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Abstract 15 

Reference frame Transformations (RFTs) are crucial components of 16 

sensorimotor transformations in the brain. Stochasticity in RFTs has been 17 

suggested to add noise to the transformed signal due to variability in 18 

transformation parameter estimates (e.g. angle) as well as the stochastic nature 19 

of computations in spiking networks of neurons. Here, we varied the RFT angle 20 

together with the associated variability and evaluated the behavioral impact in a 21 

reaching task that required variability-dependent visual-proprioceptive multi-22 

sensory integration. Crucially, reaches were performed with the head either 23 

straight or rolled 30deg to either shoulder and we also applied neck loads of 0 or 24 

1.8kg (left or right) in a 3x3 design, resulting in different combinations of 25 

estimated head roll angle magnitude and variance required in RFTs. A novel 3D 26 

stochastic model of multi-sensory integration across reference frames was fitted 27 

to the data and captured our main behavioral findings: (1) neck load biased head 28 

angle estimation across all head roll orientations resulting in systematic shifts in 29 

reach errors; (2) Increased neck muscle tone led to increased reach variability, 30 

due to signal-dependent noise; (3) both head roll and neck load created larger 31 

angular errors in reaches to visual targets away from the body compared to 32 

reaches toward the body. These results show that noise in muscle spindles and 33 

stochasticity in general have a tangible effect on RFTs underlying reach 34 

planning. Since RFTs are omnipresent in the brain, our results could have 35 

implication for processes as diverse as motor control, decision making, posture / 36 

balance control, and perception.   37 
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 38 

 New & Noteworthy:  We show that increasing neck muscle tone systematically 39 

biases reach movements. A novel 3D multisensory integration across reference 40 

frames model captures the data well and provides evidence that the brain must 41 

have online knowledge of full body geometry together with the associated 42 

variability to accurately plan reach movements.   43 
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Introduction  44 

Different sensory and motor signals are encoded in different coordinates 45 

in the brain, e.g. early vision in eye/gaze-centered, primary arm proprioception in 46 

shoulder-centered. Conversions between reference frames are vital to transform 47 

signals into reference frames that are appropriate for processes as diverse as 48 

motor control, decision making, posture / balance control, and perception 49 

(Flanders et al., 1992; Buneo et al., 2002; Vetter et al., 1999; Blohm & Crawford, 50 

2007). Previous studies have suggested that reference frame transformations 51 

(RFTs) should be regarded as stochastic processes which modulate the reliability 52 

of transformed signals (Alikhanian et al., 2015, Schlicht & Shrater, 2007; Burns & 53 

Blohm, 2010, 2011). Furthermore, several studies proposed that humans flexibly 54 

select the coordinates that minimize the effect of stochasticity (Sober & Sabes, 55 

2005). Cue reliability-based multi-sensory integration studies have shown that 56 

stochastic RFTs affect human behavior (Schlicht & Shrater, 2007; Burns & 57 

Blohm, 2010, 2011); however, the sources of stochasticity in RFTs as well as the 58 

underlying mechanisms of how RFTs affect transformed signals remain unclear.  59 

In order to accurately perform RFTs, the brain must have an estimate of 60 

3D body articulation (Blohm & Crawford, 2007); i.e. an internal estimate of 61 

different body parts with regard to each other (such as eye re. head translation) 62 

as well as an estimate of joint angles (such as head/eye orientations). While the 63 

former is likely learned and does not change, the latter could stem from at least 2 64 

sources, noisy afferent sensory signals (proprioception) and efferent copies of 65 

motor commands. Both signals are inherently variable due to the uncertainty of 66 
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sensory reading and the variability of neuronal spiking (Poisson noise). Several 67 

studies have suggested that varying body articulation, e.g. the head roll angle, 68 

increases the behavioral variability due to signal-dependent sensory and neural 69 

noise affecting the RFT (Alikhanian et al., 2015; Schlicht & Shrater, 2007; Burns 70 

& Blohm, 2010, 2011). Signal-dependent sensory noise can arise from variability 71 

in the muscle spindle activity, the vestibular system, or both (Lechner-72 

Steinleitner, 1987; Scott & Loeb, 1994; Cordo et al., 2002; Sadeghi et al., 2007; 73 

Faisal et al., 2008). Thus, larger joint angle estimates are accompanied by higher 74 

uncertainty (Wade & Curthoys, 1997; Van Beuzekom & Van Gisbergen, 2000; 75 

Blohm & Crawford, 2007), which results in an increased trial-to-trial variability in 76 

the RFT.  77 

The effect of stochastic RFTs on the reliability of transformed signals has 78 

been studied using a multi-sensory integration task. Multisensory integration 79 

combines different sources of sensory information to create the best possible 80 

estimate of the state of our body within the environment in a way that is generally 81 

well captured by Bayes-optimal integration (Stein & Meredith, 1993; Landy et al., 82 

1995; Atkins et al., 2001; Landy & Kojima, 2001; Kersten et al., 2004; Stein & 83 

Stanford, 2008; Ernst & Banks, 2002; Knill & Pouget, 2004). For instance, both 84 

visual and proprioceptive information can be combined in a reliability-weighted 85 

fashion to estimate hand position. It is believed (weak fusion hypothesis, Clark & 86 

Yuille, 1990) that prior to integration any signals must first be converted into a 87 

common coordinate system; this requires a (stochastic) RFT. Within this 88 

framework, the reliability of the transformed signal is affected by stochasticity in 89 
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RFTs (Alikhanian et al., 2015), thus modulating the multisensory integration 90 

weights (Burns & Blohm, 2010; Burns et al., 2011). However, it is not clear how 91 

varying multisensory weights due to stochastic RFTs affects reaching 92 

movements to visual targets.  93 

Here, we deployed a modified version of the standard visual-94 

proprioceptive integration-based reaching task (Van Beers et al., 1999; Sober & 95 

Sabes, 2003, 2005) to systematically investigate the behavioral consequences of 96 

biases and variability in sensory estimates used for stochastic RFTs. We asked 97 

human participants to perform a center-out reaching task while the seen and 98 

actual hand positions were dissociated. In addition, reaches were performed with 99 

the head either straight or rolled 30deg to either shoulder and we also applied 100 

neck loads of 0 or 1.8kg (left or right) in a 3x3 design. Our results demonstrate 101 

that applying the neck load increased the variability of reach movements and 102 

biased the reaching behavior toward the applied load in all head roll orientations. 103 

Our prediction was that these effects on reaching behavior can be explained by a 104 

change in multisensory integration weights due to stochastic RFTs, which 105 

consequently enabled us to quantify the relative contribution of neck muscle 106 

spindles to the estimation of head roll angle. To test this hypothesis, we 107 

implemented a novel 3D stochastic model of multisensory integration across 108 

reference frames. Our model was able to capture the pattern of behavioral data 109 

well and allowed us to make two main conclusions: the effect of neck load on 110 

reaching behavior can be explained by changes in multisensory weights due to 111 
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stochastic RFTs and the source of this stochasticity in RFTs is signal-dependent 112 

noise.  113 

Material and Method 114 

Participants 115 

Nine healthy humans (8 male) between 20 to 35 years of age with normal 116 

or corrected to normal vision participated in our reaching task. They performed 117 

their reaching with their dominant right hand. Experimental conditions were 118 

approved by the Queen’s University General Board of Ethics and all the 119 

participants gave their written consent. Monetary compensation was provided for 120 

participating in the experiment ($10/hour). 121 

Apparatus  122 

A virtual reality robotic setup (KINARM End Point Robot, BKIN 123 

Technologies) was used for performing the center-out reaching task. Participants 124 

stood in front of the robot while positioning their head by resting the forehead on 125 

the robot in front of the screen and their chin on a chinrest. Participants grasped 126 

a vertical handle attached to the robotic arm in order to reach to the viewed 127 

target on the mirrored surface. The vision of participants’ hand was occluded 128 

using an opaque board and eye movements were tracked using embedded 129 

technology (Eyelink 1000, SR Research).  A pulley system and a helmet were 130 

used for measuring the head roll and loading the neck (see Figure 1 A and C).  131 
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Figure 1. Apparatus- A) KINARM end 

point robot (BKIN technology website) 
arrangement. B) Visual targets were distributed 
evenly on a 10cm-radius circle. The hand was 
shifted 2.5cm either vertically or horizontally 
while the visual indicator stayed at the center. C) 
Picture of the pulley system for measuring the 
head roll and loading the neck, in this picture the 
participant had 30CW HR and neck load on the 
left side. The attached indicator on the helmet 
was used to measure the head angle. 

