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Abstract 
Motivation: Use of various high-throughput screening techniques has resulted in an abundance 
of data, whose complete utility is limited by the tools available for processing and analysis. 
Machine learning holds great potential for deciphering these data in the context of cancer 
classification and biomarker identification. However, current machine learning tools require 
manual processing of raw data from various sequencing platforms, which is both tedious and 
time-consuming. The current classification tools lack flexibility in choosing the best feature 
selection algorithms from a range of algorithms and most importantly inability to compare 
various learning algorithms. 
 
Results: We developed CancerDiscover, an open-source software pipeline that allows users to 
efficiently and automatically integrate large high-throughput datasets, preprocess, normalize, and 
selects best performing features from multiple feature selection algorithms. The pipeline lets 
users apply various learning algorithms and generates multiple classification models and 
evaluation reports that distinguish cancer from normal samples, as well as different types and 
subtypes of cancer. 
 
Availability and Implementation: The open source pipeline is freely available for download at 
https://github.com/HelikarLab/CancerDiscover. 
Contact: thelikar2@unl.edu 
Supplementary Information: Please refer to the CancerDiscover README (Supplementary 
File 1) for detailed instructions on installation and operation of the pipeline. For a list of 
available feature selection methods, see Supplementary File 2. 
 
Introduction 
Classification of a tissue sample as cancer or normal and among different tissue types facilitates 
cancer treatment, and machine learning has the potential to improve such classification. High-
throughput techniques such as microarrays generate massive amounts of data. One of the 
challenges of performing cancer classification and biomarker identification tasks using gene 
expression data from various microarray platforms is to convert the data into machine learning 
framework readable format. Several machine learning methods and software tools have been 
developed to study cancer classification (Akay, 2009; Aliferis et al., 2002; Liu et al., 2005; 
Pirooznia et al., 2008; Mao et al., 2005; Peng, 2006; Duan et al., 2005; Kallio et al., 2011; 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182998doi: bioRxiv preprint 

https://doi.org/10.1101/182998
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 
Kolesnikov et al., 2015; Gao et al., 2013; Zuo et al., 2016). However, different analysis steps 
have to be performed by various tools, often using different software platforms. 
 
Machine learning tools can be a powerful tool for the analysis of these data. For example, 
Waikato Environment for Knowledge Analysis (WEKA) (Mark Hall, Eibe Frank, Geoffrey 
Holmes, Bernhard Pfahringer, Peter Reutemann, 2009; Hall et al., 2009) is a machine learning 
software environment that serves as a platform for clustering and classification of high-
throughput data. However, such platforms require data that have been normalized and otherwise 
preprocessed to address various technical and statistical challenges such as, expression value 
differences within the dataset, and differences among microarray plates, for example. Moreover, 
raw high-throughput data are not organized in such a way that machine learning frameworks can 
directly process them—normalized data must be formatted into a framework native format (for 
example, Attribute-Relation File Format ARFF for WEKA). This extensive and manual 
processing is not only time-consuming but also error-prone, making high-quality, large-scale 
analyses difficult. 

To make cancer classification and cancer biomarker identification more accessible to 
researchers, we have developed CancerDiscover, a software pipeline, which can, given raw, bulk 
high-throughput data, normalize the data, generate the ARFF files, and build and evaluate 
machine learning models for cancer type classification and biomarker identification. Unlike 
software tools that require manual processing and/or are limited in options such as feature 
selection and classification algorithms (e.g., GenePattern (Reich et al., 2006), ESVM (Huang and 
Chang, 2007), Prophet (Medina et al., 2007), Chipster (Kallio et al., 2011)), CancerDiscover is a 
fully automated pipeline, while providing users with full control over each step. Herein, we 
describe the software, and demonstrate its utility and flexibility through a case study. We also 
provide benchmarking statistics for datasets of varying sizes. As a tool for identification of 
potential biomarkers and drug targets, CancerDiscover is complementary to data repositories and 
software tools such as Oncomine (Rhodes et al., 2007), INDEED (Zuo et al., 2016) and 
cBioPortal (Gao et al., 2013) that support advanced data visualization and/or analysis of 
differential gene expression. 
 
System and Methods 
The presented pipeline consists of existing open source software tools and utilizes publicly 
available datasets and various performance metrics. 
 
