarized against chimp, with a 302 

correction for ancestral misidentification applied. We marginalized the SFS using ∂a∂i 303 

(Gutenkunst et al. 2009), in order to have one SFS per population (Figure 4, 5). 304 

In order to make sure our results were consistent with SFSs derived from other 305 

sequencing methodologies and different genomic regions, we also generated folded proportional 306 

genome-wide and neutral SFSs from the 1000 Genomes data described above (“1000 Genomes 307 

(WG)” and “1000 Genomes (Neutral)”) (1000 Genomes Project Consortium 2015) 308 

(Supplementary Note 3; Figure 6, S7).  309 
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Expected SFSs under published demographic models: Expected SFSs for a sample size of 10 310 

diploid individuals were calculated in ∂a∂i (2009) for each of the published demographic models 311 

extrapolating calculations across three grid points (40, 50, 60) (Figure 4, 5). To test whether the 312 

effect of differences in mutation rate between the studies may be responsible for discrepancies, 313 

we also considered an alternative scaling of the MSMC models using a higher mutation rate 314 

(Supplementary Note 5).  315 

We generated both the proportional (Figure 4, S5) and absolute (i.e. SFS based on SNP 316 

counts) SFSs (Figure 5, S6). The proportional SFS was calculated by dividing each bin of the 317 

SFS output by ∂a∂i by the sum of the bins. The absolute SFS was calculated by scaling the SFS 318 

output by ∂a∂i (which is relative to 𝜃 = 1) by:  319 

𝜃 = 4𝑁𝐴𝑖𝜇𝐿 320 

where NAi is the oldest ancestral size inferred in each model and L is the sequence length 321 

(4.04Mbp), in Gutenkunst et al. (2009). 𝜃 for the Gutenkunst model used the authors’ preferred 322 

mutation rate, 𝜇 = 2.35x10-8 mutations per base per generation, and 𝜃 for the MSMC and 323 

SMC++ models used the authors’ preferred mutation rate of 𝜇 =1.25x10-8 mutations per base per 324 

generation (see Supplementary Note 5 for scaling using alternate mutation rates).  325 

Assessing SFS fit: Log-likelihoods were calculated for each proportional SFS relative to the each 326 

of the three observed SFSs (Observed (Gutenkunst), 1000 Genomes (Whole Genome), and 1000 327 

Genomes (Neutral)) using a multinomial log-likelihood (Supplementary Note 4; Table 1, S2, 328 

S4). The fit of different models was compared by examining their decrease in log-likelihood 329 

compared to that of each of the observed SFSs to itself (Supplementary Note 4; Table 1, S2, 330 

S4). Due to the uncertainty of singleton SNP calls using high-throughput sequencing data, log-331 
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likelihoods were calculated both with singletons and with the SFS renormalized without the 332 

singletons category when comparing to the 1000 Genomes SFSs (Figure S7; Table S4).  333 

Log-likelihoods were calculated for each absolute SFS (in terms of SNP counts) using a 334 

Poisson likelihood relative to the Observed (Gutenkunst) SFS (Supplementary Note 4; Table 335 

S3). 336 

Effect of Uncertainty in Ancestral Population Size 337 

To investigate whether changing the ancestral population size (NA) in the MSMC trajectories 338 

would result in SFSs that better fit the observed SFS, we adjusted the CEU MSMC 2-Haplotype 339 

model to have a variety of NA values. We also trimmed the model to remove ancient events 340 

(older than 225.5 kya) to better match the time period (in years) encompassed by the Gutenkunst 341 

et al.’s (2009) model. These adjusted stepwise models were then used to calculate the expected 342 

SFS in ∂a∂i, as above. Supplementary Note 7 describes the values of NA used when testing the 343 

trimmed and untrimmed models (Figure S10-S13).  344 

 345 

MSMC Population Size Trajectories for Demographic Models Inferred from the SFS 346 

To determine whether MSMC is capable of inferring a demography as complex as the 347 

one inferred in the Gutenkunst model, we used coalescent simulations to generate long 348 

chromosomal sequence data for each population under the Gutenkunst et al. (2009) inferred 349 

demographic model (see Gutenkunst et al.’s (2009) Figure 2B and Table 1 for full model), then 350 

ran MSMC on these simulated datasets to assess whether the program is capable of recovering 351 

the underlying demographic model.  352 

Simulations were carried out using MaCS (Chen et al. 2009). For each population, we 353 
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simulated 50 replicate “genomes,” made up of 80 independent 30Mb “chromosomes,” each made 354 

up of 300 linked 100kb recombination blocks, with per-block recombination rates calculated by 355 

Phung et al. (2016) from the pedigree-based genetic map assembled by the deCODE project 356 

(Kong et al. 2010). 357 

Each simulated genome was then used for a separate MSMC inference, using the default 358 

parameters (Schiffels and Durbin 2014) (Figure 7A). To determine whether these inferred 359 

MSMC trajectories would lead to SFSs matching those predicted by Gutenkunst et al.’s (2009) 360 

model, the MSMC trajectories were averaged and the average was converted into a step-wise 361 

∂a∂i model. This model was then used to calculate the expected SFS under the averaged model 362 

based on simulated data (Figure 7B-C). The multinomial and Poisson log-likelihoods for the 363 

proportional and SNP count SFSs were calculated as described in Supplementary Note 4 364 

