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Abstract

Identification of intron boundaries, called splice junctions, is an important part

of delineating gene structure and functions. This also provides valuable in-

sights into the role of alternative splicing in increasing functional diversity of

genes. Identification of splice junctions through RNA-seq is by mapping short

reads to the reference genome which is prone to errors due to random sequence

matches. This encourages identification of splicing junctions through computa-

tional methods based on machine learning. Existing models are dependent on

feature extraction and selection for capturing splicing signals lying in vicinity

of splice junctions. But such manually extracted features are not exhaustive.

We introduce distributed feature representation, SpliceVec, to avoid explicit

and biased feature extraction generally adopted for such tasks. SpliceVec is

based on two widely used distributed representation models in natural language

processing. Learned feature representation in form of SpliceVec is fed to multi-

layer perceptron for splice junction classification task. An intrinsic evaluation

of SpliceVec indicates that it is able to group true and false sites distinctly.

Our study on optimal context to be considered for feature extraction indicates

inclusion of entire intronic sequence to be better than flanking upstream and

downstream region around splice junctions. Further, SpliceVec is invariant to
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canonical and non-canonical splice junction detection. The proposed model is

consistent in its performance even with reduced dataset and class-imbalanced

dataset. SpliceVec is computationally efficient and can be trained with user

defined data as well.

Keywords: Splice junction, Feature representation, Alternative splicing,

Distributed representation

1. Introduction

In most of the eukaryotes, a protein coding gene is interrupted by intervening

sequences called introns. These introns are removed from the exonic sequences

via splicing process, which occurs cotranscriptionally [1]. The process generates

mature substrates to be translated into proteins. Splicing involves snipping of

introns at exon-intron and intron-exon junctions, called splice sites or splice

junctions, and ligation of exons. Identification of splice junctions is therefore

an important part of delineating gene structure and functions. Gene identifi-

cation as well as its structural annotation has become an important problem

in bioinformatics due to the abundance of sequenced genomes made available

by advanced sequencing technologies like RNA-seq. RNA-seq, in recent times,

has also provided meaningful insights into the role of alternative splicing (AS)

in increasing functional diversity of genes. AS is a regulated process which al-

ternatively skips or joins exons, or parts of exons or introns to form variety of

proteins during translation. Recent estimates by RNA-seq suggest that more

than 90% of multi-exon genes in human body undergo alternative splicing [2],

thus making the identification of splice junctions all the more crucial. Identifi-

cation of splice junctions from RNA-seq involves mapping of millions of short

reads to the reference genome. However, multiple potential match of the short

read on the reference genome makes sequence mapping less reliable [3]. Also,

the existing alignment based methods [4, 5] consider detection of splice sites

based on only canonical splicing patterns (GT at donor site and AG at acceptor

site) thereby missing important non-canonical splicing patterns [6].
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The vast availability of annotated sequences makes it possible to create large

enough training datasets for supervised learning algorithms to predict splice

sites. The correct prediction of splice sites is facilitated by the identification of

relationships and dependencies among the nucleotides around the splice sites.

This is motivated by the observation that the splicing signals are most likely

to reside in the vicinity of splice sites [7]. The learning algorithms need a

set of features for training the model. Creating an optimized set of features

that best represent the dataset has always remained a challenge for splice site

prediction. The presence or absence of certain nucleotide sequences close to

the splice sites were considered as features for splice site prediction for a long

time [8, 9, 10, 11, 12, 13, 14]. Since all such features were not known, there

have been constant efforts to improve or refine features as well as include more

relevant features by taking into account recent experimental observations. The

large number of features may not only contain many irrelevant features but may

also adversely affect classifier performance due to its high dimension. This led

to many efforts for obtaining the optimum feature set through feature selection

[15, 16, 17, 18]. But the set of features obtained were not exhaustive.