Data Collection: For the case study, microarray gene expression data was collected from the 
Broad Institute Cancer Program Legacy Publication Resources database (Cancer Program 
Legacy Publication Resources) that was first published in Bhattacharjee et al. 2001 
(Bhattacharjee et al., 2001). The plates used for this article were Human U95A oligonucleotide 
probe arrays, containing 54,675 probes. GPL96[HG-U133A] Human Genome U133A Array, 
GPL97 [HG-U133B] Human Genome U133B Array,  
GPL570[HG-U133_Plus_2] Human Genome U133 Plus 2.0 Array. 
 
Affy R package (Normalization, background corrections): The R module Affy provides an 
established method for normalization and background correction (Gautier, Cope, Benjamin M 
Bolstad, et al., 2004). This step is crucial for analyzing large amounts of data which have been 
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compiled from different experimental settings. In this step, individual data files are processed to 
remove sample bias from the data, which could otherwise introduce a bias in the model. Affy R 
package provides multiple methods for normalizations and background correction, which can be 
utilized within CancerDiscover using programmatic flags. For the case study given below, 
quantile normalization (Bolstad, 2001) and robust multi-chip average (RMA) (Irizarry et al., 
2003) were used for normalization and background correction,  respectively.  
 
Machine Learning algorithms and framework 
Support Vector Machines (SVMs) and Random Forests were used to construct the models for 
this study. These machine-learning methods were chosen because of their extensive and 
successful applications to datasets from genomic and proteomic domains (Statnikov et al., 2008; 
Mohammed and Guda, 2015). Some of the cancer classification tasks were binary (two classes), 
and the others were multi-class (more than two classes). Though SVMs are designed for binary 
classification, they can also be used for multi-class classification by a one-versus-rest approach 
(Cortes and Vapnik, 1995). The one-versus-rest approach for classification is known to be 
among the best-performing methods for multi-category classification for microarray gene 
expression (Statnikov et al., 2005).  
 
Models were also constructed using Random Forests (RF), which can solve multi-category 
problems natively through direct application. The Random Forests algorithm is well suited to the 
classification of genomic data because of the following advantages (i) it performs embedded 
feature selection (ii) it incorporates interactions between predictors: (iii) it allows the algorithm 
to accurately learn both simple and complex classification functions; (iv) it is applicable to both 
binary and multi-category classification tasks (Bishop, 2007).  
 
Performance measure 
Accuracy was defined as the overall ability of models to categorize testing sample data correctly. 
Reported measures included the numbers of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). A true-positive count is the number of samples in a 
dataset which were correctly categorized into classes. A false-positive count is the number of 
samples in a dataset which were sorted into the wrong category. A true negative count represents 
the number of samples which were not classified into a class to which they do not belong, and 
false negatives are samples which are not classified into the class to which they do not belong.  
 
Accuracy, Sensitivity (or Recall), Specificity, and Precision are derived from the measures 
mentioned above as follows: accuracy is the ratio of correctly predicted samples to the total 
number of samples. Sensitivity is the proportion of true positives that are predicted as positives. 
Specificity is the proportion of true negatives which are predicted as negatives, and Precision is 
the ratio of true positives to the total number of true negatives and true positives. Lastly, F-score 
is defined as the harmonic mean of Precision and Recall and is calculated by first multiplying 
precision and recall values, then dividing the resulting value by the total of precision and recall, 
and finally, multiplying the result by two. 
 
The Accuracy, Sensitivity, Specificity, Precision, and F-Score are given by:  
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Model selection and accuracy estimation 
For model selection and accuracy estimation, we used 10-fold cross-validation (Mohammed and 
Guda, 2015; Statnikov et al., 2005). This technique separates data into ten parts and uses nine 
parts for the model generation while predictions are generated and evaluated by using the one 
part. This step is subsequently repeated ten times, such that each part (internal test set) is tested 
against the other nine parts (internal train set). The average performance over the ten accuracies 
is accepted as an unbiased estimate of the model’s performance. 
 
