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Abstract 

Reference frame Transformations (RFTs) are crucial components of 

sensorimotor transformations in the brain. Stochasticity in RFTs has been 

suggested to add noise to the transformed signal due to variability in 

transformation parameter estimates (e.g. angle) as well as the stochastic nature 

of computations in spiking networks of neurons. Here, we varied the RFT angle 

together with the associated variability and evaluated the behavioral impact in a 

reaching task that required variability-dependent visual-proprioceptive multi-

sensory integration. Crucially, reaches were performed with the head either 

straight or rolled 30deg to either shoulder and we also applied neck loads of 0 or 

1.8kg (left or right) in a 3x3 design, resulting in different combinations of 

estimated head roll angle magnitude and variance required in RFTs. A novel 3D 

stochastic model of multi-sensory integration across reference frames was fitted 

to the data and captured our main behavioral findings: (1) neck load biased head 

angle estimation across all head roll orientations resulting in systematic shifts in 

reach errors; (2) Increased neck muscle tone led to increased reach variability, 

due to signal-dependent noise; (3) both head roll and neck load created larger 

angular errors in reaches to visual targets away from the body compared to 

reaches toward the body. These results show that noise in muscle spindles and 

stochasticity in general have a tangible effect on RFTs underlying reach 

planning. Since RFTs are omnipresent in the brain, our results could have 

implication for processes as diverse as motor control, decision making, posture / 

balance control, and perception.   
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 New & Noteworthy:  We show that increasing neck muscle tone systematically 

biases reach movements. A novel 3D multisensory integration across reference 

frames model captures the data well and provides evidence that the brain must 

have online knowledge of full body geometry together with the associated 

variability to accurately plan reach movements.   
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Introduction  

Different sensory and motor signals are encoded in different coordinates 

in the brain, e.g. early vision in eye/gaze-centered, primary arm proprioception in 

shoulder-centered. Conversions between reference frames are vital to transform 

signals into reference frames that are appropriate for processes as diverse as 

motor control, decision making, posture / balance control, and perception 

(Flanders et al., 1992; Buneo et al., 2002; Vetter et al., 1999; Blohm & Crawford, 

2007). Previous studies have suggested that reference frame transformations 

(RFTs) should be regarded as stochastic processes which modulate the reliability 

of transformed signals (Alikhanian & Blohm, 2015, Schlicht & Shrater, 2007; 

Burns & Blohm, 2010, 2011). Furthermore, several studies proposed that 

humans flexibly select the coordinates that minimize the effect of stochasticity 

(Sober & Sabes, 2005). Cue reliability-based multi-sensory integration studies 

have shown that stochastic RFTs affect human behavior (Schlicht & Shrater, 

2007; Burns & Blohm, 2010, 2011); however, the sources of stochasticity in 

RFTs as well as the underlying mechanisms of how RFTs affect transformed 

signals remain unclear.  

In order to accurately perform RFTs, the brain must have an estimate of 

3D body articulation (Blohm & Crawford, 2007); i.e. an internal estimate of 

different body parts with regard to each other (such as eye re. head translation) 

as well as an estimate of joint angles (such as head/eye orientations). While the 

former is likely learned and does not change, the latter could stem from at least 2 

sources, noisy afferent sensory signals (proprioception) and efferent copies of 
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motor commands. Both signals are inherently variable due to the uncertainty of 

sensory reading and the variability of neuronal spiking (Poisson noise). Several 

studies have suggested that varying body articulation, e.g. the head roll angle, 

increases the behavioral variability due to signal-dependent sensory and neural 

noise affecting the RFT (Alikhanian & Blohm, 2015; Schlicht & Shrater, 2007; 

Burns & Blohm, 2010, 2011). Signal-dependent sensory noise can arise from 

variability in the muscle spindle activity, the vestibular system, or both (Lechner-

Steinleitner, 1987; Scott & Loeb, 1994; Cordo et al., 2002; Sadeghi et al., 2007; 

Faisal et al., 2008). Thus, larger joint angle estimates are accompanied by higher 

uncertainty (Wade & Curthoys, 1997; Van Beuzekom & Van Gisbergen, 2000; 

Blohm & Crawford, 2007), which results in an increased trial-to-trial variability in 

the RFT.  

The effect of stochastic RFTs on the reliability of transformed signals has 

been studied using a multi-sensory integration task. Multisensory integration 

combines different sources of sensory information to create the best possible 

estimate of the state of our body within the environment in a way that is generally 

well captured by Bayes-optimal integration (Stein & Meredith, 1993; Landy et al., 

1995; Atkins et al., 2001; Landy & Kojima, 2001; Kersten et al., 2004; Stein & 

Stanford, 2008; Ernst & Banks, 2002; Knill & Pouget, 2004). For instance, both 

visual and proprioceptive information can be combined in a reliability-weighted 

fashion to estimate hand position. It is believed (weak fusion hypothesis, Clark & 

Yuille, 1990) that prior to integration any signals must first be converted into a 

common coordinate system; this requires a (stochastic) RFT. Within this 
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framework, the reliability of the transformed signal is affected by stochasticity in 

RFTs (Alikhanian & Blohm, 2015), thus modulating the multisensory integration 

weights (Burn & Blohm, 2010; Burn et al., 2011). However, it is not clear how 

varying multisensory weights due to stochastic RFTs affects reaching 

movements to visual targets.  

Here, we deployed a modified version of the standard visual-

proprioceptive integration-based reaching task (Van Beers et al., 1999; Sober & 

Sabes, 2003, 2005) to systematically investigate the behavioral consequences of 

biases and variability in sensory estimates used for stochastic RFTs. We asked 

human participants to perform a center-out reaching task while the seen and 

actual hand positions were dissociated. In addition, reaches were performed with 

the head either straight or rolled 30deg to either shoulder and we also applied 

neck loads of 0 or 1.8kg (left or right) in a 3x3 design. Our results demonstrate 

that applying the neck load increased the variability of reach movements and 

biased the reaching behavior toward the applied load in all head roll orientations. 

Our prediction was that these effects on reaching behavior can be explained by a 

change in multisensory integration weights due to stochastic RFTs, which 

consequently enabled us to quantify the relative contribution of neck muscle 

spindles to the estimation of head roll angle. To test this hypothesis, we 

implemented a novel 3D stochastic model of multisensory integration across 

reference frames. Our model was able to capture the pattern of behavioral data 

well and allowed us to make two main conclusions: the effect of neck load on 

reaching behavior can be explained by changes in multisensory weights due to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182907doi: bioRxiv preprint 

https://doi.org/10.1101/182907


 

 6 

stochastic RFTs and the source of this stochasticity in RFTs is signal-dependent 

noise.  

Material and Method 

Participants 

Nine healthy humans (8 male) between 20 to 35 years of age with normal 

or corrected to normal vision participated in our reaching task. They performed 

their reaching with their dominant right hand. Experimental conditions were 

approved by the Queen’s University General Board of Ethics and all the 

participants gave their written consent. Monetary compensation was provided for 

participating in the experiment ($10/hour). 

Apparatus  

A virtual reality robotic setup (KINARM End Point Robot, BKIN 

Technologies) was used for performing the center-out reaching task. Participants 

stood in front of the robot while positioning their head by resting the forehead on 

the robot in front of the screen and their chin on a chinrest. Participants grasped 

a vertical handle attached to the robotic arm in order to reach to the viewed 

target on the mirrored surface. The vision of participants’ hand was occluded 

using an opaque board and eye movements were tracked using embedded 

technology (Eyelink 1000, SR Research).  A pulley system and a helmet were 

used for measuring the head roll and loading the neck (see Figure 1 A and C).  
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Figure 1. Apparatus- A) KINARM end 

point robot (BKIN technology website) 

arrangement. B) Visual targets were distributed 

evenly on a 10cm-radius circle. The hand was 

shifted 2.5cm either vertically or horizontally 

while the visual indicator stayed at the center. C) 

Picture of the pulley system for measuring the 

head roll and loading the neck, in this picture the 

participant had 30CW HR and neck load on the 

left side. 

Task Design 

Participants stood in front of the robot and grasped the handle. At the 

beginning of each trial, participants were instructed to position their hand on the 

start position (cross) in the center of the display field. The robotic arm moved the 

hand toward the center and released it when the hand was within 3 centimeter of 

the central cross; a red dot representing hand position appeared at this point. 

After the participant positioned the hand correctly on the cross, one of the eight 

targets, distributed evenly on the circle with radius 10 cm, appeared. Participants 

were instructed to move through the target quickly and accurately while keeping 

their gaze fixated on the center cross. Once the participant’s hand begun to 

move (85 mm/s velocity threshold), the hand cursor disappeared. If they reached 

the target in less than 750ms, the trial was successful and participants would 

hear a successes beep, otherwise a failure beep was played indicating that the 

trial had been aborted and would have to be repeated. At the end of each trial, 

the center cross disappeared and participants had to wait 500ms to start the next 
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trial. The next trial started with the reappearance of the center cross and the 

movement of the robotic arm driving the participant’s hand to the start position. 