This scenario motivated the adoption of an approach that can represent fea-

tures specific to splice junctions based on the splicing signals without any manual

extraction and selection of features. Rather, the model itself will capture motifs

from the biological sequences that act as splicing signals for splice site selection.

Lee et. al. proposed a deep Boltzmann machine based methodology for splice

junction prediction [6]. Recently, Zhang et. al. have employed a deep convolu-

tional neural network (CNN), named DeepSplice [19], that learns features that

characterize the true and decoy splice junctions. They have predicted novel

splice junctions based on these features and obtained state-of-the-art perfor-

mance of 96% accuracy. A distributed representation of biological sequences

was proposed by Asgari et. al. [20] and Kimothi et. al. [21] for protein family

classification task where a prediction accuracy of more than 99% was achieved.

This paper introduces a novel approach for distributed feature representation

of splice junctions by embedding it in an n-dimensional feature space. Each
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dimension in the feature space represents one feature of the corresponding splice

junction. This embedding, named SpliceVec, is in the form of n-dimensional

continuous distributed vector representation. The embeddings are learned by

a shallow neural network using unsupervised data. We explored two variants

of SpliceVec, namely genome based SpliceVec (SpliceVec-g) and splicing-context

based SpliceVec (SpliceVec-sp) for feature representation of splice junctions. We

evaluate the quality of SpliceVec in both intrinsic and extrinsic tasks. For

the intrinsic evaluation, we visually inspect two dimensional representation of

true and false splice sites using Stochastic Neighbor Embedding (t-SNE) [22].

We evaluate SpliceVec on splice junction classification task for the extrinsic

evaluation. In contrast to the recent deep learning methods, we use simple

multilayer perceptron (MLP) as a classifier. We name this model as SpliceVec-

MLP.

Our results and contributions can be summarized as follows:

• We propose two variations (SpliceVec- g and SpliceVec- sp) for feature rep-

resentation of splice sites. SpliceVec outperforms state-of-the-art methods

by 2.42-18.86% in terms of accuracy for splice site prediction.

• We explored the optimal sequence length that best captures the splicing

signals for improving the prediction results. We find that inclusion of

entire intronic sequence significantly boosts the predictive power of the

classifier.

• The proposed feature representations are more robust in handling reduced

training samples. SpliceVec maintains an accuracy above 99% even with a

60% reduction of training samples whereas the accuracy of its counterpart

drops by about 6%.

• SpliceVec is more consistent in its performance with class-imbalanced data

making it more suitable for the real time scenario where number of pseudo

sites are several times more than that of true splice sites.

• SpliceVec-MLP identified non-canonical splice junctions (junctions not
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comprising of the consensus dimer GT or AG at donor or acceptor site re-

spectively) with 100% accuracy indicating that our feature representations

are invariant to both canonical and non-canonical splice junctions.

• SpliceVec-MLP can be deployed in both CPU and GPU environment.

SpliceVec-MLP, being 12.94 times computationally faster than the state-

of-the-art model, contributes as a suitable option for classification of the

abundant annotated sequences available these days by high-throughput

sequencing technologies.

2. Methods

The proposed approach can be divided into two stages: the feature represen-

tation stage that generates a distributed representation for each splice junction

based on either of the two frameworks, namely word2vec and doc2vec, and classi-

fication of splice junctions using MLP. We shall discuss all these in the following

subsections. An overview of the proposed approach is shown in Figure 1.

Figure 1: Proposed approach: (a) feature representation; (b) splice junction classification.