(Table S2, S3). 365 

Extreme Recent Growth and Neanderthal Admixture: We simulated data under more complex 366 

demographic histories, first to explore MSMC 2-Haplotype and 8-Haplotype’s relative abilities 367 

to infer extreme recent growth, then to determine whether the addition of Neanderthal admixture 368 

may lead to MSMC trajectories resembling those inferred from real data by Schiffels and Durbin 369 

(2014) (Supplementary Note 6; Figure S8-S9).  370 

 371 

Data Availability 372 

All code to simulate data under each demographic model and calculate heterozygosity and 373 

generate the SFS from simulated and empirical data are available on GitHub: 374 

github.com/LohmuellerLab/Compare_Demographic_Models 375 
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RESULTS 376 

We compared published models of demography for three human populations (CEU, 377 

CHB, YRI) inferred using different methods for demographic inference: (1) using the SFS in 378 

∂a∂i (“Gutenkunst”) (Gutenkunst et al. 2009); (2) using whole genomes in MSMC (“MSMC 2, 379 

4, 8-Haplotype”) (Schiffels and Durbin 2014); (3) using a combined SFS plus whole genome 380 

approach in SMC++ (“SMC++”) (Terhorst et al. 2017). The evaluation of the MSMC models 381 

involves three models per population because Schiffels and Durbin’s (2014) inference was 382 

carried out using 2, 4, or 8 chromosomal haplotypes (from one, two and four individuals), 383 

sometimes resulting in fundamentally different demographic parameter estimates. We evaluated 384 

whether the method’s performance was improved using certain numbers of haplotypes.  385 

 386 

Heterozygosity predicted by demographic models 387 

The distribution of expected heterozygosity across 100kb and 10kb blocks was calculated 388 

from data simulated under each published demographic model for each of the three populations 389 

and compared to empirical distributions of heterozygosity based on whole genome and putatively 390 

neutral sequence data from the 1000 Genomes project. 391 

 We find that the Gutenkunst demographic model inferred from the SFS, the MSMC 2-392 

Haplotype model and the SMC++ model all yielded distributions of heterozygosity that resemble 393 

the empirical whole genome distribution of heterozygosity, with MSMC 2-Haplotype fitting the 394 

mean most closely (Figure 2). However, we found that the higher haplotype MSMC models 395 

(MSMC 4-Haplotype and 8-Haplotype) yielded distributions of heterozygosity that were highly 396 

divergent from the empirical distribution (Figure 2; Table S1).  397 
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The MSMC 4-Haplotype models fit worst due to their extremely high inferred ancestral 398 

size across all three populations (Figure 1; Table S2; CEU: 187,514; CHB: 191,238; YRI: 399 

205,845 individuals, compared to 4,000-40,000 individuals in the other models), with mean 400 

whole genome heterozygosity distributions nearly 7x larger than that of the empirical whole 401 

genome distribution (Figure 2; Table S1). The MSMC 8-Haplotye model for YRI infers a 402 

similarly large ancestral size and has a similarly high mean heterozygosity to the 4-Haplotype 403 

YRI model. The MSMC 8-Haplotype models for CEU and CHB, however, infer much lower 404 

ancestral sizes (CEU: 2,147, CHB: 5,666) (Figure 1). Due to the low ancestral size, these models 405 

also do not fit the empirical distribution well, yielding distributions of heterozygosity with means 406 

that are 2-4x lower than the empirical distributions.  407 

When examining the 1000 Genomes data, we found that heterozygosity in the neutral 408 

regions was higher than that seen for the genome wide distribution of heterozygosity calculated 409 

in 10kb windows (Table S1; e.g. CEU mean heterozygosity per site, whole genome: 7.8x10-4 vs. 410 

neutral: 9.4x10-4), suggesting that natural selection has directly and/or indirectly affected 411 

genome-wide patterns of heterozygosity. When the published demographic models were 412 

compared to the neutral heterozygosity distributions, we found similar trends to those seen for 413 

the whole genome data (Figure S2). 414 

 415 

Linkage disequilibrium predicted by demographic models  416 

 None of the published demographic models could perfectly recapitulate the empirical LD 417 

decay curve (Figure 3). For SNP pairs less than 10kb apart, the MSMC-8 Haplotype model 418 

comes closest to the empirical curve for the CEU and CHB populations (Figures 3A and 3B), 419 
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but underestimates the amount of LD, while all other models predict too much LD. The 420 

Gutenkunst and SMC++ models predict similar LD curves and are closer to the empirical curve 421 

than the MSMC 2-Haplotype and 4-Haplotype models. For YRI SNP pairs less than 10kb apart, 422 

SMC++ and MSMC 8-Haplotype predict similar LD decay curves and are close to the empirical 423 

distribution, with Gutenkunst still fitting better than MSMC 2-Haplotype and 4-Haplotype 424 

(Figure 3C). At distances greater than 10kb apart, all demographic models predict there to be 425 

more LD than seen in the empirical data (Figure 3).  426 

 We found that the lack of fit is not due to the use of the SMCʹ approximation in the 427 

simulator MaCS (Chen et al. 2009), as both MaCS and MSMS (Ewing and Hermisson 2010), a 428 

coalescent simulator which does not use the SMCʹ approximation, yielded highly similar LD 429 

decay curves when simulating data under the same simple population contraction model (Figure 430 