This was to ensure that participants did not have visual feedback of their 

previous trial’s performance. 

There were several different conditions in our experiment: The hand was 

physically shifted randomly either up/down or left/right with respect to the visual 

feedback of the hand. For example, participants would align their hand cursor to 

the center cross while their actual hand position was 2.5cm left of the cross. This 

discrepancy was introduced to enable us to measure the relative weighting of 

vision and proprioception in the multisensory integration process, similar to the 

logic employed in Sober and Sabes (2003, 5005) and Burns and Blohm (2010). 

In addition, the reaching movements were performed while the participants either 

kept their head straight or rolled their head 30deg toward each shoulder and 

while a neck load (0 or 1.8kg) was applied to the left or right side (the value of the 

weight was chosen to stimulate the same force as a 30deg head roll on neck 

muscles). Combinations of different head roll (HR) and neck load (NL) conditions 

are shown in Figure 2. We hypothesized that altering head roll and neck muscle 

force would create a conflict for head roll estimation as well as changing the 

signal-dependent noise which will affect the weights of multi-sensory integration. 

Participants completed 640 trials (5 hand positions * 8 targets * 16 repetitions) for 

each of the 9 combinations of head roll/neck load, for a total of 5760 trials 

(640*9) in 6 one hour sessions. In order to avoid any biases due to a specific 
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order of experiment conditions, we employed Latin squares method to counter 

balance among different experimental conditions (Jacobson & Matthews, 1996). 

 

 

Figure 2. Experimental conditions. 
Participants performed the reaching task under 9 

different combinations of HR and NL conditions 

during our experiment.  

 

 

Data Analysis 

Hand and eye movement were captured with sampling rates of 1000Hz 

and 500Hz respectively. MATLAB software was used for offline analysis: A low-

pass filter (autoregressive forward-backward filter, cutoff frequency = 50 Hz) was 

used to smooth the acquired data. First and second derivative of hand position 

data was calculated (using a central difference algorithm) to obtain hand velocity 

and acceleration. Trials in which participants moved their eyes after the visual 

target is displayed or moved their hand in a predictive direction except the target 

direction were removed (3% of overall trials). The time span from when 

participants started to move until their hand crossed a 9cm circle is defined as 

the initial movement duration. Movements were typically straight and had very 

little curvature; thus movement angle was derived through regression of data 

points acquired throughout the initial movement duration. Since the visual and 
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proprioceptive hand position was dissociated, we defined visual movement as 

the movement obtained when subtracting visual hand from target information 

(red arrow, Figure 1B) and proprioceptive movement as the movement direction 

obtained when subtracting proprioceptive hand position from the visual target 

information (green arrow, Figure 1B). Subtracting predicted visual 

(proprioceptive) movement from the measured movement angle yielded the 

directional visual (proprioceptive) movement errors, which we used for our 

analysis. We then used an analytical model to capture the pattern of movement 

errors measured across conditions and targets (see model description below).  

 

Statistical Analysis 

An n-way repeated measure ANOVA (rm-ANOVA) was used to assess the 

statistical differences (MATLAB 2013a, anovan.m) and post-Hoc analysis using 

the Bonferroni criterion (MATLAB 2013a, multcompare.m) was performed to 

assess the interaction between different parameters. A paired t-test (MATLAB 

2013a, ttest.m) was used to assess the statistical significance in reach error 

variability for different head roll and neck load conditions. In all the statistical 

analysis p < 0.001 was considered as the criterion for statistical significance. 

 

Model description 

The goal of our model was to understand which intrinsic and extrinsic variables 

were required to perform the RFTs accurately and more importantly, how 

variation of such variables affects human movement behavior. In order to 
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understand the effect of RFTs on reach planning, we first explain the required 

step in our model to plan a reach movement. We extended previous models 

(Sober & Sabes, 2003; Burns & Blohm, 2010) that considered two steps for 

planning a reach movement: 1) calculating the movement plan and 2) generating 

the motor command. Several neurophysiology studies suggested that the 

movement plan is coded in visual (retinal) coordinates (Andersen & Buneo, 2002; 

Batista et al. 1999) while motor commands are coded in joint coordinates 

(Crawford et al. 2004). Following the same logic, in our model the two steps were 

performed in two different coordinates respectively: visual and proprioceptive 

coordinates. Visual information of hand and target positions were coded as 

retinal information in gaze-centered coordinates, Xh=(x1,h,x2,h) and Xt=(x1,t,x2,t) 

respectively (right panel in Figure 9), while the proprioceptive information of initial 

hand position was coded as joint angles in shoulder-centered coordinates, 

(Ө1,h,Ө2,h), (left panel in Figure 9).  

Reference frame transformation (Blue box Figure 9) 

In order to accurately transform information between the visual and 

proprioceptive coordinates the full body geometry must be taken into account 

(Blohm & Crawford 2007). This is specifically important when the head is not 

straight, i.e. rotating the head results in shifts of centers of rotation of the eye, 

head, and shoulder relative to each other (Henriques & Crawford, 2002; 

Henriques et al., 2003). To capture this, we performed a series of rotations (R) 

and translations (T), formulated in equations (1) and (2) respectively. 

Xrotated = R. Xoriginal  (1)  
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Where R =  [
cos Ө sin Ө

−sin Ө cos Ө
] , Ө > 0 holds for clock wise rotations. 

Xtranslated = Xoriginal + T  (2) 

 

Retinal-to-shoulder transformation 

As it is depicted in Figure 9, in order to transform retinal-coded information 

into joint-coded information the theoretically required sequential transformations 

are the following (Note that this is likely different from how the brain is performing 

this transformation): 

1- Retinal-to-head 

𝑋ℎ,𝑒𝑦𝑒
𝑣 = 𝑅𝑒𝑦𝑒. 𝑋ℎ,𝑟𝑒𝑡𝑖𝑛𝑎𝑙

𝑣  (3) 

𝑋ℎ,ℎ𝑒𝑎𝑑
𝑣 = 𝑅ℎ𝑒𝑎𝑑. (𝑋ℎ,𝑒𝑦𝑒

𝑣 + 𝑇𝑒𝑦𝑒−ℎ𝑒𝑎𝑑) (4) 

In which 𝑅𝑒𝑦𝑒 and 𝑅ℎ𝑒𝑎𝑑 are rotations based on eye angle and head angle 

respectively and 𝑇𝑒𝑦𝑒−ℎ𝑒𝑎𝑑 is the translation between eye and head which 

is the distance between the center of two eyes (eye-centered coordinate) 

and the joint of head and neck (head centered coordinate). 𝑋ℎ,𝑒𝑦𝑒
𝑣 is the 

visual information of hand position in eye-centered coordinate: Subscript 

‘h’ represents information related to the hand position and the following 

subscript represents the related coordinate at that step. In addition, we 

deployed superscripts ‘v’ or ‘p’ to dissociate if the information is originally 

provided by vision or proprioception respectively. All the following 

parameters have the same pattern.  

2- Head-to-shoulder 

𝑋ℎ,𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟
𝑣 = 𝑋ℎ,ℎ𝑒𝑎𝑑

𝑣 + 𝑇ℎ𝑒𝑎𝑑−𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 (5) 
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3- Shoulder-to-joint 

Өℎ,𝑗𝑜𝑖𝑛𝑡
𝑣 = 𝐴(𝑥0). 𝑋ℎ,𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟

𝑣  (6) 

In which 𝐴(𝑥0) is the forward kinematic matrix and has the same form as 

equation (7) by Burn and Blohm (2010), since our experimental 

configuration is the same. In order to transform the information from joint 

angle coordinates to retinal coordinates, the same procedure can be 

performed only in the reverse order (since we used the same configuration 

as Burns and Blohm (2010), both forward and inverse kinematic matrices 

have the same format). 

In addition to the full body geometry, we considered the noise of 

transformation in our model. Similar to Burns and Blohm (2010), we have two 

noise component resulted from the transformation: fixed transformation noise 

(𝜎𝑓𝑇
2 ) to simulate the fact that any transformation has a cost (Sober and Sabes 

2005), and variable transformation noise (𝜎𝑉𝑇
2 ) to simulate the different head 

orientations and neck load conditions of our experiment (this is the same as the 

variability in the estimated head angle).  