 132 

Task Design 133 

Participants stood in front of the robot and grasped the handle. At the 134 

beginning of each trial, participants were instructed to position their hand on the 135 

start position (cross) in the center of the display field. The robotic arm moved the 136 

hand toward the center and released it when the hand was within 3 centimeter of 137 

the central cross; a red dot representing hand position appeared at this point. 138 

After the participant positioned the hand correctly on the cross, one of the eight 139 

targets, distributed evenly on the circle with radius 10 cm, appeared. Participants 140 

were instructed to move through the target quickly and accurately while keeping 141 

their gaze fixated on the center cross. Once the participant’s hand begun to 142 

move (85 mm/s velocity threshold), the hand cursor disappeared. If they reached 143 

the target in less than 750ms, the trial was successful and participants would 144 

hear a successes beep, otherwise a failure beep was played indicating that the 145 

trial had been aborted and would have to be repeated. At the end of each trial, 146 
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the center cross disappeared and participants had to wait 500ms to start the next 147 

trial. The next trial started with the reappearance of the center cross and the 148 

movement of the robotic arm driving the participant’s hand to the start position. 149 

This was to ensure that participants did not have visual feedback of their 150 

previous trial’s performance. 151 

There were several different conditions in our experiment: The hand was 152 

physically shifted randomly either up/down or left/right with respect to the visual 153 

feedback of the hand. For example, participants would align their hand cursor to 154 

the center cross while their actual hand position was 2.5cm left of the cross. This 155 

discrepancy was introduced to enable us to measure the relative weighting of 156 

vision and proprioception in the multisensory integration process, similar to the 157 

logic employed in Sober and Sabes (2003, 5005) and Burns and Blohm (2010). 158 

In addition, the reaching movements were performed while the participants either 159 

kept their head straight or rolled their head 30deg toward each shoulder and 160 

while a neck load (0 or 1.8kg) was applied to the left or right side (the value of the 161 

weight was chosen to stimulate the same force as a 30deg head roll on neck 162 

muscles). Combinations of different head roll (HR) and neck load (NL) conditions 163 

are shown in Figure 2. We hypothesized that altering head roll and neck muscle 164 

force would create a conflict for head roll estimation as well as changing the 165 

signal-dependent noise which will affect the weights of multi-sensory integration. 166 

Participants completed 640 trials (5 hand positions * 8 targets * 16 repetitions) for 167 

each of the 9 combinations of head roll/neck load, for a total of 5760 trials 168 

(640*9) in 6 one hour sessions. In order to avoid any biases due to a specific 169 
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order of experiment conditions, we employed Latin squares method to counter 170 

balance among different experimental conditions (Jacobson & Matthews, 1996). 171 

 172 

 

Figure 2. Experimental conditions. 
Participants performed the reaching task under 9 
different combinations of HR and NL conditions 
during our experiment.  

 

 173 

Data Analysis 174 

Hand and eye movement were captured with sampling rates of 1000Hz 175 

and 500Hz respectively. MATLAB software was used for offline analysis: A low-176 

pass filter (autoregressive forward-backward filter, cutoff frequency = 50 Hz) was 177 

used to smooth the acquired data. First and second derivative of hand position 178 

data was calculated (using a central difference algorithm) to obtain hand velocity 179 

and acceleration. Trials in which participants moved their eyes after the visual 180 

target is displayed or moved their hand in a predictive direction except the target 181 

direction were removed (3% of overall trials). The time span from when 182 

participants started to move until their hand crossed a 9cm circle is defined as 183 

the initial movement duration. Movements were typically straight and had very 184 

little curvature; thus movement angle was derived through regression of data 185 

points acquired throughout the initial movement duration. Since the visual and 186 
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proprioceptive hand position was dissociated, we defined visual movement as 187 

the movement obtained when subtracting visual hand from target information 188 

(red arrow, Figure 1B) and proprioceptive movement as the movement direction 189 

obtained when subtracting proprioceptive hand position from the visual target 190 

information (green arrow, Figure 1B). Subtracting predicted visual 191 

(proprioceptive) movement from the measured movement angle yielded the 192 

directional visual (proprioceptive) movement errors, which we used for our 193 

analysis. We then used an analytical model to capture the pattern of movement 194 

errors measured across conditions and targets (see model description below).  195 

 196 

Statistical Analysis 197 

An n-way repeated measure ANOVA (rm-ANOVA) was used to assess the 198 

statistical differences (MATLAB 2013a, anovan.m) and post-Hoc analysis using 199 

the Bonferroni criterion (MATLAB 2013a, multcompare.m) was performed to 200 

assess the interaction between different parameters. A paired t-test (MATLAB 201 

2013a, ttest.m) was used to assess the statistical significance in reach error 202 

variability for different head roll and neck load conditions. In all the statistical 203 

analysis p < 0.001 was considered as the criterion for statistical significance. 204 

 205 

Model description 206 

The goal of our model was to understand which intrinsic and extrinsic variables 207 

were required to perform the RFTs accurately and more importantly, how 208 

variation of such variables affects human movement behavior. In order to 209 
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understand the effect of RFTs on reach planning, we first explain the required 210 

steps in our model to plan a reach movement. Sober and Sabes (2003) proposed 211 

a two-step model for planning a reach movement in which first a movement plan 212 

is calculated by subtracting the hand position from the target position. Then this 213 

movement plan transformed to a desired change in arm angles through 214 

performing inverse kinematics. We extended previous models (Sober & Sabes, 215 

2003; Burns & Blohm, 2010) that considered two steps for planning a reach 216 

movement: 1) calculating the movement plan and 2) generating the motor 217 

command. Several neurophysiology studies suggested that the movement plan is 218 

coded in visual (retinal) coordinates (Andersen & Buneo, 2002; Batista et al. 219 

1999) while motor commands are coded in joint coordinates (Crawford et al. 220 

2004). Following the same logic, in our model the two steps were performed in 221 

two different coordinates respectively: visual and proprioceptive coordinates. 222 

Visual information of hand and target positions were coded as retinal information 223 

in gaze-centered coordinates, Xh=(x1,h,x2,h) and Xt=(x1,t,x2,t) respectively (left 224 

panel in Error! Reference source not found. Figure 3), while the proprioceptive 225 

information of initial hand position was coded as joint angles in shoulder-centered 226 

coordinates, (Ө1,h,Ө2,h), (right panel in Figure Error! Reference source not 227 

found.3).  228 
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Figure 3. Model schematic. In order to perform the reach movement successfully, IHP is 

calculated in both visual and proprioceptive coordinates. In visual coordinate, IHP is computed by 
transforming proprioceptive information into visual coordinates. Visual and transformed proprioceptive 
information are weighted and combined based on Bayesian theory. A movement vector is calculated by 
comparing the estimated IHP and target positions. The same process takes place in proprioceptive 
coordinate to generate a proprioceptive IHP estimate. Using inverse kinematic, the transformed movement 
vector and IHP can be combined to calculate the movement plan based on the required changes in joint 
angles. The blue box represents the RFTs process. RFTs are performed by considering eye and head 
orientation as well as the translations between rotation centers of the body. The head orientation is estimated 
by combining visual/vestibular and neck muscle spindle information using Bayesian statistics (see Methods 
for details). 

 229 

Reference frame transformation (Blue box Figure 3) 230 

In order to accurately transform information between the visual and 231 

proprioceptive coordinates the full body geometry must be taken into account 232 

(Blohm & Crawford 2007). This is specifically important when the head is not 233 
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straight, i.e. rotating the head results in shifts of centers of rotation of the eye, 234 

head, and shoulder relative to each other (Henriques & Crawford, 2002; 235 

Henriques et al., 2003). To capture this, we performed a series of rotations (R) 236 

and translations (T), formulated in equations (1) and (2) respectively. 237 

X������� � R � X�����	�
  (1)  238 

Where R �  � cos  sin  
�sin  cos   ,  � 0 holds for clock wise rotations. 239 

X���	�
���� � X�����	�
 � T  (2) 240 

In the following section, we explain the required steps to transform hand position 241 

from eye-centered to shoulder-centered coordinates.  242 

Retinal-to-shoulder transformation 243 

As it is depicted in Figure 3, in order to transform retinal-coded information 244 

into joint-coded information the theoretically required sequential transformations 245 

can be done by first transforming retinal to head coordinates, then from head to 246 

shoulder and finally from should to joint coordinates (Note that this is likely 247 

different from how the brain is performing this transformation): 248 

1- Retinal-to-head 249 

��,���
� � ���� � ��,�������

�  (3) 250 

��,����
� � ����� � ���,���

� � ���������� (4) 251 

In which ���� and ����� are rotations based on eye angle and head angle 252 

respectively and ��������� is the translation between eye and head which 253 

is the distance between the center of two eyes (eye-centered coordinate) 254 

and the joint of head and neck (head centered coordinate). ��,���
� is the 255 

visual information of hand position in eye-centered coordinate: Subscript 256 
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‘h’ represents information related to the hand position and the following 257 

subscript represents the related coordinate at that step. In addition, we 258 

deployed superscripts ‘v’ or ‘p’ to dissociate if the information is originally 259 

provided by vision or proprioception respectively. All the following 260 

parameters have the same pattern.  261 

2- Head-to-shoulder 262 

��,��������
� � ��,����

� � �������������� (5) 263 

Since the body was upright, a translation is sufficient to perform the 264 

transformation between the shoulder and head. In our setup, the shoulder 265 

was located downward and to the right of the head. 266 

3- Shoulder-to-joint 267 

 �,������ � ����� � ��,��������
�  (6) 268 

In which ����� is the forward kinematic matrix and has the same form as 269 

equation (7) by Burn and Blohm (2010), since our experimental 270 

configuration is the same. In order to transform the information from joint 271 

angle coordinates to retinal coordinates, the same procedure can be 272 

performed only in the reverse order (since we used the same configuration 273 

as Burns and Blohm (2010), both forward and inverse kinematic matrices 274 

have the same format). 275 

In addition to the full body geometry, we considered the noise of 276 

transformation in our model. Similar to Burns and Blohm (2010), we have two 277 

noise component resulted from the transformation: fixed transformation noise 278 

(��� ) to simulate the fact that any transformation has a cost (Sober and Sabes 279 
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2005), and variable transformation noise (�!� ) to simulate the different head 280 

orientations and neck load conditions of our experiment (this is the same as the 281 

variability in the estimated head angle).  282 

Estimating head angle 283 

As mentioned in the previous section, participants performed reaching 284 

with different head roll and neck load conditions. Therefore, our model must 285 

include a head angle estimation component as a crucial part of the RFTs 286 

processes. Previous studies showed that humans combine visual, vestibular, and 287 

neck proprioceptive information for estimating head orientation, similar to a 288 