S3).  431 

 432 

SFS predicted by demographic models 433 

Lastly, we examined which of the demographic models could match the SFS of the 434 

empirical data. To account for the possibility of overfitting the SFS-based Gutenkunst model to 435 

the SFS it was inferred from, we also compared all models to empirical SFSs based on low-436 

coverage high-throughput 1000 Genomes sequence data from the same three populations.  437 

Comparing to the observed Gutenkunst SFS: For each population, the SFSs predicted by 438 

the three MSMC models do not match the empirical proportional SFS from Gutenkunst et al. 439 

(2009), regardless of the mutation rate or number of genomes used (Figure 4, S5; Table 1, S2). 440 

The expected SFS based on the Gutenkunst et al. (2009) demographic history matches the 441 
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observed SFS closely, being only 9 log-likelihood units worse than the best possible fit 442 

(comparing the empirical SFS to itself) for CEU, 48 units worse for CHB, and 17 units worse for 443 

YRI (Table 1). In comparison, the best fitting MSMC models for each population are 152, 188 444 

and 373 log-likelihood units below the best possible fit (Table 1). The combined whole genome 445 

plus SFS method SMC++ has an intermediate fit, with a log-likelihood well below the 446 

Gutenkunst model, but consistently better than any of the MSMC models (Table 1).  447 

Interestingly, there is not consistent improvement in fit to the observed SFS when 448 

increasing the number of individuals used for the MSMC inference. For each population, the 4-449 

Haplotype model has the worst fit (Figure 4; Table 1). For CEU and YRI, the MSMC 2-450 

Haplotype models fit best of the MSMC models, but both are over 100 log-likelihood units 451 

worse than the Gutenkunst model. For CHB, the 8-Haplotype model fits best, but is still 140 452 

units worse than the Gutenkunst model (Table 1).  453 

 The above comparisons considered the proportions of SNPs at specific frequencies in the 454 

sample. We also performed a comparison of the number of SNPs in each bin of the SFS, the 455 

absolute SFS, to the observed absolute SFS used in Gutenkunst et al.’s (2009) inference using a 456 

Poisson likelihood. The absolute SFS expected under the Gutenkunst et al. (2009) model fits the 457 

observed SFS best (Figure 5; Table S3), and is only 9, 49 and 17 log-likelihood units below the 458 

best possible fits for CEU, CHB and YRI models, respectively. The SMC++ models have the 459 

next best fit to the absolute SFS, but come 86 (CEU), 176 (CHB) and 193 (YRI) log-likelihood 460 

units below the best possible fit, followed by MSMC 2-Haplotype which fell 278 (CEU), 378 461 

(CHB), and 455 (YRI) below the optimal fit (Table S3). In all three populations, the MSMC 4-462 

Haplotype and 8-Haplotype models are thousands of log-likelihood units worse than the best 463 
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possible fit, showing no improvement based on using a larger number of individuals in the 464 

inference (Table S3). The over-estimation of SNPs in the 4-Haplotype model is due to the 465 

model’s extremely high predicted ancestral size (around 200,000 individuals for each population) 466 

(Table S3).  467 

For both the proportional and absolute SFSs, we found that rescaling the models using a 468 

higher mutation rate did not produce large qualitative differences in how the MSMC models fit 469 

the observed (Gutenkunst) SFS (Supplementary Note 5; Figure S4-S6). 470 

Comparing to the folded low-coverage 1000 Genomes SFS: To avoid giving the Gutenkunst 471 

model an unfair advantage by fitting all models to the SFS used to infer that particular model, we 472 

also compared all models to proportional folded SFSs based on whole genome and neutral data 473 

from the 1000 Genomes project (Figure 6, S7). The fit to the empirical singletons bin was poor 474 

for all models, except for SMC++, which was, in part, fit to an SFS based on 1000 Genomes 475 

data. Calling singletons is notoriously difficult in low-coverage data, making that bin the least 476 

reliable in the 1000 Genomes data (Kim et al. 2011; Nielsen et al. 2011; Han et al. 2014; 2015). 477 

We therefore calculated likelihoods for all models relative to the data both with singletons 478 

included and again with the SFSs renormalized without the singletons category (Figure S7; 479 

Table S4). 480 

For YRI, the Gutenkunst model is the best fitting model for the whole genome and 481 

neutral 1000 Genomes SFSs, both with and without singletons, with all other models having a 482 

much worse fit (the next best model, SMC++, is hundreds to thousands of log-likelihood units 483 

below the fit of the Gutenkunst model) (Figure 6C; Table S4). For CEU and CHB, if singletons 484 

are included, SMC++ fits the whole genome and neutral 1000 Genomes SFSs best. For CEU, the 485 
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Gutenkunst model then fits second-best, with the MSMC models far behind (Figure 6A; Table 486 

S4). For CHB, the MSMC 2-Haplotype fits second-best after SMC++, with the Gutenkunst 487 

model coming third, but both are over 10,000 log-likelihood units below SMC++ (Figure 6B; 488 

Table S4). If singletons are excluded for CEU and CHB, then the Gutenkunst model fits best, 489 

with SMC++ coming in second, and the MSMC models all ranking far below (Table S4).  490 

 491 

Effect of Uncertain Ancestral Population Size 492 

 The accuracy of ancient ancestral population sizes, particularly more than 3 million years 493 

(>100,000 generations) ago, using the whole genome-based methods remains unclear (Li and 494 