Estimating head angle 

As mentioned in the previous section, participants performed reaching 

with different hand roll and neck load conditions. Therefore, our model must 

include a head angle estimation component as a crucial part of the RFTs 

processes. The head angle can be estimated using visual, vestibular, neck 

muscle proprioceptive, or a combination of all of these signals. We also included 
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neck load in our experimental condition with the goal of investigating the 

contribution of the mentioned sources of information for estimating the head 

angle. The rationale was that applying neck load modulates the neck muscle 

spindle information and as a result we considered that the neck muscle signals 

are integrated with a combined visual/vestibular signal using a Bayesian 

framework. Assuming that each source of information has a Gaussian 

distribution, the head angle signal has a Gaussian distribution as well and its 

mean and variance can be estimated as follows:  

𝛿𝐻𝐴
2 =  

𝛿𝑉/𝑉
2 𝛿𝑁𝑀

2

𝛿𝑉/𝑉
2 +𝛿𝑁𝑀

2  (7) 

µ𝐻𝐴 =  
𝛿𝐻𝐴

2

𝛿𝑉/𝑉
2 . µ𝑉/𝑉 +

𝛿𝐻𝐴
2

𝛿𝑁𝑀
2 . µ𝑁𝑀 (8) 

In which 𝛿𝐻𝐴
2 , 𝛿𝑉/𝑉

2 , and 𝛿𝑁𝑀
2  are  associated variability in head angle 

estimation, visual/vestibular information, and neck muscle information 

respectively and µ𝐻𝐴, µ𝑉/𝑉, and µ𝑁𝑀are the associated means in the same order. 

Therefore, we also were able to extract the relative visual/vestibular vs. neck 

muscle contribution in estimating head angle (𝐶 =  
𝛿𝑁𝑀

2

𝛿𝑉/𝑉
2  ).  

As mentioned earlier, one of the key features of our model is including 

signal dependent noise in our RFTs: The assumption is that when we roll the 

head, the variability of both vestibular and neck muscle spindle signals increase 

due to higher signal value. In addition, applying the neck load increases the force 

on the neck muscle which results in increasing the variability of neck muscle 

spindle signal. In the conditions of applying the neck load while the head is not 

straight, the two forces on the neck muscle are combined in order to drive the 
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predicted neck muscle force. Therefore, we differentiated the variability for the 

head straight and no load condition from the other head roll and neck load 

conditions. Similar to (Vinggerhoets et al., 2008), we used a linear model to 

explain the increase in variability due to increase in the signal value: 

𝛿𝑉/𝑉
2 =  𝛿𝑉/𝑉,ℎ0

2 + ℎ𝑒𝑎𝑑 𝑟𝑜𝑙𝑙. 𝛿𝑉/𝑉,ℎ≠0
2  (9) 

𝛿𝑁𝑀
2 =  𝛿𝑁𝑀,ℎ0

2 + 𝑚𝑢𝑐𝑙𝑠 𝑓𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 (𝐻𝑅&𝑁𝐿). 𝛿𝑁𝑀,ℎ≠0
2  (10) 

In which 𝛿𝑉/𝑉,ℎ0
2  and 𝛿𝑁𝑀,ℎ0

2  are visual/vestibular and neck muscle variability for 

head straight condition and 𝛿𝑉/𝑉,ℎ≠0
2  and 𝛿𝑁𝑀,ℎ≠0

2  are the ones for other 

experimental conditions. This will result in having µ𝐻𝐴,ℎ0 and µ𝐻𝐴,ℎ≠0. 

At the final step, the required head angle for the transformation (Ө𝐻𝐴) is 

derived by scaling the estimated head angle (µ𝐻𝐴) (obtained by sampling from 

the above Gaussian distribution) by a gain factor β: Ө𝐻𝐴 = β. µ𝐻𝐴 . 

Multisensory integration 

In order to estimate the initial hand position (IHP), visual (V) and 

proprioceptive (P) information are combined using multisensory integration 

principles. In our model, the multisensory integration is happening twice: once in 

visual coordinates (coded in Euclidean) in order to calculate the movement 

vector (MV) and once in proprioceptive coordinates (coded in joint angles) in 

order to generate the motor command using inverse kinematics (INV). We 

assumed that each piece of information has a Gaussian distribution (before and 

after RFTs) and therefore using multivariate Gaussian statistics the mean and 

covariance of the combined IHP estimated from vision (V) and proprioception (P) 

in each coordinate can be written as: 
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∑𝐼𝐻𝑃 = (∑𝑃
−1 + ∑𝑉

−1)−1 (11) 

µ𝐼𝐻𝑃 = ∑𝐼𝐻𝑃 . ∑𝑃
−1. µ𝑃 + ∑𝐼𝐻𝑃 . ∑𝑉

−1. µ𝑉 (12) 

Where ∑𝐼𝐻𝑃 is the covariance matrix of IHP and ∑𝑉 and ∑𝑃 are covariance 

matrices of visual and proprioceptive information respectively. Similarly, µ𝐼𝐻𝑃, µ𝑃, 

and µ𝑉 are the mean values (in the vector format) for IHP, visual, and 

proprioceptive information. Therefore, the visual weight in each of the visual and 

proprioceptive coordinates is calculated as: 

𝛼𝑀𝑉 = ∑𝐼𝐻𝑃,𝑣. ∑𝑉,𝑣
−1  (13) 

𝛼𝐼𝑁𝑉 = ∑𝐼𝐻𝑃,𝑝. ∑𝑉,𝑝
−1  (14) 

Where 𝛼𝑀𝑉 is the multisensory integration weight for visual information in 

visual coordinates and 𝛼𝐼𝑁𝑉 is the multisensory weight for visual information in 

proprioceptive coordinates. Where ∑𝐼𝐻𝑃,𝑣 is the covariance matrix of IHP in visual 

coordinates and ∑𝑉,𝑣  is the covariance matrix of visual information in visual 

coordinates. Similarly, ∑𝐼𝐻𝑃,𝑝  is the covariance matrix of IHP in proprioceptive 

coordinates and ∑𝑉,𝑝  is the covariance matrix of visual information in 

proprioceptive coordinates. 

Final motor command and movement direction 

After estimating the IHP, the desired movement vector is calculated by 

subtracting the hand position from the target positon; 𝛥𝑥 = 𝑡𝑎𝑟 −  µ𝐼𝐻𝑃,𝑣. We used 

the velocity command model (Sober and Sabes 2003; Burns and Blohm 2010) to 

transform the desired movement vector to the required motor command: 

𝑥̇ = 𝐽(𝜃)𝐽−1(𝜃)𝛥𝑥 (where 𝐽(𝜃) and 𝐽−1(𝜃) have the same form as equation (16) 

and (17) in Burns and Blohm 2010). 
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At the final step the movement direction is calculated by transforming the 

movement command from Euclidean coordinates to polar coordinates using the 

following equations: 

𝑟 = √𝑥2 + 𝑦2  (15) 

𝑡𝑎𝑛𝜑 =
𝑦

𝑥
  (16) 

 

Generating quantitative model predictions 

In order to generate our model predictions we used a Monte Carlo 

approach (Binder & Heermann, 2002); we assumed that the sensory information 

(visual and proprioceptive information of initial hand position, visual/vestibular 

and proprioceptive information of head position) can be sampled from a 

Gaussian distribution with a specific mean and covariance matrix. Then, the RFT 

procedure is performed on each sample based on sampled head roll signals to 

obtain the distribution of the transformed signal. The movement direction was 

calculated for each sample and the final movement mean and variance were 

calculated based on this distribution. The model code is available on Github 

(https://github.com/Parisaabedi/NeckMuscleLoad ).  

Model parameters 

Based on average body physiology, upper arm and lower arm (including 

fist) lengths were set constant to L1 = 30 and L2 = 45 cm respectively. Shoulder 

location was assumed 30 cm backward from the target and 25 cm rightward of 

the target, the distance between eye and head considered 13 cm, and the neck 
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length considered 40 cm. IHPs and target positions were taken from the 

experimental data.  

There were seven free parameters in the model, i.e. the variance of both 

proprioceptive (𝜎𝑝
2) joint angles and visual IHP (𝜎𝑣

2) - we assumed that the two 

dimensions in both coordinates are independent with the same variability-, the 

visual/vestibular vs. neck muscle spindle contribution factor (C), the variance of 

head angle estimation for head straight ( 𝜎ℎ0
2 ), a fixed reference frame 

transformation cost (𝜎𝑓𝑇
2 ) , and a variable reference frame transformation cost 

(𝜎𝑉𝑇
2 ).  

As it is mentioned before, the 𝜎𝑉𝑇
2  is resulted from the variability in the 

head angle estimation; 𝛿𝐻𝐴
2 . By substituting 𝐶 =  

𝛿𝑁𝑀
2

𝛿𝑉𝑉
2  in equation (7), we were 

able to extract the variance of neck muscle spindles (𝜎𝑁𝑀
2 ) and visual/vestibular 

(𝜎𝑉/𝑉
2 ).  Furthermore, we added an additional variance component to account for 

the added variability during performing the planned movement (𝜎𝑀𝑉
2 ). 