Implementation 
CancerDiscover is a software pipeline, which takes a raw dataset, normalizes it, generates ARFF 
files, and builds and accesses machine learning models for cancer type classification and 
biomarker identification. CancerDiscover consists of eight components: normalization, 
preliminary feature vector generation, preliminary data partitioning, feature selection, feature 
vector generation, data partitioning, model training and model testing. These components are 
organized into three scripts (Normalization, Feature Selection, and Model Building). 
CancerDiscover utilizes WEKA (Waikato Environment for Knowledge Analysis) (Hall et al., 
2009; Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, 2009) 
version 3.8. for its data partitioning, feature selection, and model construction. The pipeline 
within CancerDiscover is illustrated in Figure 1 and detailed below. 
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Fig 1. Schematic representation of the CancerDiscover Pipeline: First, raw data are normalized, 
background correction is performed, and the output is partitioned into training and testing sets. 
The test set is held in reserve for model testing while the training set undergoes a feature 
selection method. Feature selection provides a list of ranked attributes that are subsequently used 
to rebuild the training and testing sets. The training dataset is subsequently used to build machine 
learning models. Finally, the testing data set is used for model testing. 
 
1. Normalization: Due to the inherent differences among samples obtained from various studies, 
normalization and background corrections are required to remove or subdue bias in raw data for 
accurate models. Once raw high-throughput data are obtained, normalization and background 
corrections are performed using the Affy R module (Gautier, Cope, Benjamin M. Bolstad, et al., 
2004)  to remove the technical variation from noisy data and background noise from signal 
intensities and generated the expression set matrix. For the case study, the Quantile 
Normalization Method (Bolstad and others, 2003) was used to normalize the data, and the 
background correction was performed using the Robust Multi-Average (RMA) (Irizarry et al., 
2003) parameter method by modifying the configuration file. 
2. Preliminary Feature Vector Generation: Next, the expression set matrix is used to generate 
the required ARFF formatted file for WEKA processing. This ARFF file is referred to as the 
master feature vector. 
3. Preliminary Data Partitioning (Stratified): To maintain an even distribution of sample 
classes, stratified partitioning has been used by splitting the master feature vector evenly into 
testing and training sets. These training sets are used to construct the models after feature 
selection has been performed in the next step. Later, the model’s accuracy will be assessed with 
the testing set, which had not been exposed to the model, giving an honest assessment of the 
model. Users of CancerDiscover can specify the size of the data partition of their choice. 
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4. Feature Selection (on training data set only): WEKA provides several options for feature 
selection, and our pipeline allows users to select which algorithms they want to use. Each of 
these algorithms provides the list of ranked features that distinguish cancer from normal tissue. 
Once the models with different feature thresholds are built, one can explore the relationship 
between model accuracy and the number of features considered by the classification algorithms 
in the evaluation of validation datasets. The feature sets generated are separated into feature 
thresholds (including the top 1%, 10%, 33%, 66%, 100% of the total number of ranked features 
as well as the top 25, 50 and 100 ranked features). We arbitrarily chose these thresholds to 
identify the minimum number of features needed to achieve accurate classification models. For a 
list of available feature selection methods, see Supplementary File 2. 
5. Feature Vector Generation: Since the classification models must be built based only on the 
ranked features, new feature vectors are generated based on the ranked feature sets discussed in 
feature selection step. 
6. Data Partitioning (Stratified): Once the new feature vectors (ARFF files) are generated, each 
feature vectors file will undergo a second data partitioning. This partitioning seed value (or 
integer that defines the exact sequence of a pseudo-random number) is the same as the one used 
in the preliminary data partitioning. As such, each new feature vector will be split into the same 
training and testing sets as in step 3, while the samples used to test the model are avoided for 
model training. The master training and testing feature vectors and the new training and testing 
feature vectors differ only in the number of features; the master feature vectors contain all of the 
features, whereas the newly created feature vectors contain only the features that ranked 
according to different thresholds. 
7. Model Training: WEKA provides various machine learning classification algorithms. Our 
pipeline is compatible with five diverse classification algorithms and allows the user to build 
models using only one or all five, as they see fit. The five classification algorithms are Decision 
Tree (J48) (Iba and Langley, 1992), Naive Bayes (Rish, 2001), IBK (Cover and Hart, 1967), 
Random Forest (RF) (Breiman, 2001), and Support Vector Machine (SVM) (Cortes and Vapnik, 
1995). We used Support Vector Machines (SVM) and Random Forests for the construction of 
our models in the case study discussed below. These machine learning methods were chosen 
because of their extensive and successful applications to datasets from both genomic and 
proteomic domains (Statnikov et al., 2008; Mohammed and Guda, 2015). Each new training 
dataset informs the machine learning algorithm on model construction using 10-fold cross-
validation. Ten-fold cross-validation separates training data into ten parts and uses nine parts for 
model generation, while predictions are generated and evaluated using one part. This process is 
repeatedly performed such that each single tenth of data can be tested against the other nine-
tenths of data. After the 10-fold cross-validation, the average performance of all of the folds is 
used as an unbiased estimate of the performance of model training.  
8. Model Testing: Once the models are created, they undergo testing by exposing the model to 
the companion testing sets that were hidden from the model during model construction. The 
testing dataset is hidden from the model, such that that the sample classification is based on what 
the model has learned from the amount of expression in each feature, for every sample, in the 
training dataset. In the case study below, we illustrate the utility of the software to classify 
normal vs. cancerous tissues based on gene expression data. 
 