Durbin 2011). As discussed above, the MSMC 2-Haplotype and 4-Haplotype models infer large 495 

ancestral sizes for each population that are not supported by previous inferences of human 496 

demographic history (Adams and Hudson 2004; Keinan et al. 2007; Boyko et al. 2008; 497 

Gutenkunst et al. 2009; Nielsen et al. 2009; Gravel et al. 2011). We hypothesized that these 498 

extreme ancestral sizes, as well as ancient bottlenecks and population growth (the signature 499 

“humps” of MSMC trajectories), which do not appear in demographic models inferred using 500 

other methods, could be artifacts that are causing the SFS predicted by these models to deviate 501 

from the true SFS. 502 

To test this hypothesis, we took the best fitting of the MSMC models, the CEU 2-503 

Haplotype model, and carried out a series of adjustment experiments to determine whether 504 

changes to the model could provide a better fit to the observed SFS. Without adjusting the time 505 

period encompassed by the model, we altered the ancestral population size to a variety of values 506 

including those inferred by Gutenkunst et al. (2009) (Supplementary Note 7; Figure S10-S11). 507 
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We also truncated the MSMC trajectory to remove ancient events and better match the time 508 

period (in years) encompassed by the Gutenkunst et al. (2009) model. We again adjusted the 509 

ancestral population size to a variety of plausible values (Supplementary Note 7; Figure S12-510 

S13). 511 

We found trimming away the ancient (older than ~225k years ago) part of the 512 

demographic trajectory and lowering the ancestral population size to 10,000 – 12,300 (compared 513 

to 41,261 inferred initially) dramatically improved the fit of the proportional SFSs predicted 514 

under these adjusted models to the Observed (Gutenkunst) SFS (Figure S12; Table S5). The 515 

best-fit model with ancestral size (NA) equal to 12,300 was brought to within 38 log likelihood 516 

units of the best possible likelihood (Figure S12D; Table S5), only 29 units below the 517 

Gutenkunst model. When repeating this procedure using the SFS based on counts, the SFSs 518 

under these adjusted models showed a different pattern of improvement. Here the untrimmed 519 

models that did not have ancient events >225 kya trimmed away, but had a lowered ancestral 520 

population size of 7,300-12,300, showed the most improvement (Figure S11-S12). However, 521 

their fit was still more than 100 log-likelihood units worse than the Gutenkunst model (Figure 522 

S12; Table S6). 523 

 524 

MSMC Population Size Trajectories for Demographic Models Inferred from the SFS 525 

Given that the SFSs predicted by the demographic models inferred using MSMC do not 526 

fit the observed SFS, we examined whether MSMC is capable of recovering a complex 527 

demography such as the one inferred by Gutenkunst et al. (2009) from a single simulated 528 

genome. We find that MSMC performs relatively well at inferring the underlying demography 529 
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from the simulated data. Figure 7A shows the underlying Gutenkunst demographic model for 530 

each population (purple) (as in the other Gutenkunst model simulations, migration is included in 531 

the model, but is not depicted in our diagrams), with the results of 50 independent MSMC 532 

inferences on each 2-Haplotype simulated dataset coming close to the underlying demography. 533 

However, sharp bottlenecks are inferred as long population declines (as noted by Li and Durbin 534 

(2011) and Schiffels and Durbin (2014)). Additionally, we found evidence of MSMC detecting a 535 

false spurt of growth in the YRI population 1350 generations ago (Figure 7A). Both of these 536 

phenomena were also noted by Bunnefeld et al. (2015).  537 

The SFSs predicted by the demographic models inferred using MSMC on the simulated 538 

data fit the SFS expected under the Gutenkunst model and the observed Gutenkunst SFSs better 539 

than the MSMC demographic models inferred by Schiffels and Durbin (2014) (Figure 7B-C). 540 

The proportional MSMC simulated data SFSs were only 40, 74 and 10 log-likelihood units 541 

below the Gutenkunst model SFS (Table S2), with the SFSs based on SNP counts showing a 542 

similar pattern (Table S3). Therefore, if the Gutenkunst model is the true demographic model for 543 

human history, MSMC accurately captures the population size changes and produces an 544 

appropriate SFS. 545 

It is well established that 2-haplotype whole genome-based inference (PSMC, MSMC 2-546 

Haplotype, also known as PSMC') is not able to detect recent demographic events (Li and 547 

Durbin 2011; Schiffels and Durbin 2014). However, the ability to detect recent growth by using 548 

more than two haplotypes in the inference is cited as a feature of MSMC (Schiffels and Durbin 549 

2014). We ran MSMC 2-Haplotype and 8-Haplotype on datasets simulated under the Gutenkunst 550 

model and a Gutenkunst model plus extreme recent growth (Supplementary Note 6; Figure 551 
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S8). Unsurprisingly, MSMC 2-Haplotype was not able to detect extreme recent growth. Its 552 

estimates of current population size were fairly accurate for the original Gutenkunst model 553 

(Figure 7A), but the method dramatically underestimated the growth for data simulated under 554 

the Gutenkunst + Growth model (Figure S8). The results from 8-Haplotype MSMC inference 555 

were most surprising. We found that for both models, MSMC 8-Haplotype inferred extreme 556 

recent growth as many as four orders of magnitude beyond that in the underlying model, with a 557 

high degree of variance between replicates (Figure S8). Despite the high degree of variance, the 558 

average of the MSMC trajectories all showed a strong upward bias in estimates of the recent past 559 