In order to estimate the model parameters we used a standard maximum 

likelihood procedure. We calculated the negative log-likelihood of the angular 

reach error data to fit on the proposed model given parameter set 𝜌 as: 

𝐿𝜌(µ, 𝜎2|𝑦) = −(−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2𝜎2
∑ (𝑦𝑖 − µ)2

𝑖 ) (17) 

Where (µ, 𝜎2) are the mean and variance driven from the model given the 

parameter set 𝜌, 𝑛 is the number of data points and 𝑦𝑖 is each data point from the 

experiment. It should be noted that (µ, 𝜎2)  are calculated separately for each of 

the 360 experimental conditions: 8 visual targets * 5 IHPs * 3 head rolls * 3 neck 
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loads. We then searched for the set of parameters which minimized the 𝐿𝜌 over 

the parameter space using ‘fmincon.m’ in MATLAB 2017. Table 1 provides the 

fitting values for different model parameters for individual participants along with 

confidence interval for each parameter. We added one additional parameter C, 

which indicate the contribution of neck muscle information compared to 

combined visual/vestibular information by dividing the first by the second.  

 

Results 

Previous work (Burns & Blohm, 2010; Schlicht & Schrater, 2007; Sober & 

Sabes 2003) suggests human behavior is affected by stochastic RFTs. Burns 

and Blohm (2010) showed that rolling the head will increase the variability of 

reach movements and argued that could be due to the signal dependent noise in 

the sensed head angles: rolling the head increases the amplitude of the sensed 

head angle and the associated variability accordingly. Here, our goal was to 

investigate the sources of stochasticity in RFTs and the effect of such 

stochasticity on human reaching movements. To this aim, we asked human 

participants to perform reaching movements while their head was either straight 

or rolled toward each shoulder and a neck load of 0 or 1.8kg was applied to the 

right or left side in a 3×3 design. The experimental logic was that applying head 

roll and neck load will vary the sensed head angle and the associated noise due 

to signal-dependent noise. Since RFTs are based on these sensed angles, 

applying head roll / neck load increases the stochasticity of RFTs which 

modulates the multisensory integration weights and thus resulting in more 
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variable and potentially biased reaching movements compared to the condition 

where the head is straight and no load is applied. 

General Observations 

A total of 51840 trials were collected, with 1529 trials being excluded due 

to either eye movements or predictive hand trajectories. We used directional 

reach errors to determine how participants weighted their visual information vs. 

proprioceptive information. Directional reach error (in angular degrees) was 

computed by subtracting proprioceptive (visual) hand-target direction from overall 

movement direction (see Methods), where 0deg means no deviation from 

proprioceptive (visual) hand-target direction. By introducing the shift in the visual 

feedback of the initial hand position, a discrepancy between visual and 

proprioceptive information was created and as a result, we could determine how 

visual and proprioceptive information was weighted and integrated based on how 

participants responded to this discrepancy. 

 

Figure 3. Example 

reaches from a 

typical participant. 
Each group of reaches 

corresponds to a particular 

combination of head 

orientation, neck load, and 

initial hand position. In 

each block, fifteen trials are 

plotted for each target 

(black dots). (A) Different 

initial hand position 

conditions when the head 

was straight, (B) different 

head roll and neck load 

conditions when the hand 

was at the center. 
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Figure 3 displays reaching trajectories from a typical participant. Each set 

of reaches is representative of either a particular IHP with head straight and no 

load applied or a particular head roll and neck load condition with the IHP at the 

center. It is apparent that this participant weighted visual initial hand position 

information more than proprioceptive information resulting in a movement 

direction parallel to visual hand-target direction. In addition, applying head roll or 

neck load biased the movement toward either the rolled or loaded direction and 

increased the movement variability. To further analyze this behavior, we 

compared reach errors for each hand offset condition. In order to calculate the 

reach errors we can use either the visual hand-target direction (red line in Figure 

1B) or the actual (proprioceptive) hand-target direction (green line in Figure 1B). 

We called the first one visual reach errors and the second one proprioceptive 

reach errors and used them for different sections in order to show the effects 

more clearly. The difference in reach errors among different hand offsets 

indicates that both visual and proprioceptive information were used during reach 

planning. Figure 4 displays both proprioceptive and visual reach error curves 

across target directions for different initial hand position conditions for head 

straight and no load condition. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182907doi: bioRxiv preprint 

https://doi.org/10.1101/182907


 

 22 

 

Figure 4. Reach 

error curves. 
Reach errors are 

calculated for each target 

by subtracting the 

proprioceptive or visual 

hand-target direction 

from the performed reach 

movement. Solid colored 

lines are representing 

upward/rightward shifts. 

A,C) proprioceptive 

reach error curves: (A) 

reach errors for 

horizontal hand shift and 

(C) reach errors for 

vertical hand shift. B,D) 

visual reach error curves: 

(B) reach errors for 

horizontal shift and (D) 

reach errors for vertical 

shifts. 

 

To quantify these weights, we fitted a previously proposed model (Sober 

and Sabes 2003) to the normalized data. The data was normalized by 

subtracting the 0 hand offset from the other hand offsets. The model by Sober 

and Sabes (2003) fits our data well (Figure 5) and confirms that the participants 

used both visual and proprioceptive information to plan their reach movement. 

Based on this close fit of our data to the model, we can now use this model in a 

first step to investigate how head roll and neck load affects the weighting of 

vision and proprioceptive information about the hand.  
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Figure 5. 

Sober and 

Sabes 2005 

model fit on 

the data. The 

reach error curves 

are normalized to 

zero by subtracting 

the 0 hand offset 

from the other hand 

offsets. Error bars 

are standard 

deviations.  

Head Roll effect 

Participants performed the reach-out movements for different head roll 

conditions: 30deg counter clock wise (CCW), 0deg, and 30deg clock wise (CW) 

head roll. In the first step we examined if the same effect reported by Burns and 

Blohm (2010) could be reproduced. As the author explained changing the head 

roll had two different effects on the reach error trajectories. First, the reach error 

curves shifted up/down -ward and second the variability of reach errors increased 

for the tilted head conditions compared to the head upright condition.  

 
Figure 6. Effect of varying head roll on reach movement behavior. A) Reach 

error curves (solid line for IHP shifts to right and dotted line for IHP shifts to left) shifted upward for CW head 

roll and downward for CCW head roll compared to the head upright condition. B) The movement variability 

increased significantly for rolled head conditions compared to the head upright condition. C) Visual weights 

derived by fitting the Sober and Sabes (2003) model on the data. We didn’t find any significant change in 
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visual weights in visual coordinate for different head roll conditions, while the visual weights significantly 

decreased in proprioceptive coordinates. 

Figure 6 depicts the effect of changing HR on both reach errors and 

movement variability. As it can be seen, there are both a bias effect and an 

increased variability effect for altering the head orientation compared to head 

straight. The n-way ANOVA with factors HR, target directions, and participants 

showed a significant main effect for altering head orientation,  F(2,98) = 11.85, p 

< 0.01; and significant interaction between reaching to different targets and 

different HR conditions, F(14,98) = 5.59, p < 0.01; which shows that the effect of 

altering HR is different for different target directions. Bonferroni-corrected post-

hoc analyses indicated that the bias effect was significant among all the HR 

conditions. Regarding movement variability, we performed a paired t-test across 

all participants for each HR condition vs. no HR condition: The increase in 

standard deviation due to the rolled head is significant for both sides, HR = 30 vs. 

HR = 0: t(8) = -3.6133, p < 0.01; HR = 30 vs. HR = 0: t(8) = -5.6011, p < 0.01. 

These results are consistent with the results reported by Burns and Blohm 

(2010). 

We also used the Sober and Sabes (2003) model to extract the weights 

for different conditions and as it is depicted in Figure 6, the visual weights in 

visual coordinates did not change very much by varying head roll, however, the 

visual weight in proprioceptive coordinate decreased for rolled head conditions. 

This is consistent with our hypothesis that higher noise in RFTs results in lower 

reliability of transformed signals which leads to higher weights for proprioceptive 
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information in the proprioceptive coordinates compared to the head straight 

condition.  

 

Neck Load effect 

In addition to altering the head roll a neck load (rightward, no load, or 

leftward) was applied. We assumed that if the neck load was not taken into 

account, there should be no difference in the reach errors between the neck load 

conditions and no load condition. Alternatively, if the neck load was taken into 

account in estimating head roll, then we expected to observe similar effects as 

during head roll; up/down -ward shifts in reach error curves and increased 

movement variability. This is because loading the neck while the head is upright 

would create a discrepancy between the neck muscle spindle information and the 

combined visual/proprioceptive information. In addition, due to signal dependent 

noise, the neck muscle information should become less reliable when the neck is 

loaded compared to the no load condition. Consequently, the sensed head angle 

estimated by integrating neck muscle and visual/vestibular signal should be 

biased toward the neck load and have more variability resulting in biased and 

more variable movements. 

As it can be seen in Figure 7(A), applying the neck load created an 

up/down -ward shift of the reach movement error curves. An n-way ANOVA with 

factors NL, target location, and participants revealed a significant main effect for 

different NL, F(2,98) = 6.12, p < 0.01. Bonferroni-corrected post-hoc analyses 

indicated that the bias effect was significant among all the NL conditions. The 
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interaction between targets and different NL was not significant, F(14,98) = 1.06, 

p = 0.402, which means that the effect of varying NL on reach movement was 

independent of different target directions.  