Bayesian optimal observer (Mergner et al., 1983, 1991, and 1997; Clemens et 289 

al., 2011; Alberts et al., 2016). For instance, Mergner et al. (1991) demonstrated 290 

that the stimulation of neck muscles by rotating the trunk on a fixed head caused 291 

a sensation of head rotation and also increased the uncertainty of head position 292 

estimation. In addition, two studies carried out in Medendorp’s group 293 

demonstrated that the noise in both vestibular and proprioceptive information 294 

should be considered signal-dependent (Clemens et al., 2011; Alberts et al. 295 

2016). Therefore, we used a similar principle for our head angle estimation in 296 

RFTs processes. Thus, following the same rational, we included neck load in our 297 

experimental condition with the goal of investigating the contribution of the 298 

mentioned sources of information for estimating the head angle. Assuming that 299 

each source of information has a Gaussian distribution, the head angle signal 300 

has a Gaussian distribution as well and its mean and variance can be estimated 301 

as follows:  302 
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�"# �  $�/�
� %$��

�

$�/�
� &$��

�  (7) 303 

μ"# �  $��
�

$�/�
� � μ�

�

� $��
�

$��
� � μ'( (8) 304 

In which �"# , �!/! , and �'(  are associated variability in head angle 305 

estimation, visual/vestibular information, and neck muscle information 306 

respectively and μ"#, μ!/!, and μ'(are the associated means in the same order. 307 

Therefore, we also were able to extract the relative visual/vestibular vs. neck 308 

muscle contribution in estimating head angle (� �  $��
�

$�/�
�  ).  309 

As mentioned earlier, one of the key features of our model is including 310 

signal dependent noise in our RFTs: The assumption is that when we roll the 311 

head, the variability of both vestibular and neck muscle spindle signals increase 312 

due to higher signal value. In addition, applying the neck load increases the force 313 

on the neck muscle which results in increasing the variability of neck muscle 314 

spindle signal. In the conditions of applying the neck load while the head is not 315 

straight, the two forces on the neck muscle are combined in order to drive the 316 

predicted neck muscle force. Therefore, we differentiated the variability for the 317 

head straight and no load condition from the other head roll and neck load 318 

conditions. Similar to Vingerhoets et al. (2008), we used a linear model to explain 319 

the increase in variability due to increase in the signal value: 320 

�!/! �  �!/!,�� � ���  !"## � �!/!,�*�  (9) 321 

�'( �  �'(,��
 � $%&#' ("!&� (!"$ �)�&+,� � �'(,�*�

  (10) 322 
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In which �!/!,��  and �'(,��
  are visual/vestibular and neck muscle variability for 323 

head straight condition and �!/!,�*�  and �'(,�*�
  are the ones for other 324 

experimental conditions. This will result in having μ"#,�� and μ"#,�*�. 325 

At the final step, the required head angle for the transformation ( "#) is 326 

derived by scaling the estimated head angle (μ"#) (obtained by sampling from 327 

the above Gaussian distribution) by a gain factor β:  "# � β � μ"# . 328 

Multisensory integration 329 

In order to estimate the initial hand position (IHP), visual (V) and 330 

proprioceptive (P) information are combined using multisensory integration 331 

principles. In our model, the multisensory integration is happening twice: once in 332 

visual coordinates (coded in Euclidean) in order to calculate the movement 333 

vector (MV) and once in proprioceptive coordinates (coded in joint angles) in 334 

order to generate the motor command using inverse kinematics (INV). We 335 

assumed that each piece of information has a Gaussian distribution (before and 336 

after RFTs) and therefore using multivariate Gaussian statistics the mean and 337 

covariance of the combined IHP estimated from vision (V) and proprioception (P) 338 

in each coordinate can be written as: 339 

∑+", � �∑,
�- � ∑!

�-��- (11) 340 

μ+", � ∑+", . ∑,
�- � μ, � ∑+", � ∑!

�-. μ! (12) 341 

Where ∑+", is the covariance matrix of IHP and ∑! and ∑, are covariance 342 

matrices of visual and proprioceptive information respectively. Similarly, μ+",, μ,, 343 

and μ! are the mean values (in the vector format) for IHP, visual, and 344 
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proprioceptive information. Therefore, the visual weight in each of the visual and 345 

proprioceptive coordinates is calculated as: 346 

0(! � ∑+",,� �  ∑!,�
�-  (13) 347 

0+'! � ∑+",,. �  ∑!,.
�-  (14) 348 

Where 0(! is the multisensory integration weight for visual information in 349 

visual coordinates and 0+'! is the multisensory weight for visual information in 350 

proprioceptive coordinates. Where ∑+",,� is the covariance matrix of IHP in visual 351 

coordinates and ∑!,�  is the covariance matrix of visual information in visual 352 

coordinates. Similarly, ∑+",,.  is the covariance matrix of IHP in proprioceptive 353 

coordinates and ∑!,.  is the covariance matrix of visual information in 354 

proprioceptive coordinates. 355 

Final motor command and movement direction 356 

After estimating the IHP, the desired movement vector is calculated by 357 

subtracting the hand position from the target positon; 1� � 2�! � μ+",,�. We used 358 

the velocity command model (Sober & Sabes 2003; Burns & Blohm 2010) to 359 

transform the desired movement vector to the required motor command: 360 

�3 � 4�5�4�-�5�1� (where 4�5� and 4�-�5� have the same form as equation (16) 361 

and (17) in Burns and Blohm 2010). 362 

At the final step the movement direction is calculated by transforming the 363 

movement command from Euclidean coordinates to polar coordinates using the 364 

following equations: 365 

! � 6� � 7   (15) 366 

2�89 � �

/
  (16) 367 
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 368 

Generating quantitative model predictions 369 

In order to generate our model predictions we used a Monte Carlo 370 

approach (Binder & Heermann, 2002); we assumed that the sensory information 371 

(visual and proprioceptive information of initial hand position, visual/vestibular 372 

and proprioceptive information of head position) can be sampled from a 373 

Gaussian distribution with a specific mean and covariance matrix. Then, the RFT 374 

procedure is performed on each sample based on sampled head roll signals to 375 

obtain the distribution of the transformed signal. The movement direction was 376 

calculated for each sample and the final movement mean and variance were 377 

calculated based on this distribution. The model code is available on Github 378 

(https://github.com/Parisaabedi/NeckMuscleLoad ).  379 

Model parameters 380 

Based on average body physiology, upper arm and lower arm (including 381 

fist) lengths were set constant to L1 = 30 and L2 = 45 cm respectively. Shoulder 382 

location was assumed 30 cm backward from the target and 25 cm rightward of 383 

the target, the distance between eye and top of the head considered 13 cm, and 384 

the head length considered 28 cm (40 cm including the neck). IHPs and target 385 

positions were taken from the experimental data.  386 

There were seven free parameters in the model, i.e. the variance of both 387 

proprioceptive (�. ) joint angles and visual IHP (�� ) - we assumed that the two 388 

dimensions in both coordinates are independent with the same variability-, the 389 

visual/vestibular vs. neck muscle spindle contribution factor (C), the variance of 390 
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head angle estimation for head straight ( ��� ), a fixed reference frame 391 

transformation cost (��� ) , and a variable reference frame transformation cost 392 

(�!� ).  393 

As it is mentioned before, the �!�  is resulted from the variability in the 394 

head angle estimation; �"# . By substituting � �  $��
�

$��
�  in equation (7), we were 395 

able to extract the variance of neck muscle spindles (�'( ) and visual/vestibular 396 

(�!/! ).  Furthermore, we added an additional variance component to account for 397 

the added variability during performing the planned movement (�(!
 ). 398 

In order to estimate the model parameters we used a standard maximum 399 

likelihood procedure. We calculated the negative log-likelihood of the angular 400 

reach error data to fit on the proposed model given parameter set : as: 401 

,0�μ, � |7� � ��� �

 
ln�2?� � �

 
ln�� � � -

 1�
∑ �7� � μ� � � (17) 402 

Where (μ, � ) are the mean and variance driven from the model given the 403 

parameter set :, 8 is the number of data points and 7� is each data point from the 404 

experiment. It should be noted that (μ, � )  are calculated separately for each of 405 

the 360 experimental conditions: 8 visual targets * 5 IHPs * 3 head rolls * 3 neck 406 

loads. We then searched for the set of parameters which minimized the ,0 over 407 

the parameter space using ‘fmincon.m’ in MATLAB 2017. Table 1 provides the 408 

fitting values for different model parameters for individual participants along with 409 

confidence interval for each parameter. We added one additional parameter C, 410 

which indicate the contribution of neck muscle information compared to 411 

combined visual/vestibular information by dividing the first by the second.  412 
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 413 
Results 414 