(Figure S8). While the ability to detect recent growth is meant to be a feature of MSMC, our 560 

findings indicate that the magnitude of growth may not be estimated well. 561 

We had hypothesized that Neanderthal admixture could cause deviation between the 562 

MSMC and Gutenkunst demographic models, but found that the addition of Neanderthal 563 

admixture to our Gutenkunst model simulations did not substantively change the MSMC 564 

trajectories or expected SFSs (Supplementary Note 6; Figure S9; Table S2, S3). 565 

 566 

DISCUSSION 567 

We tested which published models of human demographic history, inferred using either 568 

whole genome sequence data, the SFS, or a combined approach, can recapitulate multiple 569 

summaries of human genetic variation data. We found that no model was able to recapitulate all 570 

summaries of the data, but some models still performed better than others. In particular, none of 571 

the models was able recapitulate LD decay, but the Gutenkunst SFS-based models and the 572 

combined whole genome and SFS-based SMC++ models were able to recapitulate empirical 573 
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heterozygosity and the SFS. MSMC 2-Haplotype was able to recapitulate heterozygosity, but not 574 

the SFS, and MSMC 4-Haplotype and 8-Haplotype could fit neither heterozygosity nor the SFS, 575 

though MSMC 8-Haplotype did fit LD decay slightly better than the other models. These results 576 

highlight the uncertainties of demographic inference from one, or even two, types of data and the 577 

need to assess the fit of demographic models using multiple summaries of the data. 578 

We found that the models based on MSMC inference from 4 or 8 haplotypes did not 579 

improve the fit of the expected SFS compared to that based on two haplotypes; in fact, in most 580 

cases the 4- and 8-Haplotype models fit much worse than the 2-Haplotype models. The 4-581 

Haplotype models for CEU, CHB and YRI and the 8-Haplotype model for YRI appear to fit 582 

poorly due to their extremely high ancestral sizes and ancient humps of growth and decline 583 

(Figure 1). The expected SFSs under the 8-Haplotype models for CEU and CHB show a skew 584 

toward low-frequency variants that may be due to their low ancestral size followed by extreme 585 

recent growth (Figure 1). We find that MSMC 8-Haplotype vastly overestimates recent growth 586 

in simulated data, which may be contributing to the lack of fit to the SFS (Figure S8). This result 587 

is at odds with the findings of Schiffels and Durbin (2014), who suggested that using eight 588 

haplotypes instead of two should increase accuracy of population size inference in the recent 589 

past, though they also noted a bias toward smaller ancient population sizes when using an 590 

increased number of haplotypes. Changing the scaling of the mutation rate did not generally help 591 

the MSMC models to fit the expected SFS better (Figure S4-S6). It is worth noting that the 592 

model inferred in SMC++ used the same mutation rate as MSMC, yet fit the empirical SFSs 593 

much better (Figure 4-6; Table 1, S2-S4), indicating that mutation rate differences between the 594 

whole genome and SFS-based studies is not the source of the discrepancies. 595 
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We found that in addition to not fitting the empirical SFS, the MSMC 4-Haplotype and 8-596 

Haplotype models did not predict the genome-wide distribution of heterozygosity (Figure 2) 597 

which may be surprising as the genome-wide distribution of heterozygosity is a major feature of 598 

the data used by MSMC. The reason for the lack of fit for these models appears to be the 599 

extremely high ancestral size inferred in the 4-Haplotype models for all three populations and in 600 

the 8-Haplotype YRI model, and the low ancestral size inferred in the 8-Haplotype Models for 601 

CEU and CHB (Figure 1). 602 

Since the most ancient size in the MSMC trajectory will have a large influence on 603 

heterozygosity and the SFS and the most ancient bin of the MSMC trajectory may be unreliable 604 

(Li and Durbin 2011; Schiffels and Durbin 2014), we explored the effect of altering this ancient 605 

size and removing ancient growth events in the CEU MSMC 2-Haplotype model. We found that 606 

selective trimming could improve the fit to the SFS (Figure S10-S13). However, the final bin of 607 

the model cannot explain all of the lack of fit of the MSMC models to the data as the CEU and 608 

CHB MSMC 8-Haplotype trajectories do not show the extreme ancestral sizes in the last bin, yet 609 

these models also dramatically deviate from empirical heterozygosity and the SFS. In other 610 

words, simple exclusion of the final high ancestral size is not sufficient to improve model fit to 611 

other summaries of the data. Our trimming experiments were only made possible by the 612 

abundance of human sequence data and demographic models previously fit to the data. Since 613 

many MSMC trajectories are calculated for species for which there is no prior information about 614 

ancient demographic history, the “informed trimming” we carried out is not a practicable 615 

solution to improve the reliability of MSMC inference.  616 
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While our results indicate that features of MSMC trajectories, particularly ancient events, 617 

should be regarded with caution, we also found that MSMC 2-Haplotype is able to accurately 618 

recapitulate a complex demography (with the exception of steep drops in population size, 619 

extreme recent growth, and some false periods of growth) from simulated data, supporting the 620 

validity of the method, at least for use on simulated data (Figure 7). Migration between 621 

populations did not appear to cause deviations in MSMC trajectories from the underlying model 622 