 
Figure 7. Effect of applying neck load on reach movement behavior. A) Reach error curves (solid line 

for IHP shifts to right and dotted line for IHP shifts to left) are shifted upward for applying neck load on the 

right. The shift in reach error curves for applying neck load on left is not statistically significant. B) The 

movement variability is increased significantly for applying the load on the left compared to the no load 

condition. C) The visual weights derived by fitting the Sober and Sabes (2003) model on the data. We only 

observed a significant change in visual weight in proprioceptive coordinate due to applying neck load on the 

left side.  

Figure 7(B) represents the variability of reach errors in the no load 

condition vs. neck loaded conditions. As the figure demonstrates, the variability 

of reach errors is higher for applying the load compared to no load condition. We 

performed paired t-tests between all three different conditions across all eight 

participants. Movement variability was significantly higher for applying the load 

on the left side compared to no load condition t(8) = 2.7552, p = 0.0283. The 

paired t-tests revealed no significance difference among other conditions.  

 

Comparison 

So far we showed that there are both biases and increased movement 

variability effects for either applying NL or HR. In the next step, we compared the 
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variability of reach movements in the NL conditions vs. HR conditions. Based on 

stochasticity in RFTs we expected to have higher variability for higher amplitudes 

of head angle during different experimental conditions. For example, we 

predicted to have higher movement variability for applying only HR compare to 

applying only NL or have the highest variability for conditions in which both HR 

and NL are applied in the same direction.  

 

Figure 8. Effect of different 

experimental conditions on reaching 

movement variability. Head upright 

and no load condition (considered as 

the control condition) and the 

combined HR/NL conditions are sorted 

based on the expected increase in the 

variability based on the signal-

dependent noise hypothesis right and 

left of the control condition. Rolling the 

head consistently increased the 

variability compared to the control 

condition.  

Based on Figure 8 the variability in HR conditions is higher than in NL 

conditions. We first ran paired t-tests between each condition separately and the 

significant statistical differences are shown in the Figure 8. Applying the load on 

the left side increased the variability compared to the control condition. Then, we 

performed paired t-test between combined similar conditions: for example both 

head upright and neck load on either side are combined and created the overall 

NL condition. The paired t-test between HR condition and NL condition showed a 

significant difference, t(8) = 2.7444, p = 0.0287; the difference between HR 

condition and control condition was significant as well, t(8) = 2.7444, p = 0.0020 ; 
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however the difference between the control and NL conditions was not 

significant.  Together all of the above observations provide evidence for the 

existence of signal dependent noise in the head angle estimation and 

consequently the RFTs processes. However, it is not clear how such stochastic 

RFTs affect the reaching movement. First of all, contrary to the initial hypothesis 

no modulation of variability was observed by varying NL while the head was 

rolled CW/CCW. In addition, in all the conditions we observed larger effects when 

rolling the head on reach errors for targets away from body (45-135 degree) 

compared to the targets toward the body (215-315 degree). Both previous 

models (Sober & Sabes 2003 and Burns & Blohm 2010) fail to explain the above 

mentioned effects. Based on both of the previous models, there shouldn’t be any 

difference in biases effect due to head roll condition and they predict a constant 

up/down –ward shift in the reaching error curves. We propose that these effects 

can be explained by a Bayesian framework which performs geometrically 

accurate RFTs.  

 

Modeling the stochastic reference frame transformations 

The above analyses demonstrate that RFTs should be considered as 

stochastic process. Therefore, to understand the effect of such stochastic RFTs 

on reach planning we developed a Bayesian model of multi-sensory integration 

for reach planning and explicitly included the RFTs. 
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Figure 9. Model schematic. In order to perform the reach movement successfully, IHP is 

calculated in both visual and proprioceptive coordinates. In visual coordinate, IHP is computed by 

transforming proprioceptive information into visual coordinates. Visual and transformed proprioceptive 

information are weighted and combined based on Bayesian theory. A movement vector is calculated by 

comparing the estimated IHP and target positions. The same process takes place in proprioceptive 

coordinate to generate a proprioceptive IHP estimate. Using inverse kinematic, the transformed movement 

vector and IHP can be combined to calculate the movement plan based on the required changes in joint 

angles. The blue box represents the RFTs process. RFTs are performed by considering eye and head 

orientation as well as the translations between rotation centers of the body. The head orientation is estimated 

by combining visual/vestibular and neck muscle spindle information using Bayesian statistics (see Methods 

for details). 

Figure 9 depicts the schematic of our proposed model. The working 

principles of our model are similar to previous ones (Sober & Sabes, 2003; Burns 

& Blohm, 2010) with the addition of an explicit head orientation estimator (Figure 

9, blue box). In summary, our model calculates the required reach movement 

through first calculating the movement vector in visual coordinates, by comparing 

estimated initial hand position and target position, and then generates the 
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movement commands by transforming the movement vector from visual 

coordinates to proprioceptive coordinates.  

We added several crucial features to the proposed model compared to the 

previous models (Sober and Sabes 2003, 2005; Burns and Blohm 2010). First, 

we explicitly included the RFTs. The RFTs processes transforms information 

between different coordinates considering the full body geometry; head 

orientation, eye orientation, head-eye translation, and head-shoulder translation. 

In addition, to perform the required transformations, we included a head angle 

estimator. The head angle estimator combines muscle spindle information and 

visual/vestibular information in a statistically optimal manner. Similar to Burns 

and Blohm (2010), we modeled both mean behavior and the associated 

variability for each source of information; vision, proprioceptive, vestibular, and 

muscle spindles. To examine the effect of noisy transformations on the 

visual/proprioceptive information, we deployed Monte Carlo simulations. This 

method gave us the opportunity to explicitly study the effect of RFTs on the 

covariance matrices and consequently the MSI weights. 

 

Model fit 

In the following section we first provide the fitting results for a sample 

participant (#6) and then evaluate the fitting results across all nine participants. 

Figure 10 provides the fitting vs. data for participant # 6. Figure 10 (A and B) 

depicts model fitting for all different initial hand positions for different head rolls 

while no neck load was applied. As it can be seen, our model is able to 
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accurately capture the reach errors for different IHP and HR conditions. Figure 

10C provides the model prediction for changes in variance for different 

conditions. Error bars were derived using bootstrapping with N=1000. Since the 

results for horizontal and vertical hand shifts are very similar, for all the other 

conditions we only provided the results for the horizontal initial hand shifts. Figure 

10D-F depicts the fitting for varying the NL for different Head angles; 0°, ±30°.  

 
Figure 10. Model fit for a sample participant (#6). Model fit on the reach error curves for 

different IHPs and HR/NL conditions. A-B) model fit on the reach error curves for varying head orientation 

without applying neck load: A) solid line represents results for IHP shifts to the right and dotted line 

represents results for IHP shifts to the left, B) solid line represents results for IHP shifts to the up and dotted 

line represents results for IHP shifts to the down. C) model fit on the changes in movement variability due to 

varying HR and NL conditions. D-F) Model fit on reach errors for varying NL for different HR conditions. Only 

data for horizontal shifts are presented. The results for vertical hand shifts are similar. 

After demonstrating that our model was capable of predicting the reach 

error behavior for a single participant, Table 1 summarizes the fitting results for 

all the participants. The most interesting finding here is the relatively higher 

contribution of visual/vestibular signal compared to neck muscle spindle (C≈26). 

This is was consistent across all the subjects. We also observed very high 

movement variability across our participants.  
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Table 1. Model parameter fits  

Participants 𝝈𝒑
𝟐 (rad

2
) 𝝈𝒗

𝟐 (mm
2
) 𝝈𝒇𝑻

𝟐  (mm
2
) 𝝈𝑽/𝑽

𝟐  (deg
2
) 𝝈𝑵𝑴

𝟐  (deg
2
) 𝝈𝒉𝟎

𝟐  (deg
2
) C 𝝈𝑴𝑽

𝟐  (mm
2
) 

S1 4.69*10
-4 

13.50 56.68 3.04*10
-2 

7.89*10
-1
 5.66 25.92 100.87 

S2 4.86*10
-4
 21.59 56.10 1.49*10

-1
 3.87 5.61 25.76 48.53 

S3 4.86*10
-4
 16.50 56.72 1.54*10

-1
 4.00 5.79 26.00 49.00 

S4 3.11*10
-4
 9.01 32.71 2.36*10

-1
 5.92 4.97 25.13 11.56 

S5 2.45*10
-4
 15.00 26.86 1.08*10

-1
 2.81 5.00 25.98 95.75 

S6 4.81*10
-4
 15.03 38.78 1.23*10

-1
 3.20 5.77 26.00 37.97 

S7 4.84*10
-4
 20.97 38.81 3.07*10

-1
 7.97 5.80 25.91 26.99 

S8 2.87*10
-4
 16.09 38.44 1.18*10

-1
 3.08 5.80 26.00 41.32 

S9 3.20*10
-4
 18.99 38.58 2.97*10

-1
 7.68 5.74 25.89 26.98 

95% CI [3.13, 

4.80] *10
-4
 

[13.12, 

19.47] 

[33.57, 

51.69] 

[0.94, 

2.44] *10
-1
 

[2.44, 

6.30] 

[5.30, 

5.85] 

[25.61, 

26.07] 

[23.93, 

73.62] 

 

Figure 11 provides the model prediction vs. data for both reach errors and 

variances for different experimental conditions. Different participants are 

differentiated by different colors. We used several different analyses to evaluate 

the goodness of our model fit. First, we calculated r-squared value for each 

individual participants and the pool of all the participants: [54, 61, 56, 75, 50, 60, 

66, 71, 71, and 94] for S1-S9 and the pool of data respectively. Secondly, since 

the variance data was very noisy, we grouped them in bins and calculated the 

confidence interval for each predicted variance using the following equation (J. S. 