Installation/operation  
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All components of the pipeline are organized into three sets of scripts (Normalization, Feature 
Selection and Model Building and testing), each of which is composed of several scripts (PERL, 
AWK, SHELL, BASH, R, and SLURM (Simple Linux Utility for Resource Management), 
installation/operation of the pipeline is described in the Supplementary File 1). SLURM is a 
computational architecture used to organize user requests into a queue to utilize supercomputer 
resources. SLURM requires no kernel modifications for its operation and is relatively self-
contained. There are two versions of the CancerDiscover pipeline: the beginner version consists 
of bash scripts that can be run on the local machine, and an advanced version that consists of 
SLURM scripts that can be run on the supercomputer. Due to the complexity of data 
manipulation, and/or the sheer size of the high-throughput data, it is recommended to use a 
supercomputer.  
 
Case Study 
To illustrate possible applications of the pipeline, two kinds of models were generated and tested. 
The first model was developed to classify tissue samples as either cancerous or normal, 
according to their gene expression patterns. Sample distributions were as follows: 237 tumor 
tissue samples and 17 histologically normal tissue samples split evenly into testing and training 
data sets. Filtered Attribute Evaluator combined with Ranker method was the algorithm selected 
(using configuration file) to perform feature selection on the training dataset. This algorithm 
outputs a list of all data features ranked according to their utility in distinguishing the different 
classes of samples; features ranked at the top of the list are most useful in distinguishing cancer 
from normal samples. The plates used for this case study contain approximately 10,000 full-
length genes corresponding to 54,675 probes (features). Each feature was ranked using the 
feature selection algorithm, and the top 1%, 10%, 33%, 100% of ranked features as well as 
additional feature sets containing the top 3, 6, 12, 100, 500, 0.25%, 0.5%, of ranked features 
were used for generating several models simultaneously. Training and testing accuracies are 
reported in Figure 2A-D. We selected RF and SVM as the machine learning classification 
algorithms for this case study. 
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Fig 2. Model Accuracies for the Classification of Tumor vs. Normal and Adenocarcinoma vs. 
Squamous Cell Carcinoma: RF represents Random Forest classifier and SVM indicates Support 
Vector Machine classifier. (A, B) Training accuracies for Tumor vs. Normal and 
Adenocarcinoma vs. Squamous Cell Carcinoma, respectively. (C, D) Testing Accuracies for 
Tumor vs. Normal and Adenocarcinoma vs. Squamous Cell Carcinoma, respectively. 
 
We achieved a model training accuracy of 98.43% for the RF classifier using the top 0.25% (31 
attributes) of features. Models constructed using the top 3% of ranked features reported an 
accuracy of 96.06%, while using the entire list of features (100%) resulted in the lowest accuracy 
of 93.70%. Training accuracies for the SVM classifier were 99.21% for the models that used the 
top 3 features. Accuracy declined with the increasing number of features, with models that used 
the top 12 ranked features reporting an accuracy of 98.43%. SVM resulted in the lowest (though 
still relatively high) accuracy of 97.64% using 100 features. This shows that as few as the top 31 
features are sufficient to achieve a higher accuracy, using random forest classifiers, whereas top 
3 features are sufficient to achieve a higher accuracy using support vector machines. 
 