Previous work (Burns & Blohm, 2010; Schlicht & Schrater, 2007; Sober & 415 

Sabes 2003) suggests human behavior is affected by stochastic RFTs. Burns 416 

and Blohm (2010) showed that rolling the head will increase the variability of 417 

reach movements and argued that could be due to the signal dependent noise in 418 

the sensed head angles: rolling the head increases the amplitude of the sensed 419 

head angle and the associated variability accordingly. Here, our goal was to 420 

investigate the sources of stochasticity in RFTs and the effect of such 421 

stochasticity on human reaching movements. To this aim, we asked human 422 

participants to perform reaching movements while their head was either straight 423 

or rolled toward each shoulder and a neck load of 0 or 1.8kg was applied to the 424 

right or left side in a 3×3 design. The experimental logic was that applying head 425 

roll and neck load will vary the sensed head angle and the associated noise due 426 

to signal-dependent noise. Since RFTs are based on these sensed angles, 427 

applying head roll / neck load increases the stochasticity of RFTs which 428 

modulates the multisensory integration weights and thus resulting in more 429 

variable and potentially biased reaching movements compared to the condition 430 

where the head is straight and no load is applied. 431 

General Observations 432 

A total of 51840 trials were collected, with 1529 trials being excluded due 433 

to either eye movements or predictive hand trajectories. We used directional 434 

reach errors to determine how participants weighted their visual information vs. 435 

proprioceptive information. Directional reach error (in angular degrees) was 436 
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computed by subtracting proprioceptive (visual) hand-target direction from overall 437 

movement direction (see Methods), where 0deg means no deviation from 438 

proprioceptive (visual) hand-target direction. By introducing the shift in the visual 439 

feedback of the initial hand position, a discrepancy between visual and 440 

proprioceptive information was created and as a result, we could determine how 441 

visual and proprioceptive information was weighted and integrated based on how 442 

participants responded to this discrepancy. 443 

  

To evaluate how humans weight visual and proprioceptive information, we 444 

compared reach errors for each hand offset condition. In order to calculate the 445 

reach errors, we can use either the visual hand-target direction (red line in  446 

 447 

 448 

 449 
 450 
 451 

Figure 1B) or the actual (proprioceptive) hand-target direction (green line 452 

in  453 

 454 

 455 

 456 
 457 
 458 

Figure 1B). We called the first one visual reach errors and the second one 459 

proprioceptive reach errors and used them for different sections of this 460 

manuscript in order to show the effects more clearly. The difference in reach 461 
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errors among different hand offsets indicates that both visual and proprioceptive 462 

information were used during reach planning. Figure 4 displays both 463 

proprioceptive and visual reach error curves across target directions for different 464 

initial hand position conditions for head straight and no load condition. 465 

 

Figure 4. Reach 
error curves. 
Reach errors are 
calculated for each target 
by subtracting the 
proprioceptive or visual 
hand-target direction 
from the performed reach 
movement. Solid colored 
lines are representing 
upward/rightward shifts. 
A,C) proprioceptive 
reach error curves: (A) 
reach errors for 
horizontal hand shift 
(green, stays the same in 
the rest of the 
manuscript) and (C) 
reach errors for vertical 
hand shift (blue, stays 
the same in the rest of 
the manuscript). B,D) 
visual reach error curves: 
(B) reach errors for 
horizontal shift and (D) 
reach errors for vertical 
shifts. 

 

To quantify these weights, we fitted a previously proposed model (Sober & 466 

Sabes 2003) to the normalized data. The data was normalized by subtracting the 467 

0 hand offset from the other hand offsets. The model by Sober and Sabes (2003) 468 

fits our data well (Figure 5, R-squared for pooled data across all participants was 469 

equal to 0.91 and 0.93 respectively for the right and left panels) and confirms that 470 

the participants used both visual and proprioceptive information to plan their 471 
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reach movement. Based on this close fit of our data to the model, we can now 472 

use this model in a first step to investigate how head roll and neck load affects 473 

the weighting of vision and proprioceptive information about the hand.  474 

 
 

Figure 5. Sober 
and Sabes 
2005 model fit 
on the data. The 

reach error curves 
are normalized to 
zero by subtracting 
the 0 hand offset from 
the other hand 
offsets.  

 475 

Head Roll effect 476 

Participants performed the reach-out movements for different head roll 477 

conditions: 30deg counter clock wise (CCW), 0deg, and 30deg clock wise (CW) 478 

head roll. In the first step we examined if the same effect reported by Burns and 479 

Blohm (2010) could be reproduced. As the author explained changing the head 480 

roll had two different effects on the reach error trajectories. First, the reach error 481 

curves shifted up/down -ward and second the variability of reach errors increased 482 

for the tilted head conditions compared to the head upright condition.  483 
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Figure 6. Effect of varying head roll on reach movement behavior. A) Reach 484 
error curves (solid line for IHP shifts to right and dotted line for IHP shifts to left) shifted upward for CW head 485 
roll and downward for CCW head roll compared to the head upright condition (n-way ANOVA, F(2,98) = 486 
11.85, p < 0.01). B) The movement variability increased significantly for rolled head conditions compared to 487 
the head upright condition (paired t-test, p < 0.01). C) Visual weights derived by fitting the Sober and Sabes 488 
(2003) model on the data. We didn’t find any significant change in visual weights in visual coordinate for 489 
different head roll conditions, while the visual weights significantly decreased in proprioceptive coordinates. 490 
Significance was tested using paired t-test (P < 0.05 is considered as a significant difference). 491 

Figure 6 depicts the effect of changing HR on both reach errors and 492 

movement variability. As it can be seen, there are both a bias effect and an 493 

increased variability effect for altering the head orientation compared to head 494 

straight. The n-way ANOVA with factors HR, target directions, and participants 495 

showed a significant main effect for altering head orientation,  F(2,98) = 11.85, p 496 

< 0.01; and significant interaction between reaching to different targets and 497 

different HR conditions, F(14,98) = 5.59, p < 0.01; which shows that the effect of 498 

altering HR is different for different target directions. Bonferroni-corrected post-499 

hoc analyses indicated that the bias effect was significant among all the HR 500 

conditions. Regarding movement variability, we performed a paired t-test across 501 

all participants for each HR condition vs. no HR condition: The increase in 502 

standard deviation due to the rolled head is significant for both sides, HR = 503 

30deg CW vs. HR = 0: t(8) = -3.6133, p < 0.01; HR = 30deg CCW vs. HR = 0: 504 

t(8) = -5.6011, p < 0.01. These results are consistent with the results reported by 505 

Burns and Blohm (2010). 506 

We also used the Sober and Sabes (2003) model to extract the weights 507 

for different conditions. There, the visual and proprioceptive weights were the two 508 

free parameters of the model (Sober & Sabes, 2003) which is used to estimate 509 

the hand position, by integrating visual and proprioceptive information, in two 510 

different stages: visual weight in the movement planning stage and 511 
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proprioceptive weight in the motor command generating stage. Therefore, the 512 

weights can be extracted after fitting the model on the data. As it is depicted in 513 

Figure 6, the visual weights in visual coordinates did not change very much by 514 

varying head roll, however, the visual weight in proprioceptive coordinate 515 

decreased for rolled head conditions. This is consistent with our hypothesis that 516 

higher noise in RFTs results in lower reliability of transformed signals which leads 517 

to higher weights for proprioceptive information in the proprioceptive coordinates 518 

compared to the head straight condition.  519 

 520 

Neck Load effect 521 

In addition to altering the head roll a neck load (rightward, no load, or 522 

leftward) was applied. We assumed that if the neck load was not taken into 523 

account, there should be no difference in the reach errors between the neck load 524 

conditions and no load condition. Alternatively, if the neck load was taken into 525 

account in estimating head roll, then we expected to observe similar effects as 526 

during head roll; up/down -ward shifts in reach error curves and increased 527 

movement variability. This is because loading the neck while the head is upright 528 

would create a discrepancy between the neck muscle spindle information and the 529 

combined visual/proprioceptive information. In addition, due to signal dependent 530 

noise, the neck muscle information should become less reliable when the neck is 531 

loaded compared to the no load condition. Consequently, the sensed head angle 532 

estimated by integrating neck muscle and visual/vestibular signal should be 533 
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biased toward the neck load and have more variability resulting in biased and 534 

more variable movements. 535 

As it can be seen in Figure 7(A), applying the neck load created an 536 

up/down -ward shift of the reach movement error curves. An n-way ANOVA with 537 

factors NL, target location, and participants revealed a significant main effect for 538 

different NL, F(2,98) = 6.12, p < 0.01. Bonferroni-corrected post-hoc analyses 539 

indicated that the bias effect was significant among all the NL conditions. The 540 

interaction between targets and different NL was not significant, F(14,98) = 1.06, 541 

p = 0.402, which means that the effect of varying NL on reach movement was 542 

independent of different target directions.  543 

 
Figure 7. Effect of applying neck load on reach movement behavior. A) Reach error curves (solid line 
for IHP shifts to right and dotted line for IHP shifts to left) are shifted upward for applying neck load on the 
right (n-way ANOVA, F(2,98) = 6.12, p < 0.01). The shift in reach error curves for applying neck load on left 
is not statistically significant. B) The movement variability is increased significantly for applying the load on 
the left compared to the no load condition (paired t-test, t(8) = 2.7552, p = 0.0283). C) The visual weights 
derived by fitting the Sober and Sabes (2003) model on the data. We only observed a significant change in 
visual weight in proprioceptive coordinate due to applying neck load on the left side. Significance was tested 
using paired t-test (P<0.05 is considered as a significant difference).  