Williams, 1962): 

(𝑛−1).𝑠2

𝜒𝛼/2
2 ≤ 𝜎2 ≤

(𝑛−1).𝑠2

𝜒1−𝛼/2
2  (18) 

In which 𝜎2 is the population variance, 𝑠2 is the sample variance, 𝑛 is the 

sample size, and 𝜒𝛼/2
2  is chi-square distribution. Since we wanted to find the 95% 

confidence interval, we set 𝛼 = 0.05. The boxed colored area in Figure 11(B, C) 

is the calculated confidence interval for the variances. Based on this analysis, we 

could see that our model provides a decent fit on the data.  

Finally, we examined if our residual has a random pattern by examining 

the normality of our model residual using normal probability plot, plotted using 
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MATLAB 2016 ‘normplot.m’. Figure 12 provides the normal probability plot of our 

fitting for all nine participants. As it is depicted, residual values for all the 

participants approximately have a normal distribution which implicates that our 

model captures all the features in the data.  

 

Figure 11. Model predication vs. observed data for each individual 

participant. Data for each individual participant was fitted to our model. Each color represents an 

individual participant. A) The model prediction vs. observed data for reach errors. B) The model prediction 

vs. observed data for reach variability. C) Same data as in section B grouped into bins of 0.25 deg2 (mean 

and standard error). The gray box represents the confidence interval for predicted variances based on our 

model. 

 

Figure 12. Residual analysis: 

normal probability plot. The 

probability plot is depicted for each 

participant, different colors. As it can be 

seen the residuals of our model fit compared 

to the participants’ data has almost a normal 

distribution for all the participants. 
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Model mechanisms  

In the previous section, we demonstrated that the proposed model was 

able to replicate our behavioral data pattern (Figure 10). In this section, we use 

the model to provide a mechanistic explanation of the observed reach movement 

patterns.  

Sober and Sabes (2003) demonstrated that reaching errors caused by 

dissociating visual and proprioceptive information can be explained by two 

components: MV error that is the error at the vector planning stage and INV error 

which is the error at the motor command generation stage. They showed that 

adding these two reaching errors leads to the error pattern observed in human 

participants. Furthermore, Burns and Blohm (2010) demonstrated that the 

observed up- and downward shifts in reaching error curves can be explained by 

RFTs; any misestimation in the sensed head angle results in an erroneous 

rotation of movement vector which results in up- and downward shifts in reach 

error curves.  The logic is the same in our model for explaining the observed 

biases in reach error curves for the head roll condition. Similarly, the up/down -

ward shifts in reach error curves for the neck load condition can be explained by 

erroneous RFTs; applying a neck load biases the head angle, which leads to an 

erroneous rotation of the movement vector, resulting in shifts of error curves.  

Applying a neck load enabled us to evaluate the contribution of neck 

muscle spindle information to head angle estimation. To achieve this we included 

a Bayesian head angle estimator in our model in which the visual/vestibular and 
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neck muscle spindle information are integrated to estimate the head angle. 

Applying a neck load biases the neck muscle spindle information toward the 

direction of the load and consequently biases the head angle estimation. This 

bias in estimated head angle depends on two parameters: 1) relative neck 

muscle reliability compared to visual/vestibular reliability and 2) overall head 

angle estimation variability (similar to the variable RFTs variance in Burns and 

Blohm’s (2010) model). Figure 13 illustrates the effect of both overall variability 

and relative reliability of neck muscle information on reaching error curves.  

As explained before, in our model we estimate the head angle by 

integrating visual/vestibular information with neck muscle information. As a result, 

the overall sensed head angle variability depends on the variability of each of 

aforementioned information. Consider the situation in which overall head angle 

estimation variability is low (Figure 13 A-B): having a low variability for head 

angle estimation is resulted from high reliability for both visual/vestibular and 

neck muscle spindle information. Similarly, high variability of head angle 

estimation resulted from low reliability of both visual/vestibular and neck muscle 

spindle information and consequently applying neck load creates smaller biases 

(Figure 13 C-D). We expect that applying a neck load will create higher shifts in 

reach error curves for when the reliability of sensed head angle is high compared 

to when the reliability of sensed head angle is low, regardless of their relative 

contribution (compare Figure 13A vs. Figure 13D and Figure 13B vs. Figure 

13C).  
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In addition, the amount of shifts in reach error curves depends on the 

relative reliability of neck muscle spindle information vs. visual/vestibular 

information. When the relative reliability of neck muscle information is high, the 

bias in reach error curves is higher compared to when its reliability is low (Figure 

13B vs. Figure 13C). In our data, we observed high variability for head angle 

estimation as well as relatively higher contribution of visual/vestibular information 

compared to neck muscle spindle information (𝐶 ≈ 26); Figure 13C. 

 
Figure 13. Effect of varying the reliability of neck muscle spindle signals vs. 

visual/vestibular signals. Head angle is estimated by combining the neck muscle spindle 

information with combined visual and vestibular information using the Bayesian method, therefore, the effect 

of applying neck load depends on two factors: 1) absolute variability of head angle estimation and 2) relative 

reliability of neck muscle spindle information compared to visual/vestibular information. A-B) lower absolute 

value for head angle estimation variability: this lower variability results from the high reliability of both 

visual/vestibular and neck muscle information. Therefore, the up/down -ward shifts induced due to applying 

neck load is higher compared with when the head angle estimation variability is high (panel C and D). In 

addition to the absolute head angle estimation variability, the relative reliability of neck muscle spindle vs. 

visual/vestibular information impacts how much applying neck load biases the reaching movement: A, C) the 

lower the reliability of neck muscle spindle information vs. visual/vestibular information, the lower the 

up/down ward shifts in reaching error curves, B, D) increasing the relative reliability of neck muscle 

information increases the up/down ward shifts in reaching errors by applying neck load.. 

As mentioned before, at the heart of our RFT process there is a head angle 

estimator which enabled us to retrieve the sensed head angle based on the 
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reach error patterns. Figure 14 demonstrates the biases in head angle estimation 

for all the experimental conditions. As can be seen, applying neck load biased 

the head angle estimation toward the applied neck load for all head angles. We 

performed t-test analysis and observed that all the changes in head angle 

estimation due to applying neck load are significant -11 < t(8) < 12, p < 0.001.  

 
Figure 14. Biases in head angle estimation due to different head roll and 

neck load conditions. Applying neck load biased the head angle estimation toward the applied load 

for all head angles. Error bars are standard deviations. 

In addition to up/down –ward shifts in reach error curves by applying neck load 

and head roll, we observed a very surprising pattern in our data: both head roll 

and neck load created greater biases in reaching movements when reaching to 

targets away from the body (45-135 deg) compared to reaching to targets toward 

the body (215-315 deg). This observation was surprising and to our knowledge 

none of the previous models (Sober & Sabes 2003 and Burns & Blohm 2010) 

could predict/explain this pattern.  

At this point it should come as no surprise that our model explains the difference 

in head roll/neck load effect for different targets by stochastic RFTs processes. 