The second set of models was also bi-class; however, the models were developed to distinguish 
lung sub-types (adenocarcinoma vs. squamous cell carcinoma), rather than tumor vs. normal 
tissue. 190 lung adenocarcinoma samples and 21 squamous cell carcinoma samples were evenly 
split into training and testing datasets. After feature selection, the list of ranked features was used 
to generate models based on different feature thresholds. Results from testing accuracies can be 
seen in Figure 2B. With the entire list of ranked features, the RF testing accuracy was 91.51%, 
increasing in accuracy as the percentage or number of ranked features decreased. The top 1% of 
ranked features (126 attributes) resulted in model testing accuracy of 93.40% while the top 
0.25% (31 attributes) of ranked features resulted in testing accuracies of 95.28%. A similar trend 
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was seen going from the top 500 features to the top 3 features. On average, SVM testing 
accuracies were more consistent, and higher than those based on RF. The model generated with 
top 3 features resulted in accuracy of 96.23%, while using the top 6 features resulted in accuracy 
of 95.28%. Using 100 features resulted in testing accuracy of 97.17%. Using the top 0.25% and 
0.5% resulted in accuracies of 96.23% and 97.17%, respectively, while using the top 1% and 
10% features resulted in accuracy of 98.11%. Using the top 33% of ranked features resulted in 
the highest testing accuracy of 99.06%. Confusion matrices for the models generated using the 
top 3 features are reported in Table 1. 
 
Table 1: Random Forest Training and Testing Accuracies for Top 3 Ranked Feature 
Models. 
 # 

Samples 
True 
Positive 

False 
Negative 

False 
Positive 

True 
Negative 

Precision Recall F-Score 

Tumor vs. Normal 
(Training) 

127 116 2 2 7 98.3 98.3 98.3 

Tumor vs. Normal 
(Testing) 

127 119 0 0 8 100 100 100 

Adenocarcinoma vs. 
Squamous Cell 
Carcinoma 
(Training) 

102 91 1 2 8 97.9 98.9 98.4 

Adenocarcinoma vs. 
Squamous Cell 
Carcinoma 
(Testing) 

106 95 0 2 9 97.9 100 98.9 

 
As shown in Table 1, we were able to achieve a high degree of accuracy using a small fraction of 
top ranked features (3 features). This case study illustrates the pipeline’s flexibility, utility, and 
ease-of-use in the generation of several models simultaneously from raw high-throughput data. It 
also highlights the customization allowed by CancerDiscover on the individual steps of a 
common high-throughput data analysis pipeline, including the normalization methods, data 
partitions, feature selection algorithms, classification algorithms, and the threshold or percentage 
of ranked features for additional analysis. 
 
CancerDiscover Benchmarking 
To assess the performance of the software, benchmarking was performed using acute myeloid 
leukemia (AML) and normal blood sample expression data downloaded from NCBI (GSE6891, 
GSE2677, GSE43346, GSE63270) [HG-U133_Plus_2] Human Genome U133 Plus 2.0 Array 
(Jung et al., 2015; Sato et al., 2013; Schmidt et al., 2006; Verhaak et al., 2009). Samples were 
collected to perform benchmarking on datasets with specific sample quantities; 500, 200, 100, 50 
and 10. Each dataset was run through the pipeline using default settings (perform all possible 
feature selection and classification algorithms) to determine the required computational resources 
such as the total amount of elapsed time, the amount of working memory required for each step 
of the pipeline and the overall total amount of working memory. These factors, mainly depend 
on the size of the dataset being processed. Benchmarking was performed using computational 
resources at the Holland Computing Centre of the University of Nebraska which has 106 nodes, 
4 CPU/ 64 cores and 256GB RAM per nodes. Benchmarking was also performed on a PC (16 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/182998doi: bioRxiv preprint 

https://doi.org/10.1101/182998
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
GB of memory; IntelⓇ Core™ i7-4770 CPU @ 3.40GHz x8) with Ubuntu 64-bit OS. Table 2 
below shows the benchmarking results. 
 
Table 2: Benchmarking Results. Elapsed time refers to the amount of real-time spent 
processing that function. CPUs refer to the number of CPUs which were required for that 
process. CPU Time can then be calculated by multiplying the elapsed time by the number of 
CPUs.  