Figure 7(B) represents the variability of reach errors in the no load 544 

condition vs. neck loaded conditions. As the figure demonstrates, the variability 545 

of reach errors is higher for applying the load compared to no load condition. We 546 

performed paired t-tests between all three different conditions across all eight 547 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/182907doi: bioRxiv preprint 

https://doi.org/10.1101/182907


 

 28

participants. Movement variability was significantly higher for applying the load 548 

on the left side compared to no load condition t(8) = 2.7552, p = 0.0283. The 549 

paired t-tests revealed no significance difference among other conditions.  550 

 551 

Comparison 552 

So far, we showed that there are both biases and increased movement 553 

variability effects for either applying NL or HR. In the next step, we compared the 554 

variability of reach movements in the NL conditions vs. HR conditions. Based on 555 

stochasticity in RFTs we expected to have higher variability for higher amplitudes 556 

of head angle during different experimental conditions. For example, we 557 

predicted to have higher movement variability for applying only HR compare to 558 

applying only NL or have the highest variability for conditions in which both HR 559 

and NL are applied in the same direction.  560 

 

Figure 8. Effect of different 
experimental conditions on reaching 
movement variability. Head upright 
and no load condition (considered as 
the control condition) and the 
combined HR/NL conditions are sorted 
based on the expected increase in the 
variability based on the signal-
dependent noise hypothesis right and 
left of the control condition. Rolling the 
head consistently increased the 
variability compared to the control 
condition. Significance was tested 
using paired t-test (P<0.05 is 
considered as a significant difference). 

Based on Figure 8 the variability in HR conditions is higher than in NL 561 

conditions. We first ran paired t-tests between each condition separately and the 562 
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significant statistical differences are shown in the Figure 8. Applying the load on 563 

the left side increased the variability compared to the control condition. Then, we 564 

performed paired t-test between combined similar conditions: for example both 565 

head upright and neck load on either side are combined and created the overall 566 

NL condition. The paired t-test between HR condition and NL condition showed a 567 

significant difference, t(8) = 2.7444, p = 0.0287; the difference between HR 568 

condition and control condition was significant as well, t(8) = 2.7444, p = 0.0020 ; 569 

however the difference between the control and NL conditions was not 570 

significant.  Together all of the above observations provide evidence for the 571 

existence of signal dependent noise in the head angle estimation and 572 

consequently the RFTs processes. However, it is not clear how such stochastic 573 

RFTs affect the reaching movement. First, contrary to the initial hypothesis no 574 

modulation of variability was observed by varying NL while the head was rolled 575 

CW/CCW. In addition, in all the conditions we observed larger effects when 576 

rolling the head on reach errors for targets away from body (45-135 degree) 577 

compared to the targets toward the body (215-315 degree). Both previous 578 

models (Sober & Sabes 2003 and Burns & Blohm 2010) fail to explain the 579 

previousely mentioned effects. Based on both previous models, there shouldn’t 580 

be any difference in biases effect due to head roll condition and they predict a 581 

constant up/down –ward shift in the reaching error curves. We propose that 582 

these effects can be explained by a Bayesian framework which performs 583 

geometrically accurate RFTs.  584 

 585 
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 586 

Modeling the stochastic reference frame transformations 587 

The above analyses demonstrate that RFTs should be considered as 588 

stochastic process. Therefore, to understand the effect of such stochastic RFTs 589 

on reach planning we developed a Bayesian model of multi-sensory integration 590 

for reach planning and explicitly included the RFTs. 591 

Error! Reference source not found. Figure 3 depicts the schematic of 592 

our proposed model. The working principles of our model are similar to previous 593 

ones (Sober & Sabes, 2003; Burns & Blohm, 2010) with the addition of an explicit 594 

head orientation estimator (Figure 9, blue box). In summary, our model 595 

calculates the required reach movement through first calculating the movement 596 

vector in visual coordinates, by comparing estimated initial hand position and 597 

target position, and then generates the movement commands by transforming 598 

the movement vector from visual coordinates to proprioceptive coordinates.  599 

We added several crucial features to the proposed model compared to the 600 

previous models (Sober & Sabes 2003, 2005; Burns & Blohm 2010). First, we 601 

explicitly included the RFTs. The RFTs processes transforms information 602 

between different coordinates considering the full body geometry; head 603 

orientation, eye orientation, head-eye translation, and head-shoulder translation. 604 

In addition, to perform the required transformations, we included a head angle 605 

estimator. The head angle estimator combines muscle spindle information and 606 

visual/vestibular information in a statistically optimal manner. Similar to Burns 607 

and Blohm (2010), we modeled both mean behavior and the associated 608 
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variability for each source of information; vision, proprioceptive, vestibular, and 609 

muscle spindles. To examine the effect of noisy transformations on the 610 

visual/proprioceptive information, we deployed Monte Carlo simulations. This 611 

method gave us the opportunity to explicitly study the effect of RFTs on the 612 

covariance matrices and consequently the MSI weights. 613 

 614 

Model fit 615 

In the following section we first provide the fitting results for a sample 616 

participant (#6) and then evaluate the fitting results across all nine participants. 617 

Figure 9 provides the fitting vs. data for participant # 6. Figure 9 (A and B) 618 

depicts model fitting for all different initial hand positions for different head rolls 619 

while no neck load was applied. As it can be seen, our model is able to 620 

accurately capture the reach errors for different IHP and HR conditions. Figure 621 

9C provides the model prediction for changes in variance for different conditions. 622 

Error bars were derived using bootstrapping with N=1000. Since the results for 623 

horizontal and vertical hand shifts are very similar, for all the other conditions we 624 

only provided the results for the horizontal initial hand shifts. Figure 9D-F depicts 625 

the fitting for varying the NL for different Head angles; 0°, ±30°.  626 
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 627 
Figure 9. Model fit for a sample participant (#6). Model fit on the reach error curves for 628 
different IHPs and HR/NL conditions. A-B) model fit on the reach error curves for varying head orientation 629 
without applying neck load: A) solid line represents results for IHP shifts to the right and dotted line 630 
represents results for IHP shifts to the left, B) solid line represents results for IHP shifts to the up and dotted 631 
line represents results for IHP shifts to the down. C) model fit on the changes in movement variability due to 632 
varying HR and NL conditions. D-F) Model fit on reach errors for varying NL for different HR conditions. Only 633 
data for horizontal shifts are presented. The results for vertical hand shifts are similar. 634 

After demonstrating that our model was capable of predicting the reach 635 

error behavior for a single participant, Table 1 summarizes the fitting results for 636 

all the participants. The most interesting finding here is the relatively higher 637 

contribution of visual/vestibular signal compared to neck muscle spindle (C≈26). 638 

This is was consistent across all the subjects. We also observed very high 639 

movement variability across our participants.  640 

 641 

Table 1. Model parameter fits  642 

Participants  (rad2)  (mm2)  (mm2) (deg2) (deg2) (deg2) C  (mm

S1 4.69*10-4 13.50 56.68 3.04*10-2 7.89*10-1 5.66 25.92 100.87 
S2 4.86*10-4 21.59 56.10 1.49*10-1 3.87 5.61 25.76 48.53 
S3 4.86*10-4 16.50 56.72 1.54*10-1 4.00 5.79 26.00 49.00 
S4 3.11*10-4 9.01 32.71 2.36*10-1 5.92 4.97 25.13 11.56 
S5 2.45*10-4 15.00 26.86 1.08*10-1 2.81 5.00 25.98 95.75 
S6 4.81*10-4 15.03 38.78 1.23*10-1 3.20 5.77 26.00 37.97 
S7 4.84*10-4 20.97 38.81 3.07*10-1 7.97 5.80 25.91 26.99 
S8 2.87*10-4 16.09 38.44 1.18*10-1 3.08 5.80 26.00 41.32 
S9 3.20*10-4 18.99 38.58 2.97*10-1 7.68 5.74 25.89 26.98 
95% CI [3.13, 

4.80] *10-4 
[13.12, 
19.47] 

[33.57, 
51.69] 

[0.94, 
2.44] *10-1 

[2.44, 
6.30] 

[5.30, 
5.85] 

[25.61, 
26.07] 

[23.93, 
73.62] 

 643 

m2) 
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Figure 10 provides the model prediction vs. data for both reach errors and 644 

variances for different experimental conditions. Different participants are 645 

differentiated by different colors. We used several different analyses to evaluate 646 

the goodness of our model fit. First, we calculated r-squared value for each 647 

individual participants and the pool of all the participants: [54, 61, 56, 75, 50, 60, 648 