Blohm and Crawford (2007) demonstrated that the brain considers the full 3D 

body geometry to accurately plan reach movements. As mentioned in the model 
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description, we included the 3D body geometry in our RFTs procedure: RFT 

processes are done by performing sequential rotations/translations between 

different coordinates centered on different body sections. Figure 14A 

demonstrates different coordinates that have been considered in our model in 

relation to each other. Including the 3D body geometry resulted in a displacement 

in the center of rotation between different coordinates and specifically in our 

experiment between gaze-centered and head-centered coordinates. This 

displacement of the center of rotation caused greater biases in reaching 

movements for visual targets further away from vs. closer to the body (Figure 

14A). Figure 14B provides a detailed example of how the difference in the center 

of rotation results in an asymmetry in the movement biases induced by head 

roll/neck load. The first block in Figure 14B shows the actual scene in front of the 

participants with two targets at 90deg and 270deg. In our experiment the 

participants fixated their eyes on the cross and this cross was indicated as their 

visual information of the initial hand position as well. In this example, the hand 

was shifted 25cm horizontally to the right. The dotted arrows show the visual 

movement vector toward the targets. Box #1 demonstrates the retinal 

representation of targets for head roll 30deg CCW. We assumed that the torsion 

effect on retinal information was small and therefore ignored it.  Since the head is 

rotated 30deg CCW, the retinal image on the back of the head is rotated 30deg 

CW (actual head angle) and the center of this rotation is the cross (gaze-

position). In order to estimate the hand position, proprioceptive information must 

be transformed to the retinal coordinates and at the heart of this transformation is 
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the head rotation based on the estimated head angle (Blue box in figure 9). In 

this specific example, we assumed that the head angle is overestimated by 5deg 

and is estimated as 35deg. In addition, since the centers of rotation for head-

centered and gaze-centered coordinates are different, the transformed hand 

position is no longer in symmetry with the rotation in gaze-centered coordinates 

and displaced and biased toward the body. The next two steps in our model are 

multisensory integration to estimate the hand position and movement vector 

calculations (Box #2). As it has been shown by Sober and Sabes (2003, 2005) 

any transformation adds noise and therefore, visual information is more reliable 

in the retinal coordinates and the estimated initial hand position is biased toward 

the visual initial hand position and the movement vector is calculated by 

subtracting target position from this estimated initial hand position. This 

movement vector, then, is transformed into shoulder-center coordinates to be 

executed, employing RFTs (Box #3). We compared the transformed movement 

vector with the visual movement vector in Box #4 and as it can be seen the 

misestimation in head angle created greater biases for target away from the body 

(90deg) compared to the target toward the body (270deg).  
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Figure 15. RFT processes mechanism. A) Different coordinates in our RFT module. The 

difference in the center of rotation between gaze-centered coordinate and head-centered coordinate 

resulted in an asymmetry of transformed hand position for 30deg CW vs CCW head rolls. B) A detailed 

example of the higher effect of stochastic RFTs on movement away from the body compared to movements 

toward the body for head roll 30deg CCW: Actual scene: in our experiment, participants had fixated their 

eyes on the center cross and the visual feedback of the hand indicated their hand on the center as well. The 

actual hand position is shifted to the right in this example and it is occluded, Box#1: the retinal image of the 

target is rotated 30 CW, we ignored the torsion effects on retinal projection. Proprioceptive hand position is 

transformed using our RFT module (we assumed that head roll estimation is erroneous; 35deg), Box#2: 

Initial hand position is estimated by combining visual information and transformed proprioceptive information 

of the hand. Then, the movement vector is calculated by subtracting target position from the initial hand 

position, Box#3: The calculated movement vector is transformed to the proprioceptive coordinate using the 

RFTs module, Box#4: comparing the planned movement with the movement only considering visual 

information. As it can be seen, the misestimation in head angle, created larger error for movement away 

from body vs. movement toward the body. This happened due to the offset in the center of rotations 

between different coordinates. 

Determining how stochastic noise in RFTs modulates multi-sensory weights was 

one of the goals of this experiment. In figures 6 and 7, we fitted Sober and 

Sabes’ (2003) model to the data and demonstrated that both head roll and neck 

load modulates multi-sensory integration weights. Similar to Burns and Blohm 

(2010), we were able to retrieve multisensory integration weights from the 

covariance matrices. As it has been demonstrated in figure 15, RFTs 

dramatically change the distribution of the transformed signal and consequently 
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the covariance matrix (Alikhanian & Blohm 2015). In order to account for such 

variations, we calculated the determinant of the covariance matrix for calculating 

the multi-sensory weights. Figure 16 shows visual weights in both visual (A) and 

proprioceptive (B) coordinates. 

 
Figure 16. visual weights for multi-sensory integration. A) Visual weights in visual 

coordinate: Visual weights increase in visual coordinate due to decreased reliability of proprioceptive 

information caused by stochastic RFTs, B) Visual weights in proprioceptive coordinate: rolling the head 

30deg CCW didn’t affect the visual weights while rolling the head 30deg CW decreased visual weights. The 

reason for this asymmetry is the nonlinearity in the inverse kinematic process.  Error bars are standard error 

of the mean. 

Visual weights were lowest for head straight and no load condition in visual 

coordinates and increased by rolling the head and/or applying neck load. Our 

paired t-test showed that this increase was significant for all head roll and neck 

load conditions (t(8) < -3, p < 0.05). More specifically, applying the neck load 

increased the visual weights in visual coordinate while the head was upright (t(8) 

< -3, p < 0.05) while it didn’t significantly change when the head wasn’t upright 

and neck load was applied (t(8) < -1, p ≈ 0.2). Applying neck load or rolling the 

head didn’t significantly changed visual weights in visual coordinates except for 

when the head rolled 30deg CW (t(8) < -18, p < 0.001) or the neck load applied 

to the left side (t(8) < 3, p < 0.05). Combination of head roll and neck load only 

modulated the visual weights when the head was rolled 30deg CW and neck load 
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applied to the either sides (|t(8)| < 4, p < 0.05). Therefore, our data and model 

show that both noise in RFTs and the geometry of the body can influence multi-

sensory integration in a way that is explained through changes in reliability of 

transformed signal by stochastic and geometrically accurate RFT processes.  
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Discussion 

In this study, we assessed the effect of neck muscle spindle noise on 

multi-sensory integration during a reaching task. We found that applying neck 

load biased head angle estimation across all head roll angles resulting in 

systematic shifts in reach errors. We also examined the effect of head roll on 

reach errors and observed both an increase in movement variability and biases 

in reaching errors; similar to Burns & Blohm (2010). The effect of neck muscle 

spindle noise and head roll can be explained by a misestimation of head 

orientation and signal-dependent noise in the RFTs between visual and 

proprioceptive coordinates. To quantitatively examine the effect of noise on 

reaching movements, we developed a novel 3D stochastic model of multisensory 

integration across reference frames. The model was able to reproduce the 

reaching patterns observed in the data providing evidence that the brain has 

online knowledge of full body geometry as well as the reliability associated with 

each signal and uses this information to plan the reach movement in a 

statistically optimal manner. 

Model discussion 

In our model, the multisensory integration process occurs in specific 

reference frames; i.e. in visual and proprioceptive coordinates. This was based 

on the assumption that signals can only be combined if they are represented in 

the same coordinate space. In addition, we perform RFTs by a series of 

coordinate rotations and translations. However, we do not claim that the brain 

performs these computations in the same way. Importantly, we would like to 
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emphasize that explicit coordinate matching transformations might not be 

required in the brain. Alternatively, neurons could directly combine different 

signals across reference frames (Abedi Khoozani et al., 2016; Blohm et al., 2009; 

Ma et al. 2006; Beck et al., 2011), e.g. by gain modulation mechanisms. 

Regardless of the mechanism used, we expect very similar behavioral outcomes.  

 Even though we used numerical methods for transforming the statistical 

properties of the sensory signals through the different processing steps of 

movement planning, for simplifications we hypothesized that all the distributions 

remained Gaussian and performed simplified Bayesian computations for 

Gaussian inputs. However, in general, this is not necessarily correct. For 

example, it has been shown that noisy transformations can dramatically change 

the distribution of transformed signals (Alikhanian & Blohm, 2015). We assumed 

the noise in our RFTs to be small enough that the deviations from a Gaussian 

distribution are negligible. It would be interesting, though, to examine how 

considering the actual distribution and performing the basic Bayesian statistics 

(Press, 1989) will change the model behavior. 

Interpretation of observations 

By introducing the hand offset, we observed reach errors that were 

reported previously in multisensory integration tasks (Sober and Sabes, 2003, 

2005; McGuire and Sabes, 2009; Burns and Blohm, 2010) and were well 

captured by Sober and Sabes’ (2003) model. In addition, we observed 

systematic biases in reach errors and increased movement variability due to 

rolling the head as it was reported by Burns and Blohm (2010) and were 
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described by their model. We, also, found systematic biases in reaching error 

curves as well as increased movement variability by increasing neck muscle 

tone. More interestingly, we found greater biases in reaching errors to the targets 

away from the body compared to the targets toward the body when changing 

head orientation and/or applying neck load. These last two findings were new 

and could not be captured by previous models. Our hypothesis was that 

stochastic RFTs can explain both biases in reaching errors and increased 

movement variability. Therefore, we developed a 3D model of multisensory 

integration across reference frames to study the effect of stochasticity on reach 

movement planning. 