 Normalization Feature Selection Model Building and 
Testing 

 

# 
Samples

# Classes 
(tumor/normal)

# 
Features

# 
CPUs

Elapsed 
time 

Required 
Memory 

(MB) 

# 
CPUs

Elapsed 
time 

Required 
Memory 

(MB) 

# 
CPUs

Elapsed 
time 

Required 
Memory 

(MB) 

# 
Models

# Feature 
Selection 
Methods 

Total 
Memory 

Total 
Elapsed 

Time 
500 454/46 54674 2 2:05:32 50 Gn / 

60000Mc 
2 21:45:59 50 Gn 2 8:05:32 60000Mn/ 

50Gn 
665 20 60000Mn/ 

50Gn 
31:57:03 

200 154/46 54674 2 0:52:31 50 Gn / 50 
Gc 

2 14:16:55 50 Gn 2 4:49:33 60000Mn/ 
50Gn 

650 20 60000Mn/ 
50Gn 

19:58:59 

100 54/46 54674 2 0:26:56 50 Gn / 50 
Gc 

2 13:31:22 50 Gn 2 3:12:30 60000Mn/ 
50Gn 

665 20 60000Mn/ 
50Gn 

17:00:48 

50 25/25 54674 2 0:16:48 50 Gn / 50 
Gc 

2 12:06:42 50 Gn 2 2:58:56 60000Mn/ 
50Gn 

665 20 60000Mn/ 
50Gn 

15:12:26 

10 5/5 54674 2 0:07:03 50 Gn / 50 
Gc 

2 10:05:17 50 Gn 2 2:14:05 60000Mn/ 
50Gn 

585 19 60000Mn/ 
50Gn 

12:26:25 

10 (on 
PC) 

5/5 54674 1.6 0:02:46 67 1.6 3:49:31 67 1.7 0:16:26 65 465 18 67 4:08:43 

 
Starting with the smallest dataset containing only ten samples, of the 23 possible feature 
selection methods, 19 completed (four feature selection methods could not produce results due to 
the 10-fold cross-validation). For those 19 feature selection outputs, 585 classification models 
(some of the ARFF files are empty due to lower threshold selection) were generated. The 50-
sample dataset generated 20 out of the 23 possible feature selection results, allowing the next 
section of the pipeline to generate 665 classification models. When using 100 samples, 20 out of 
the 23 possible feature sets were produced, and subsequently utilized to generate 665 
classification models. The 200-sample dataset provided 20 of the 23 possible feature selection 
outputs and generated 650 classification models. Lastly, the 500-sample dataset produced 20 out 
of the possible 23 feature selection outputs, and generated 665 classification models. As the 
datasets grew, the time required for cancer classification increased linearly (Table 2). 
 
Comparison of CancerDiscover with other methods and tools 
We compared the performance of CancerDiscover with that of three existing methods, 
GenePattern (Reich et al., 2006) and Chipster (Kallio et al., 2011) and the method described in 
Aliferis et al. (Aliferis et al., 2003). We used the same train and test datasets to compare the 
performance CancerDiscover with these methods. Results of this analysis are summarized in 
Table 3, and discussed in detail below. 
 
GenePattern (Reich et al., 2006) is a web-platform that allows users to upload data in various 
forms and performs statistical analysis, class prediction, and classification. Due to the nature of 
the data used in this study, only SVM classification suite was used to draw comparisons between 
CancerDiscover and GenePattern. Because GenePattern could not perform normalization and 
background correction for the given datasets, we used the data normalized by the 
CancerDiscover pipeline (using RMA method) and provided the normalized data to the SVM 
classification module of GenePattern. The input data contained all probes (as GenePattern does 
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10 
not provide feature selection options). Machine learning classification models were generated 
using the training data with accuracies of 98.43% for the Tumor vs. Normal model, and 99.06% 
for the Adenocarcinoma vs. Squamous Cell Carcinoma model. These higher accuracies could 
also be due to the normalization and background correction performed by the CancerDiscover. 
Of all the three compared software tools, GenePattern’s accuracies are most similar to the ones 
produced by CancerDiscover – 99.21% and 99.06%, respectively. All probes were utilized in the 
model building since feature selection could not be performed using GenePattern. On the other 
hand, CancerDiscover was able to make similarly accurate predictions using as few as three 
probes (See Table 3). Finally, CancerDiscover differs from the proprietary GenePattern by the 
fact that CancerDiscover is open-source; as such, its methodologies are transparent and 
reproducible, and the community can further expand the software. 
 