66, 71, 71, and 94] for S1-S9 and the pool of data respectively. Secondly, since 649 

the variance data was very noisy, we grouped them in bins and calculated the 650 

confidence interval for each predicted variance using the following equation (J. S. 651 

Williams, 1962): 652 

2��-3.��

5�/�
� @ � @ 2��-3.��

5	
�/�
�  (18) 653 

In which �  is the population variance, '  is the sample variance, 8 is the 654 

sample size, and A6/ 
  is chi-square distribution. Since we wanted to find the 95% 655 

confidence interval, we set 0 � 0.05. The boxed colored area in Figure 11(B, C) 656 

is the calculated confidence interval for the variances. Based on this analysis, we 657 

could see that our model provides a decent fit on the data.  658 

Finally, we examined if our residual has a random pattern by examining 659 

the normality of our model residual using normal probability plot, plotted using 660 

MATLAB 2016 ‘normplot.m’. Figure 11 provides the normal probability plot of our 661 

fitting for all nine participants. As it is depicted, residual values for all the 662 

participants approximately have a normal distribution which implicates that our 663 

model captures all the features in the data. More details of how our model 664 

explains the data can be found in supplementary materials.  665 
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 666 

Figure 10. Model predication vs. observed data for each individual 667 
participant. Data for each individual participant was fitted to our model. Each color represents an 668 
individual participant. A) The model prediction vs. observed data for reach errors. B) The model prediction 669 
vs. observed data for reach variability. C) Same data as in section B grouped into bins of 0.25 deg2 (mean 670 
and standard error). The gray box represents the confidence interval for predicted variances based on our 671 
model. 672 

 

Figure 11. Residual analysis: 
normal probability plot. The 

probability plot is depicted for each 
participant, different colors. As it can be 
seen the residuals of our model fit compared 
to the participants’ data has almost a normal 
distribution for all the participants. 

 673 

Discussion 674 

We assessed the effect of neck muscle spindle noise on multi-sensory 675 

integration during a reaching task and found that applying neck load biased head 676 

angle estimation across all head roll angles resulting in systematic shifts in reach 677 

errors. We also examined the effect of head roll on reach errors and observed 678 
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both an increase in movement variability and biases in reaching errors; similar to 679 

Burns & Blohm (2010). To quantitatively examine the effect of noise on reaching 680 

movements, we developed a novel 3D stochastic model of multisensory 681 

integration across reference frames. The effect of neck muscle spindle noise and 682 

head roll could be explained by a misestimation of head orientation and signal-683 

dependent noise in the RFTs between visual and proprioceptive coordinates. The 684 

model was able to successfully reproduce the reaching patterns observed in the 685 

data providing evidence that the brain has online knowledge of full body 686 

geometry as well as the reliability associated with each signal and uses this 687 

information to plan the reach movement in a statistically optimal manner.  688 

 689 

Model discussion 690 

In our model, the multisensory integration process occurs in specific 691 

reference frames; i.e. in visual and proprioceptive coordinates. Therefore, signals 692 

should be transformed into the appropriate coordinate frame before integration 693 

which is done by a series of coordinate rotations and translations. However, we 694 

do not claim that the brain performs these computations in the same explicit 695 

serial way. Alternatively, neurons could directly combine different signals across 696 

reference frames (Abedi Khoozani et al., 2016; Blohm et al., 2009; Ma et al. 697 

2006; Beck et al., 2011), e.g. by gain modulation mechanisms. Regardless of the 698 

mechanism used, we expect very similar behavioral outcomes.  699 

In addition, we assumed that all the distributions remain Gaussian after 700 

performing RFT processes to simplify the required Bayesian computations. 701 
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However, in general, this is not necessarily correct. For example, it has been 702 

shown that noisy transformations can dramatically change the distribution of 703 

transformed signals (Alikhanian et al., 2015). Since the noise in our RFTs was 704 

small enough, the deviations from a Gaussian distribution are negligible and this 705 

approximation did not affect our model behavior dramatically. It would be 706 

interesting, though, to examine how considering the actual distribution and 707 

performing the basic Bayesian statistics (Press, 1989) will change the model 708 

behavior. 709 

 710 

Interpretation of observations 711 

We suggest that neck load biased head angle estimation across all head 712 

roll angles, which resulted in systematic biases in reach error curves. Our model 713 

accounted for these shifts by assuming that neck load biases the head angle 714 

estimation toward the direction of the load. How our brain estimates the head 715 

orientation has previously been investigated. The vestibular system and 716 

especially otolith system is very important for estimating the static head 717 

orientation relative to gravitational axes (Fernandez et al., 1972; Sadeghi et al., 718 

2007). Vingerhoets et al. (2009) demonstrated that tilted visual and vestibular 719 

cues bias the perception of visual verticality. The author showed that a Bayesian 720 

model that integrates visual and vestibular cues can capture the observed biases 721 

in verticality perception. Furthermore, muscle spindles play an important role in 722 

determining joint position sense (Goodwin et al., 1972; Scott & Loeb, 1994) 723 

compared to the other sources; e.g. tendons or cutaneous receptors (Gandevia 724 
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et al., 1992 and Jones, 1994). Armstrong et al.  (2008) showed that the muscles 725 

in the cervical section of the spine have a high density of muscle spindles 726 

providing an accurate representation of head position relative to the body. 727 

Therefore, head angle can be estimated from a combination of visual, vestibular 728 

and neck muscle spindle information. 729 

We included multisensory integration of visual/vestibular, and neck muscle 730 

spindle signals in our model. Since we only modulated neck muscle information, 731 

we assumed that a combination of visual/vestibular signals is integrated with 732 

neck muscle spindle information.  We were able to retrieve the relative 733 

contribution of visual/vestibular information vs. neck muscle spindle information 734 

by fitting our model to the data. We found that the contribution of neck muscle 735 

spindle information was very low (in the order of 5%) compared to 736 

visual/vestibular information.  737 

There could be several possible explanations for observing a relatively low 738 

contribution of the neck muscle information. First, we selected the amount of the 739 

neck load in a way to apply force comparable to 30deg head tilt. However, due to 740 

the complex organization of neck muscles (Armstrong et al., 2008) we couldn’t 741 

directly measure the changes in muscles’ activity. Therefore, to accurately 742 

measure the effect of applying load on neck muscle spindle information, a 743 

detailed model of neck muscle organization would be required. Moreover, usually 744 

neck muscle information agrees with the skin receptor (i.e. Cutaneous receptor) 745 

information. In our task, however, the neck muscle information and Cutaneous 746 
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receptor information are in conflict, which might be a potential reason for down-747 

weighting neck proprioceptive information (Körding et al. 2007).  748 

Unexpectedly, we observed that applying head roll creates larger reaching 749 

movement biases for visual targets away from the body compared to visual 750 

targets toward the body. This pattern can be captured by including the full body 751 

geometry in the RFT processes in our model. Previously, Blohm and Crawford 752 

(2007) showed that in order to accurately plan a reaching movement to visual 753 

targets, the full body geometry (both rotations and translations) has to be taken 754 

into account by the brain. Based on our model, the displacement of centers of 755 

rotation between head- and eye-centered coordinate spaces caused this 756 

asymmetry in the reaching movements.  757 

In addition to biases, we observed that reaching movements were more 758 

variable in the straight head with neck load conditions compared to the straight 759 

head and no load condition. We considered this as evidence for neck load 760 

affecting RFTs; we assumed that the neck muscle spindles have signal-761 

dependent noise (Scott & Loeb, 1994). Therefore, applying the neck load 762 

increases the noise in the neck muscle spindle information and consequently the 763 

sensed head orientation. This noisier sensed head angle resulted in noisier RFTs 764 

and accordingly more variable reach movements.  765 

Surprisingly, we observed an asymmetry in the amount of variability 766 

increase by applying neck load on the right vs. left side when the head was 767 

upright. One explanation could be that since all participants were right-handed, 768 

they were more sensitive to the changes on the left side. Several imaging studies 769 
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demonstrated that right-handed people have bigger left hemispheres with more 770 

neural resources associated to the right-side of the body (Bauermeister, 1987; 771 

Linkenauger et al., 2009; Linkenauger et al., 2012). Bauermeister (1987) tested 772 

the effect of handedness on perceiving verticality and showed that right-handed 773 

participants are more responsive to the right sided stimulus than to the left sided 774 

stimulus.  775 

Since head roll with no neck load caused higher increase in movement 776 

variability compared to applying neck load while the head was upright, we 777 

expected to see a systematic modulation of movement variability by applying 778 

neck load while the head was tilted. Specifically, we expected to observe the 779 

highest amount of movement variability when the neck load and head roll were 780 

applied on the same side; e.g. 30deg CW head roll and right side neck load. The 781 

logic is that when both head roll and neck load are applied in the same direction, 782 

the neck muscle signal indicates the highest angle and due to signal dependent 783 

noise the associated variability of head angle estimations has the highest value. 784 