(Figure 7), nor did a small degree of Neanderthal admixture (Figure S9), indicating that MSMC 623 

is robust to small amounts of gene flow. The fact that the 2-Haplotype model based on real data 624 

did not fit the observed SFS very well (Figure 4-6; Table 1, S2-S4) suggests that the true 625 

underlying pattern of human demography is more complex than either type of inference (∂a∂i or 626 

MSMC) is capturing, potentially revealing weaknesses in both methods.  627 

Alternatively, if the Gutenkunst et al. (2009) demographic model is largely accurate, 628 

biases or other factors that exist in real data but not in simulated data may be affecting MSMC 629 

inference, resulting in the method failing to recover an underlying demography that matches 630 

Gutenkunst et al.’s (2009) model. For example, Song et al. (2016) found that statistical phasing 631 

could affect MSMC estimates of population split times, and Nadachowska-Brzyska et al. (2016) 632 

found that per-site sequencing depth, mean genome coverage and the amount of missing data led 633 

to differences in PSMC curve amplitudes, expansions and contractions, and the timing and 634 

values of Ne. They therefore recommended only using samples with a mean genome coverage of 635 

≥18X and < 25% missing data, and employing a per-site sequencing depth filter of ≥10 636 

(Nadachowska-Brzyska et al. 2016). The Complete Genomics genomes used by Li & Durbin 637 

(2011) were > 40X coverage (Drmanac et al. 2010), indicating that lack of coverage is not 638 
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responsible for their divergence from estimates based on the SFS. However, the standards 639 

suggested by Nadachowska-Brzyska (2016) may not always be attainable in de novo genome 640 

projects, and thus, data quality issues may affect non-model organism PSMC and MSMC 641 

inferences more acutely. Future work should also examine the impact of artifacts of genome 642 

assembly errors and structural variants on PSMC inference. For example, collapsing duplicate 643 

regions of the genome on top of each other could result in regions of the genome having excess 644 

heterozygosity, which could in turn affect inference of demography.  645 

We found that no model was able to accurately recapitulate the empirical distribution of 646 

LD decay. The lack of fit of the SFS-based models is perhaps unsurprising, as Harris & Nielsen 647 

(Harris and Nielsen 2013) found that the Gutenkunst model cannot recapitulate empirical IBS 648 

distributions (a finer-scale summary of the data related to LD), and Garud et al. (Garud et al. 649 

2015) found that they could not recover empirical LD patterns in Drosophila, despite matching 650 

the SFS, number of segregating sites (S) and number of pairwise differences (𝜋). Garud et al. 651 

(Garud et al. 2015) suggested the lack of fit could either be due to linked positive selection or to 652 

an incompleteness of the demographic model, demonstrating how models that fit some 653 

summaries of the data may not recapitulate others. It is more surprising that the MSMC 2-654 

Haplotype and 4-Haplotype models do not fit the data well, as the method uses LD information 655 

in its inference, though different summaries of LD may be affected by demography in distinct 656 

ways (Plagnol and Wall 2006). Other possible factors that could lead to the lack of fit of all 657 

models to empirical LD decay patterns include the absence of natural selection, gene conversion, 658 

and fine-scale recombination hotspots in our simulations (Ardlie et al. 2001; Frisse et al. 2001; 659 

Wall and Pritchard 2003). Further, if the true mutation rate is actually smaller than the relatively 660 
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high value used by Gutenkunst et al. (𝜇 = 2.35x10-8 mutations/bp/generation), then the 661 

population sizes would have to be larger than those estimated by Gutenkunst et al. (2009). Larger 662 

population sizes would yield larger values of the population scaled recombination rate (𝜌) than 663 

what was used in our simulations under the Gutenkunst model. Larger values of 𝜌 would then 664 

lead to a decrease in LD in the simulations, which might better match the empirical LD decay 665 

curves. 666 

Natural selection may affect both SFS and whole genome based methods of demographic 667 

inference. Li and Durbin (Li and Durbin 2011) found that masking exonic sequence did not alter 668 

PSMC trajectories. However, Schrider et al. (2016) examined the impact of selective sweeps on 669 

demographic inference using the SFS in ∂a∂i, approximate Bayesian computation (ABC), and 670 

PSMC and found that all three methods were influenced to varying degrees and in slightly 671 

different directions by the presence of selective sweeps, with ∂a∂i the most robust to these 672 

effects. This is a concern for published human demographic models as Gutenkunst et al. (2009) 673 

used noncoding sequence from autosomal genes in their study, which may be subject to linked 674 

selection (Gazave et al. 2014; Schrider et al. 2016). Schiffels and Durbin (2014) used whole 675 

genome sequences that included genic and non-genic regions some of which are certainly under 676 

selection. Thus, the sensitivity of these methods to selection may partially explain why both 677 

perform well on simulated data without selection, yet have such divergent results when run on 678 

empirical data. 679 

Our results have implications for understanding human demographic history. First, there 680 

has been controversy concerning the presence of ancient bottlenecks (>100kya) in human 681 

populations (Takahata et al. 1995; Harpending et al. 1998; Takahata and Satta 1998; Hawks et 682 
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al. 2000; Garrigan and Hammer 2006; Fagundes et al. 2007; Scholz et al. 2007; Blum and 683 