Chipster is developed based on a client-server architecture. Data is imported at the client side, 
while all processing is performed on the server side using R. It requires that all data needs to be 
transferred between client and server for each analysis step which can be very time-consuming if 
the datasets are enormous (Koschmieder et al., 2012). Chipster was not able to successfully 
perform a classification when we provided the dataset containing all probes. As a result, feature 
selection was performed artificially; that is, the datasets provided to Chipster contained only 
those probes selected by our CancerDiscover feature selection method; thus datasets provided 
contained the top 3, 6, 12, 100, or 500 probes. Raw data in the form of CEL files were 
normalized (RMA normalization) by Chipster. The accuracy using top 3 probes for the Tumor 
vs. Normal model was 97.63%, whereas, for the Adenocarcinoma vs. Squamous Cell Carcinoma 
model was 98.82%, ranking 3rd for the accuracy assessment (Table 3). These accuracy 
assessments for the CancerDiscover are better than the results provided by Chipster.  
 
Data used in this paper were also analyzed independently in Aliferis et al. (Aliferis et al., 2003), 
using two feature selection algorithms: Recursive Feature Elimination and Univariate 
Association Filtering. These algorithms identified 6 and 100 features, respectively, as significant 
for cancer vs. normal classification, and 12 and 500 features, respectively, for adenocarcinoma 
vs. squamous cell carcinoma classification. Aliferis et al. reported average accuracies across 
classification algorithms: 94.97% for cancer vs. normal model, and 96.83% for the squamous 
carcinoma vs. adenocarcinoma model. In comparison, CancerDiscover resulted in 99.21% 
accuracy for cancer vs. normal model, and 99.06% for the adenocarcinoma vs. squamous cell 
carcinoma model, while using only three features. In the context of these data, CancerDiscover 
was more accurate, while using less information than that of Aliferis et al. 
 
These results demonstrate that the CancerDiscover method is complementary to some of the 
existing methods, such as GenePattern, Chipster, and Aliferis et al. methods, and that it is also 
suitable for accurate classification of other types of cancer types and subtypes. Although the 
classification accuracy of CancerDiscover was higher than that of the compared methods, the 
strengths of CancerDiscover lie in its streamlined nature that enables users to begin with raw 
data and proceed to assessable machine learning models within a complete pipeline. Another 
strength of CancerDiscover is that it is flexible, allowing users to utilize various methodologies 
within the platform, and further extend the software as a whole due to its open-source nature.  
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Table 3: Comparisons of machine learning classification tools and component parts. This 
table highlights the capabilities of publicly available tools for performing different functions 
necessary to generate quality models.  

Tool Name Tumor vs. 
Normal 

Accuracy 

Adeno vs. 
Squamous 
Accuracy 

Normalization background 
correction 

Custom 
Data 

Partitioning 

Feature 
Selection 

CancerDiscover 99.21 99.06 � � � � 
GenePattern 98.43 99.06 � - - - 

Chipster 97.63 98.82 � - - - 
Aliferis et al. 94.97 96.83 � � � � 

 
Conclusion  
We have developed a comprehensive pipeline, CancerDiscover, which enables researchers to 
automate the processing and analysis of high-throughput data with the objective of classifying 
cancer and normal tissue samples (including cancer sub-types). Herein, we showcased the 
pipeline’s flexibility, utility, and ease-of-use in generating several models simultaneously from 
raw data. CancerDiscover allows users to customize each step of the pipeline, selecting 
individual normalization methods, data partitions, feature selection algorithms, and classification 
algorithms for additional analysis. The CancerDiscover pipeline was able to accurately classify 
the sample data using an optimal number of top ranked features. Although we only discussed 
binary models here, multi-class models can also be generated and validated. Benchmarking 
demonstrated the high performance of the pipeline across datasets of varying sizes. Although we 
used a dataset as small as ten samples, larger datasets provide more information for machine 
learning algorithms to accurately classify samples. Researchers who might have hundreds of 
samples can now utilize machine learning tools for diverse projects, including biomarker 
identification, drug response, and tissue classification without extensive technical knowledge, 
while retaining significant flexibility. 
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