However, applying the load on the same side as the tilted head did not increase 785 

the movement variability significantly compared to only tilting the head.  786 

A possible explanation for the lower effect of applying load on the same 787 

side of titled head can be relatively low contribution of neck muscle spindle 788 

information vs. visual/vestibular information during head angle estimation, 789 

provided by our model. The remarkable observation is that even though the 790 

contribution of neck muscle information is low, applying neck load still has a 791 

tangible effect on reaching movements for all head roll conditions, observed both 792 
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in our data and model predictions. Another explanation is that the brain might not 793 

integrate the visual/vestibular information in this condition due to the big 794 

discrepancy between neck muscle information and visual/vestibular information 795 

(due to lack of causality; Kording et al. 2007). In our experimental design we 796 

selected the neck load value to simulate the same force as when the head is 797 

titled 30deg (head weight*sin(60deg) = 0.5*head weight). Consequently, when 798 

the head is tilted 30deg CW and the load is applied on the right side the total 799 

force on the neck muscle can be calculated as: 0.5*head weight (head 800 

tilt)+0.5*head weight (head load) = full head weight; this force is stimulating the 801 

neck muscle as if the head was tilted 90deg, which is very unlikely. Therefore, 802 

the brain might ignore the neck muscle spindle information fully.  803 

We interpreted the observed increase in movement variability as an 804 

indication of signal dependent noise in the RFT process. However, an alternative 805 

hypothesis to the signal dependent noise is uncommon posture (Körding & 806 

Sabes 2011). According to the uncommon posture hypothesis, we might have 807 

more neuronal resources allocated to the head straight posture since we perform 808 

most of our movements with the head straight. As a result, rolling the head 809 

creates higher uncertainty due to uncommon posture independent of signal 810 

dependent noise. Even though this argument might be valid for head roll, it 811 

cannot explain the increased movement variability due to applying neck load. In 812 

other words, applying neck load while the body posture was kept unchanged still 813 

increased the movement variability which is in contrary to the uncommon posture 814 

hypothesis.  815 
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We observed that changing head roll and/or applying neck load modulated 816 

multisensory weights in both visual and proprioceptual coordinates. We validated 817 

this finding by both fitting Sober and Sabes’ (2003) model and our new full 818 

Bayesian RFTs model to the data. We found that increasing the noise in the 819 

sensed head angle estimation decreased the reliability of transformed signals, 820 

which we hypothesized is the result of the stochastic RFTs, and consequently 821 

lowered weights for transformed signals in the multisensory integration process. 822 

Therefore, we conclude that both body geometry and signal-dependent noise 823 

influence multi-sensory integration weights through stochastic RFTs. 824 

We demonstrated that head position estimation plays a vital role in RFT 825 

processes required for reach movements. Previous studies showed that non-826 

visual information of head position in space, i.e. from the neck muscle spindles 827 

(Proske & Gandevia, 2012) and from the vestibular system (Angelaki & Cullen 828 

2008; Cullen 2012), decline over time providing better information about the 829 

relative changes in head position than about the absolute position. This behavior 830 

is explained based on proprioceptive drift; afferent discharges decline over time 831 

(Tsay et al., 2014) resulting in imprecise absolute estimation of the head position. 832 

We evaluated the temporal evolution of head angle estimation and its possible 833 

effect on reaching movements by dividing each block of our experiment into 4 834 

bins (data not shown); however we found no changes in movement biases or 835 

variability. Therefore, we believe that our experiment design and timing was not 836 

appropriate to investigate changes of head angle estimation over time on 837 
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reaching behaviour. This question, however, is an intriguing question and should 838 

be investigated in future experiments.  839 

 840 

Implications 841 

 Our findings have implications for behavioral, perceptual, 842 

electrophysiology, and modeling studies. First, we have demonstrated that both 843 

body geometry and stochasticity in RFTs modulate multisensory integration 844 

weights. It is possible that other contextual variables such as attention or prior 845 

knowledge also modulate multisensory weights and will subsequently affect both 846 

perception and action. In addition, we have shown that such modulations in 847 

multisensory weights can create asymmetrical biases in reach movements. Such 848 

unexpected biases may be prevalent in behavioral data obtained during 849 

visuomotor experiments in which participants perform the task in a robotic setup 850 

while their body is in various geometries, e.g. tilted head forward or elevated 851 

elbow. Therefore, it is important to consider that forcing specific body 852 

configurations can create unpredicted effects that are important for interpreting 853 

the behavioral data.     854 

 Our findings also suggest that the brain must have online knowledge of 855 

the statistical properties of the signals involved in multisensory integration. This 856 

could be achieved by population codes in the brain (Ma et al., 2009), which 857 

agrees with the current dominant view that the brain performs the required 858 

computations through probabilistic inferences (Pitkow & Angelaki, 2017). 859 

Alternatively, multisensory weights and the change of weights with contextual 860 
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parameters could be learned (Mikula et al., 2018). Learned weights could be 861 

specially advantageous when it is difficult to estimate sensory reliability. 862 

Computational models that include required latent variables are crucial to 863 

understand the required computations. An important benefit of such models is 864 

that they can be used to generate training sets for neural networks in order to 865 

investigate potential neural mechanisms underlying probabilistic inference. Such 866 

studies will motivate appropriate electrophysiology experiments to validate/refute 867 

predications of related models. 868 

  869 
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Supplementary materials 1099 
 1100 

In this section we provide more details of how our model performs RFTs 1101 

on different sensory signals (modeled as Gaussian distributions). In the 1102 

manuscript, we demonstrated that the proposed model was able to replicate our 1103 

behavioral data pattern (Figure 9). In this section, we use the model to provide a 1104 

mechanistic explanation of the observed reach movement patterns.  1105 

Sober and Sabes (2003) demonstrated that reaching errors caused by 1106 

dissociating visual and proprioceptive information can be explained by two 1107 

components: MV error that is the error at the vector planning stage and INV error 1108 

which is the error at the motor command generation stage. They showed that 1109 

adding these two reaching errors leads to the error pattern observed in human 1110 

participants. Furthermore, Burns and Blohm (2010) demonstrated that the 1111 

observed up- and downward shifts in reaching error curves can be explained by 1112 

RFTs; any misestimation in the sensed head angle results in an erroneous 1113 

rotation of movement vector which results in up- and downward shifts in reach 1114 

error curves.  The logic is the same in our model for explaining the observed 1115 

biases in reach error curves for the head roll condition. Similarly, the up/down -1116 

ward shifts in reach error curves for the neck load condition can be explained by 1117 

erroneous RFTs; applying a neck load biases the head angle, which leads to an 1118 

erroneous rotation of the movement vector, resulting in shifts of error curves.  1119 

Applying a neck load enabled us to evaluate the contribution of neck 1120 

muscle spindle information to head angle estimation. To achieve this we included 1121 

a Bayesian head angle estimator in our model in which the visual/vestibular and 1122 
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neck muscle spindle information are integrated to estimate the head angle. 1123 

Applying a neck load biases the neck muscle spindle information toward the 1124 

direction of the load and consequently biases the head angle estimation 1125 

(equations 7 and 8). This bias in estimated head angle depends on two 1126 

parameters: 1) relative neck muscle reliability compared to visual/vestibular 1127 

reliability and 2) overall head angle estimation variability (similar to the variable 1128 

RFTs variance in Burns and Blohm’s (2010) model)Error! Reference source 1129 

not found.. 1130 

As explained before, in our model we estimate the head angle by 1131 

integrating visual/vestibular information with neck muscle information. As a result, 1132 

the overall sensed head angle variability depends on the variability of each of 1133 

aforementioned information. Consider the situation in which overall head angle 1134 

estimation variability is low (Error! Reference source not found. Figure S1 A-1135 

B). Low variability for head angle estimation resulted from high reliability for both 1136 

visual/vestibular and neck muscle spindle information. Similarly, high variability of 1137 

head angle estimation resulted from low reliability of both visual/vestibular and 1138 

neck muscle spindle information and consequently applying neck load creates 1139 

smaller biases (Error! Reference source not found. Figure S1 C-D). We expect 1140 

that applying a neck load will create higher shifts in reach error curves for when 1141 

the reliability of sensed head angle is high compared to when the reliability of 1142 

sensed head angle is low, regardless of their relative contribution (compare 1143 

Figure S1A vs. Figure S1D and Figure S1B vs. Figure S1C).  1144 
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In addition, the amount of shifts in reach error curves depends on the 1145 

relative reliability of neck muscle spindle information vs. visual/vestibular 1146 

information. When the relative reliability of neck muscle information is high, the 1147 

bias in reach error curves is higher compared to when its reliability is low (Figure 1148 