Jakobsson 2011; Sjödin et al. 2012). The inferred “humps” in the ancient portions of MSMC 684 

plots (Figure 1) tended to lend support to these ancient population size changes that appeared to 685 

be absent from SFS demographic estimates. Our results suggest that if these ancient population 686 

size changes did indeed occur, the resulting SFS would appear very different from the SFSs seen 687 

in human populations (Figure 4-6, S10-S13). The fact that they are not seen in the observed SFS 688 

suggests that either the size changes did not occur, and the inferred size changes are artifacts, or 689 

instead, the true demography is more complex than currently modeled using either approach. Our 690 

conclusion of finding little evidence for the ancient population size changes is supported by the 691 

study of Sjödin et al. (2012). They employed an approximate Bayesian computation approach to 692 

directly test models with ancient population size changes in Africa and found little support for 693 

such ancient bottlenecks.  694 

Deep ancestral structure has been put forward as explanation for the humps detected by 695 

the whole genome-based methods by the developers of PSMC and others (Li and Durbin 2011; 696 

Henn et al. 2012; Mazet, Rodriguez, and Chikhi 2015; Mazet, Rodriguez, Grusea, et al. 2015; 697 

Orozco-terWengel 2016). While Blum and Jakobssen (2011) used the TMRCA to postulate an 698 

ancient bottleneck 150-kya, they also were not able to a reject a model of ancestral structure. 699 

Strikingly, Mazet et al. (2015) were able to perfectly recapitulate the human PSMC humps 700 

without invoking a single size change in the population by simulating data from a highly 701 

structured ancestral population (10 sub-populations) and modulating the amount of gene flow 702 

between these populations. Therefore, the large ‘population size changes’ inferred in MSMC, 703 

which cause the models not to match the empirical SFS, may in fact be due to complex structure 704 
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and large-scale changes in gene flow. This ancient structure may have a large effect on MSMC 705 

trajectories and LD patterns, but may not strongly influence the SFS (see Figure 7 in Lohmueller 706 

et al. (2009)), potentially resolving the discrepancy between the methods (Henn et al. 2012).  707 

Our work provides a cautionary tale for understanding population history in non-model 708 

organisms. Our results argue against a literal interpretation of “humps” and other jumps in 709 

MSMC plots as reflecting population size changes. This problem is exacerbated for putative 710 

ancient size changes. Given the ever-increasing generation of genomic data from non-model taxa 711 

and the application of whole genome-based approaches to such data (Meyer et al. 2012; Groenen 712 

et al. 2012; Zhao et al. 2012; Albert et al. 2013; Ibarra-Laclette et al. 2013; Orlando et al. 2013; 713 

Prado-Martinez et al. 2013; Nadachowska-Brzyska et al. 2013; Bosse et al. 2014; Freedman et 714 

al. 2014; Prufer et al. 2014; Hung et al. 2014; Nadachowska-Brzyska et al. 2015; Palkopoulou et 715 

al. 2015; Holliday et al. 2016; Nadachowska-Brzyska et al. 2016; Wang et al. 2016), our 716 

findings are especially concerning. We recommend employing other model-based types of 717 

demographic inference leveraging either SFS-based or other summary statistics in an ABC 718 

framework to test whether important demographic features suggested by PSMC or MSMC plots 719 

can be recapitulated using other features in the data. We also recommend, as done in Freedman 720 

et al. (2014), Song et al. (2016) and Cahill et al. (2016) that the PSMC or MSMC plots and 721 

TMRCA estimates be used themselves as summary statistics for model comparison, rather than 722 

the actual population size estimates. In other words, more complex demographic models can be 723 

simulated and tested to see whether they recapitulate the observed whole genome-based 724 

trajectories. Of course, this approach will not be successful if the trajectories are strongly 725 

influenced by bioinformatics artifacts or other features not captured within the simulations, such 726 
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as natural selection. For both PSMC/MSMC and SFS-based inference methods, we also 727 

recommend testing whether the estimated models can predict multiple features of the data. 728 

Specifically, researchers should check whether their inferred model can recapitulate the genome-729 

wide distribution of heterozygosity. The genome-wide distribution of heterozygosity may be the 730 

most practical and useful statistic for studies of non-model organisms that only have a handful of 731 

genomes available to them. SMC++ and other new approaches that leverage multiple types of 732 

data (Bunnefeld et al. 2015; Boitard et al. 2016; Weissman and Hallatschek 2017) are promising 733 

alternatives, though our results indicate that SMC++ still cannot recapitulate all summaries of the 734 

data. 735 

Testing more complex demographic scenarios using multiple summaries of the data may 736 

help to resolve uncertainties about our own species’ history and will improve demographic 737 

inference for non-model organisms. Incorporating the potential complexity of possible 738 

demographic histories to produce models that better recapitulate the data may in fact present the 739 

greatest challenge. 740 

741 
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TABLES 754 

 755 
Table 1: Multinomial log-likelihoods comparing the fit of various models to the observed 756 

SFS derived from Sanger sequencing data and used by Gutenkunst et al. (2009) for their 757 

inference (SFSs in Figure 4)  758 

 759 
CEU 

Model Multinomial LL ∆ LL (Model - Data) 

Data to Dataa -21546 0 

Gutenkunstb -21555 -9 

SMC++c -21599 -53 

MSMC 2-Hapd -21698 -152 

MSMC 8-Hapd -21816 -270 

MSMC 4-Hapd -22760 -1214 

CHB 

Model Multinomial LL ∆ LL (Model - Data) 