We found that neck load biased head angle estimation across all head roll 

angles which resulted in systematic biases in reach error curves. Our model 

accounted for these shifts by assuming that neck load biases the head angle 

estimation toward the direction of the load. Head orientation can be estimated 

from visual, vestibular, and proprioceptive signals. The vestibular system and 

especially otolith system is very important for estimating the static head 

orientation relative to gravitational axes (Fernandez et al., 1972; Sadeghi et al., 

2007). Vingerhoets et al. (2009) demonstrated that tilted visual and vestibular 

cues bias the perception of visual verticality. The author showed that a Bayesian 

model which integrates visual and vestibular cues can capture the observed 

biases in verticality perception. Furthermore, muscle spindles play an important 

role in determining joint position sense (Goodwin et al., 1972; Scott & Loeb, 

1994). Armstrong et al.  (2008) showed that the muscles in the cervical section of 
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the spine have a high density of muscle spindles providing accurate 

representation of head position relative to the body. 

Therefore, we included multisensory integration of visual/vestibular, and 

neck muscle spindle signals in our model. Since we only modulated neck muscle 

information, we assumed that a combination of visual/vestibular signals is 

integrated with neck muscle spindle information.  By fitting our model to the data, 

we were able to retrieve the relative contribution of neck muscle spindle 

information vs. visual/vestibular information. We found that the contribution of 

neck muscle spindle information was very low (in the order of 5%) compared to 

visual/vestibular information. There could be several possible explanations for 

observing relatively low contribution of the neck muscles. First, we selected the 

amount of neck load in a way to apply force comparable to 30deg head tilt. 

However, due to the complex organization of neck muscles (Armstrang et al., 

2008) we couldn’t directly measure the changes in muscles’ activity. Therefore, in 

order to accurately measure the effect of applying load on neck muscle spindle 

information, a detailed model of neck muscle organization is required. Moreover, 

usually neck muscle information is in agreement with the skin receptors. In our 

task, however, the neck muscle information and skin receptor information conflict 

each other which we could be the result down-weighting of neck proprioceptive 

information (Kording et al. 2007).  

Reaching movements were more variable in the straight head with neck 

load applied to either side condition compared to the straight head and no load 

condition. We considered this as evidence for neck load affecting RFTs; we 
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assumed that the neck muscle spindles have signal-dependent noise (Scott & 

Loeb, 1994). Therefore, applying the neck load increases the noise in the neck 

muscle spindle information and consequently the sensed head orientation. This 

noisier sensed head angle resulted in noisier RFTs and accordingly more 

variable reach movements.  

Interestingly, we observed an asymmetry in the amount of variability 

increase by applying neck load on the right vs. left side when the head was 

upright. One explanation could be that since all of our participants were right-

handed, they were more sensitive to the changes on the left side. Several 

imaging studies demonstrated that right-handed people have bigger left 

hemispheres with more neural resources associated to the right-side of the body; 

asymmetry in motor organization (Bauermeister, 1987; Linkenauger et al., 2009; 

Linkenauger et al., 2012). Bauermeister (1987) tested the effect of handedness 

on perceiving verticality and showed that right-handed participants are more 

responsive to the right sided stimulus than to the left sided stimulus.  

Similar to Burns and Blohm (2010), we found an increase in the 

movement variability by rolling the head 30deg to either shoulder. We assumed 

that signal dependent noise was the reason of increased movement variability for 

both applying head roll and neck load conditions. This signal dependent noise 

can be caused by several sources: visual, vestibular, and/or neck muscle spindle 

noise. Similar to previous work (Gellman & Fletcher, 1992; Li & Matin, 1992), we 

suggest that the noise from the otoliths varies for different head roll orientations 

and has a linear relationship with the head angle. Analogous to the vestibular 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182907doi: bioRxiv preprint 

https://doi.org/10.1101/182907


 

 48 

system, we assumed that this increase in noise has a linear relationship with the 

increase in head angle. However, as mentioned before, considering the complex 

arrangement of neck muscles (Armstrong et al., 2008), a detailed biomechanical 

model of the neck is required to corroborate this claim.  

Similarly, based on the signal dependent noise hypothesis, we expected 

that applying neck load modulates movement variability for all head roll 

conditions. Specifically, we expected to observe the highest amount of 

movement variability when the neck load and head roll were applied on the same 

side; e.g. 30deg CW head roll and right side neck load. The logic is that when 

both head roll and neck load are applied in the same direction, the neck muscle 

signal indicates the highest angle and due to signal dependent noise the 

associated variability of head angle estimations has the highest value. In our 

data, we didn’t observe any significant changes in the movement variability by 

applying neck load while the head was tilted. Our model accounted for this 

behavior by assigning a very low contribution to the neck muscle spindle 

information vs. visual/vestibular information during head angle estimation. It is 

worth to note that, even though the contribution of neck muscle information is 

low, applying neck load still has a tangible effect on reaching movements for all 

head roll conditions, which our model was able to capture.  

It is worth to note that an alternative hypothesis to the signal dependent 

noise is uncommon posture (Kording and Sabes 2011). Based on the uncommon 

posture hypothesis, since we perform most of our movements with the head 

straight there might be more neuronal resources allocated to this posture. As a 
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result rolling the head creates higher uncertainty due to uncommon posture 

independent of signal dependent noise. However, uncommon postures cannot 

explain the increased movement variability due to applying neck load while the 

head is upright. In other words, applying neck load while the body posture was 

kept unchanged still increased the movement variability which is in contrary to 

the uncommon posture hypothesis.  

Another explanation for above mentioned behavior could be that the brain 

is not integrating the visual/vestibular information in that situation due to the big 

discrepancy between neck muscle information and visual/vestibular information. 

In our experimental design we selected the neck load value to simulate the same 

force as when the head is titled 30deg (head weight*sin(60deg) = 0.5*head 

weight). Consequently, when the head is tilted 30deg CW and the load is applied 

on the right side the total force on the neck muscle can be calculated as: 

0.5*head weight (head tilt)+0.5*head weight (head load) = full head weight; this 

force is stimulating the neck muckle as when the head is tilted 90deg. One option 

to account for cue discrepancy in our model is to add in our head angle 

estimation process (Kording et al. 2007)  

We observed that applying head roll creates higher reaching movement 

biases for visual targets away from the body compared to visual targets toward 

the body. This pattern can be captured by including the full body geometry in the 

RFT processes in our model. Previously, Blohm and Crawford (2007) showed 

that in order to accurately plan a reaching movement to visual targets, the full 

body geometry (both rotations and translations) has to be taken into account by 
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the brain. Based on our model, the displacement of center of rotations between 

head- and eye-centered coordinate spaces caused this asymmetry in the 

reaching movements.  

Lastly, we observed that changing head roll and/or applying neck load 

modulated multisensory weights in both visual and proprioceptual coordinates. 

We validated this finding by both fitting Sober and Sabes’ (2003) model and our 

new full Bayesian RFTs model to the data. We found that increasing the noise in 

the sensed head angle estimation decreased the reliability of transformed 

signals, which we hypothesized is the result of the stochastic RFTs, and 

consequently lowered weights for transformed signals in the multisensory 

integration process. 

Therefore we conclude that both body geometry and signal-dependent 

noise influence multi-sensory integration weights through stochastic RFTs. We 

have shown that the noise in extra-retinal signals modulates the reliability of 

RFTs and consequently the reliability of the transformed signal. A similar 

observation has been made for eye movements and visually guided reaches 

(Burns & Blohm, 2010; Schlicht & Schrater, 2007). This is in the agreement with 

the previous suggestions that any transformations will add noise to the 

transformed signal (Sober & Sabes, 2003 and 2005; McGuire & Sabes 2005) and 

therefore it is optimal for the brain to perform as few serial transformations as 

possible. That could be the reason why the brain maintains different parallel 

representations in different coordinates at different stages of processing. 

Implications 
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 Our findings have implications for behavioral, perceptual, 

electrophysiology, and neural network modeling studies. First, we have 

demonstrated that both body geometry and stochasticity in RFTs modulates 

multisensory integration weights. It is possible that other contextual variables 

such as attention or prior knowledge also modulate multisensory weights and will 

subsequently affect both perception and action. In addition, we have shown that 

such modulations in multisensory weights can create asymmetrical biases in 

reach movements. Such unexpected biases may be prevalent in behavioral data 

obtained during visuomotor experiments; in which participants perform the task in 

a robotic setup while their body is in various geometries, e.g. tilted head forward 

or elevated elbow. Therefore, it is important to consider that forcing specific body 

configurations can create unpredicted effects that are important for analyzing the 

behavioural data.     

 Our findings also suggest that the brain must have online knowledge of 

the statistical properties of the signals involved in multisensory integration. This 

could be achieved by population codes in the brain (Ma et al., 2009), which is in 

agreement with the current dominant view that the brain performs the required 

computations through probabilistic inferences (Pitkow & Angelaki, 2017). 

Computational models which include required latent variables, and therefore are 

more naturalistic, are crucial to understand required computations. An important 

benefit of such a model is that they can be used to generate training sets for 

neural networks in order to investigate potential neural mechanisms underlying 
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probabilistic inference. Such studies will motivate appropriate electrophysiology 

experiments to validate/refute predications of such models/neural networks.  
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