S1Error! Reference source not found.B vs. Figure S1C). In our data, we 1149 

observed high variability for head angle estimation as well as relatively higher 1150 

contribution of visual/vestibular information compared to neck muscle spindle 1151 

information ( ); Figure S1Error! Reference source not found.C. 1152 

 1153 
Figure S1. Effect of varying the reliability of neck muscle spindle signals 1154 
vs. visual/vestibular signals. Head angle is estimated by combining the neck muscle spindle 1155 
information with combined visual and vestibular information using the Bayesian method, therefore, the effect 1156 
of applying neck load depends on two factors: 1) absolute variability of head angle estimation and 2) relative 1157 
reliability of neck muscle spindle information compared to visual/vestibular information. A-B) lower absolute 1158 
value for head angle estimation variability: this lower variability results from the high reliability of both 1159 
visual/vestibular and neck muscle information. Therefore, the up/down -ward shifts induced due to applying 1160 
neck load is higher compared with when the head angle estimation variability is high (panel C and D). In 1161 
addition to the absolute head angle estimation variability, the relative reliability of neck muscle spindle vs. 1162 
visual/vestibular information impacts how much applying neck load biases the reaching movement: A, C) the 1163 
lower the reliability of neck muscle spindle information vs. visual/vestibular information, the lower the 1164 
up/down ward shifts in reaching error curves, B, D) increasing the relative reliability of neck muscle 1165 
information increases the up/down ward shifts in reaching errors by applying neck load.. 1166 

As mentioned before, at the heart of our RFT process there is a head angle 1167 

estimator which enabled us to retrieve the sensed head angle based on the 1168 
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reach error patterns. Figure S2 demonstrates the biases in head angle estimation 1169 

for all the experimental conditions. As can be seen, applying neck load biased 1170 

the head angle estimation toward the applied neck load for all head angles. We 1171 

performed t-test analysis and observed that all the changes in head angle 1172 

estimation due to applying neck load are significant -11 < t(8) < 12, p < 0.001.  1173 

 1174 
FigureS2. Biases in head angle estimation due to different head roll and 1175 
neck load conditions. Applying neck load biased the head angle estimation toward the applied load 1176 
for all head angles. Error bars are standard deviations. 1177 

In addition to up/down –ward shifts in reach error curves by applying neck load 1178 

and head roll, we observed a very surprising pattern in our data: both head roll 1179 

and neck load created greater biases in reaching movements when reaching to 1180 

targets away from the body (45-135 deg) compared to reaching to targets toward 1181 

the body (215-315 deg). This observation was surprising and to our knowledge 1182 

none of the previous models (Sober & Sabes 2003 and Burns & Blohm 2010) 1183 

could predict/explain this pattern.  1184 

At this point it should come as no surprise that our model explains the difference 1185 

in head roll/neck load effect for different targets by stochastic RFTs processes. 1186 

Blohm and Crawford (2007) demonstrated that the brain considers the full 3D 1187 

body geometry to accurately plan reach movements. As mentioned in the model 1188 
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description, we included the 3D body geometry in our RFTs procedure: RFT 1189 

processes are carried out by sequential rotations/translations between different 1190 

coordinates centered on different body sections. Figure S3A demonstrates 1191 

different coordinates that have been considered in our model in relation to each 1192 

other. Including the 3D body geometry resulted in a displacement in the center of 1193 

rotation between different coordinates and specifically in our experiment between 1194 

gaze-centered and head-centered coordinates. This displacement of the center 1195 

of rotation caused greater biases in reaching movements for visual targets further 1196 

away from vs. closer to the body (Figure S3A). Figure S3B provides a detailed 1197 

example of how the difference in the center of rotation results in an asymmetry in 1198 

the movement biases induced by head roll/neck load. The first block in Figure 1199 

S3B shows the actual scene in front of the participants with two targets at 90deg 1200 

and 270deg. In our experiment the participants fixated their eyes on the cross 1201 

and this cross was indicated as their visual information of the initial hand position 1202 

as well. In this example, the hand was shifted 25cm horizontally to the right. The 1203 

dotted arrows show the visual movement vector toward the targets. Box #1 1204 

demonstrates the retinal representation of targets for head roll 30deg CCW. We 1205 

assumed that the torsion effect on retinal information was small and therefore 1206 

ignored it.  Since the head is rotated 30deg CCW, the retinal image on the back 1207 

of the head is rotated 30deg CW (actual head angle) and the center of this 1208 

rotation is the cross (gaze-position). In order to estimate the hand position, 1209 

proprioceptive information must be transformed to the retinal coordinates and at 1210 

the heart of this transformation is the head rotation based on the estimated head 1211 
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angle (Blue box in figure 3). In this specific example, we assumed that the head 1212 

angle is overestimated by 5deg and is estimated as 35deg. In addition, since the 1213 

centers of rotation for head-centered and gaze-centered coordinates are 1214 

different, the transformed hand position is no longer in symmetry with the rotation 1215 

in gaze-centered coordinates and displaced and biased toward the body. The 1216 

next two steps in our model are multisensory integration to estimate the hand 1217 

position and movement vector calculations (Box #2). As it has been shown by 1218 

Sober and Sabes (2003, 2005) any transformation adds noise and therefore, 1219 

visual information is more reliable in the retinal coordinates and the estimated 1220 

initial hand position is biased toward the visual initial hand position and the 1221 

movement vector is calculated by subtracting target position from this estimated 1222 

initial hand position. This movement vector, then, is transformed into shoulder-1223 

center coordinates to be executed, employing RFTs (Box #3). We compared the 1224 

transformed movement vector with the visual movement vector in Box #4 and as 1225 

it can be seen the misestimation in head angle created greater biases for target 1226 

away from the body (90deg) compared to the target toward the body (270deg).  1227 
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 1228 
Figure S3. RFT processes mechanism. A) Different coordinates in our RFT module. The 1229 
difference in the center of rotation between gaze-centered coordinate and head-centered coordinate 1230 
resulted in an asymmetry of transformed hand position for 30deg CW vs CCW head rolls. B) A detailed 1231 
example of the higher effect of stochastic RFTs on movement away from the body compared to movements 1232 
toward the body for head roll 30deg CCW: Actual scene: in our experiment, participants had fixated their 1233 
eyes on the center cross and the visual feedback of the hand indicated their hand on the center as well. The 1234 
actual hand position is shifted to the right in this example and it is occluded, Box#1: the retinal image of the 1235 
target is rotated 30 CW, we ignored the torsion effects on retinal projection. Proprioceptive hand position is 1236 
transformed using our RFT module (we assumed that head roll estimation is erroneous; 35deg), Box#2: 1237 
Initial hand position is estimated by combining visual information and transformed proprioceptive information 1238 
of the hand. Then, the movement vector is calculated by subtracting target position from the initial hand 1239 
position, Box#3: The calculated movement vector is transformed to the proprioceptive coordinate using the 1240 
RFTs module, Box#4: comparing the planned movement with the movement only considering visual 1241 
information. As it can be seen, the misestimation in head angle, created larger error for movement away 1242 
from body vs. movement toward the body. This happened due to the offset in the center of rotations 1243 
between different coordinates. 1244 

Determining how stochastic noise in RFTs modulates multi-sensory weights was 1245 

one of the goals of this experiment. In figures 6 and 7, we fitted Sober and 1246 

Sabes’ (2003) model to the data and demonstrated that both head roll and neck 1247 

load modulates multi-sensory integration weights. Similar to Burns and Blohm 1248 

(2010), we were able to retrieve multisensory integration weights from the 1249 

covariance matrices. As it has been demonstrated in figure S4, RFTs 1250 

dramatically change the distribution of the transformed signal and consequently 1251 
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the covariance matrix (Alikhanian et al., 2015). In order to account for such 1252 

variations, we calculated the determinant of the covariance matrix for calculating 1253 

the multi-sensory weights. Figure S4 shows visual weights in both visual (A) and 1254 

proprioceptive (B) coordinates. 1255 

 1256 
Figure S4. visual weights for multi-sensory integration. A) Visual weights in visual 1257 
coordinate: Visual weights increase in visual coordinate due to decreased reliability of proprioceptive 1258 
information caused by stochastic RFTs, B) Visual weights in proprioceptive coordinate: rolling the head 1259 
30deg CCW didn’t affect the visual weights while rolling the head 30deg CW decreased visual weights. The 1260 
reason for this asymmetry is the nonlinearity in the inverse kinematic process.  Error bars are standard error 1261 
of the mean. The significance was tested using paired t-test (P < 0.05 is considered as a significant 1262 
difference). 1263 

 1264 
Visual weights were lowest for head straight and no load condition in visual 1265 

coordinates and increased by rolling the head and/or applying neck load. Our 1266 

paired t-test showed that this increase was significant for all head roll and neck 1267 

load conditions (t(8) < -3, p < 0.05). More specifically, applying the neck load 1268 

increased the visual weights in visual coordinate while the head was upright (t(8) 1269 

< -3, p < 0.05) while it didn’t significantly change when the head wasn’t upright 1270 

and neck load was applied (t(8) < -1, p ≈ 0.2). Applying neck load or rolling the 1271 

head didn’t significantly changed visual weights in visual coordinates except for 1272 

when the head rolled 30deg CW (t(8) < -18, p < 0.001) or the neck load applied 1273 

to the left side (t(8) < 3, p < 0.05). Combination of head roll and neck load only 1274 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/182907doi: bioRxiv preprint 

https://doi.org/10.1101/182907


 

 57

modulated the visual weights when the head was rolled 30deg CW and neck load 1275 

applied to the either sides (|t(8)| < 4, p < 0.05). Therefore, our data and model 1276 

show that both noise in RFTs and the geometry of the body can influence multi-1277 

sensory integration in a way that is explained through changes in reliability of 1278 

transformed signal by stochastic and geometrically accurate RFT processes.  1279 
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