Data to Data -20154 0 

Gutenkunst -20202 -48 

SMC++  -20277 -123 

MSMC 8-Hap -20343 -188 

MSMC 2-Hap -20370 -216 

MSMC 4-Hap -21411 -1257 

YRI 

Model Multinomial LL ∆ LL (Model - Data) 

Data to Data -29630 0 

Gutenkunst -29647 -17 

SMC++ -29779 -150 

MSMC 2-Hap -30003 -373 

MSMC 8-Hap -31282 -1652 

MSMC 4-Hap -32976 -3346 

 760 
aDenotes the best log-likelihood possible when replacing the proportions predicted by the model with the 761 
observed proportions from the SFS used in Gutenkunst et al.’s (2009) study (see Supplementary Note 762 
4). 763 
bDenotes the model inferred by Gutenkunst et al. (2009) fit to the observed SFS 764 
cDenotes the model inferred by Terhorst et al. (2017) using a combined whole genome and SFS 765 
approach  766 
dDenotes the demographic models inferred by Schiffels and Durbin (2014) using MSMC on 2, 4 and 8 767 
haplotypes 768 

769 
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FIGURES 1028 

 1029 

Figure 1. Demographic histories for the CEU (A), CHB (B), and YRI (C) populations. Trajectories 1030 
are log-scaled and in terms of physical units (diploid individuals and years). Models were either inferred 1031 
using SFS-based methods (“Gutenkunst”) by Gutenkunst et al. (2009), from a sequentially Markovian 1032 
coalescent-based approach (“MSMC”) from two, four and eight haplotypes by Schiffels and Durbin 1033 
(2014), or using a combined SFS and whole genome approach (“SMC++”) by Terhorst et al. (2017). The 1034 
Gutenkunst models also include migration between all three populations, not depicted here. Models are 1035 
scaled by the generation times used in each study (Gutenkunst et al. (2009): 25 years/generation; Schiffels 1036 
and Durbin (2014): 30 years/generation; Terhorst et al. (2017): 29 years/generation). 1037 
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 1038 

Figure 2. Kernel density distribution of expected heterozygosity (π per site). Heterozygosity was 1039 
calculated across 100kb windows from whole genome 1000 Genomes project data for CEU (A), CHB 1040 
(B), and YRI (C), and from 20,000 x 100kb blocks for data simulated under each demographic model. 1041 
The black dot and bars indicate the mean ± two standard deviations for each distribution. Note the log-10 1042 
scaling on the y-axis. 1043 
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 1045 
 1046 
Figure 3. Linkage disequilibrium (LD) decay patterns. LD decay was calculated across 100kb 1047 
windows from 1000 Genomes data and simulated data under each demographic model for CEU (A), CHB 1048 
(B), and YRI (C). Pairs of SNPs are binned based on physical distance (bp) between them, up to 51kb. 1049 
Average genotype r2 is calculated within each distance bin.  1050 

1051 
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 1052 
 1053 
Figure 4. Unfolded proportional site frequency spectra for CEU (A), CHB (B), and YRI (C) 1054 
populations. The “Observed” SFS is from noncoding sequence used by Gutenkunst et al. (2009) to infer 1055 
demographic histories for these three populations. See Figure S5 for scaling using alternative mutation 1056 
rates. 1057 
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 1059 
 1060 
Figure 5. SNP count site frequency spectra using the counts of SNPs for the CEU (A), CHB (B), and 1061 
YRI (C) populations. The “Observed” SFS is from noncoding sequence used by Gutenkunst et al. (2009) 1062 
to infer demographic histories for these three populations. SFSs are scaled using the ancestral population 1063 
size given by each model, the mutation rate used to scale each model by the authors and the sequence 1064 
length of the empirical dataset (4.04Mb). See Figure S6 for scaling using alternative mutation rates. 1065 
 1066 
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 1068 
Figure 6. Folded proportional site frequency spectra for CEU (A), CHB (B), and YRI (C) 1069 
populations. The “1000 Genomes (WG)” SFS is from low-coverage whole genome 1000 Genomes data, 1070 
and the “1000 Genomes (Neut)” SFS is from 6333 x 10kb putatively neutral regions in the 1000 Genomes 1071 
data. 1072 
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 1075 
Figure 7. MSMC 2-Haplotype can accurately infer the demographic model predicted by 1076 
Gutenkunst et al. (2009). (A) shows the results of running MSMC 2-Haplotype on 50 independent 2-1077 
haplotype datasets simulated under the Gutenkunst et al. (2009) model of human demographic history 1078 
(“Gutenkunst,” heavy purple line). The resulting MSMC 2-Haplotype trajectories (“MSMC Sim. Gut. 1079 
Data,” fine pink lines) show the MSMC trajectories inferred from these 50 datasets. Note that these 1080 
trajectories accurately track the demographic model used to simulate the data. (B) and (C) show 1081 
proportional and SNP count site frequency spectra for each population, respectively. The gray bars 1082 
(Observed) denote the empirical SFS used by Gutenkunst et al. (2009). The purple bars denote the 1083 
expected SFS under the inferred Gutenkunst demographic models. The pink bars denote the expected SFS 1084 
under the average of the 50 MSMC 2-Haplotype demographic model trajectories for each population. 1085 
Note that these three SFSs agree. 1086 
 1087 

1. Observed  2. Gutenkunst  3. MSMC (Sim. Gut. Data)
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