2.1. Data

We have used the latest release of GENCODE annotation [23] (version 26),

based on human genome assembly version GRCh38, for extracting true and false

splice junctions. This version was released in March 2017. We extracted 294,576

splice junctions from the protein coding genes. Based on these splice junctions,

we observed that an intron length varies from 1 to as much as 1,240,200 nu-

cleotides (nt). A recent study suggests that the shortest known eukaryotic intron
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length is 30 base pairs (bp) belonging to the human MST1L gene [24]. Introns

shorter than 30bp are usually accounted to sequencing errors in genomes. Based

on this study, we considered only those introns whose length were greater than

30 bp. This reduced the number of splice junctions to 293,889. We selected

293,889 false splice junctions by randomly searching for splice site consensus

sequences GT and AG which were not annotated as splice junctions. This was

considered as a necessary condition for selection of false splice junctions be-

cause more than 98% of splice junctions are canonical, that is, they contain the

consensus dinucleotide GT at the donor site and AG at the acceptor site [25].

In DeepSplice, the length of false splice junctions was considered to be lying

between 10 and 300,000 nt, the reason of which was not clear. So, instead, we

considered only those false splice junctions whose length was not less than 30

nt and not more than 1,240,200 nt with both donor and acceptor splice sites

lying in the same chromosome. We considered this range to mimic the scenario

of true introns.

2.2. Distributed representation

Vector representation of a word or a sentence is an integral part of many

natural language processing (NLP) tasks. Although local representations, like

N-grams and bag-of-words, have been successfully applied in NLP, they lack

efficiency due to sparsity and high dimensionality. Most importantly, such rep-

resentation needs to be defined explicitly. In the recent times, distributed rep-

resentation has been most successful in complex NLP tasks. This type of rep-

resentation is learned based on the connection and interaction between words

appearing in various contexts within a chosen corpus.

With this idea, Mikolov et. al. proposed word2vec models [26] that compute

continuous vector representations for words learned by shallow neural networks.

These models embed each word in an n-dimensional space where syntactically

and semantically similar words appear close to each other. The model has

two different architectures- continuous bag of words (CBOW) and skip-gram.

CBOW predicts the current word given some surrounding context words whereas
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skip-grams predicts context words given the current word.

This model has been further extended in the form of doc2vec model [27] to

incorporate continuous vector representations for variable length texts like sen-

tences, paragraphs and documents. This model also comes in two architectures-

distributed bag of words (DBOW) and distributed memory (DM). DBOW, simi-

lar to skip-gram architecture of word2vec model, predicts the context words from

the document vector. DM, on the other hand, predicts the current word based

on surrounding context words as well as the document vector. This is similar

to CBOW architecture of word2vec model. In doc2vec model, the word vectors

are global and shared among documents whereas the document vectors are local

to the document and learned only in context of the corresponding document.

2.3. Distributed representation of splice junctions

Both the models, described in the previous section, demand as input a large

corpus of text and produce outputs in n-dimensional vector space where each

unique word in the corpus is assigned a vector in that space. A corpus in NLP

is a continuous chain of words following certain grammatical structure. On the

other hand, biological sequences are a continuous string of four characters, A,

C, G, and T , representing nucleotide bases Adenine, Cytosine, Guanine and

Thymine respectively. Our corpus also contains N which can represent any of

the four nucleotides. Since there is no concept of words in case of biological

sequences, it can be broken down into k-mers of any length k. There have

been experiments with variable length k-mers [28] as well as both overlapping

and non-overlapping k-mers [20, 21] for different bioinformatics problems. In

this paper, we focus on overlapping 3-mers. For example, a biological sequence

ATTGGCA will yield the following sequence of words: ATT, TTG, TGG, GGC,

and GCA. Thus, our vocabulary can have a maximum of 53 = 125 distinct

words. After this pre-processing step of fragmenting biological sequences into

words, we fed the corpus into both word2vec and doc2vec models to generate

n-dimensional embedding, named SpliceVec. SpliceVec-g is based on word2vec

model whereas SpliceVec-sp is based on doc2vec model.
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2.3.1. Genome based SpliceVec

This type of feature representation is generated using word2vec model. For

word2vec model, our corpus is the complete human genome assembly (version

GRCh38.p10 ). We broke down the genome assembly into chromosomes. We

have considered 24 chromosomes, that is, chr1 to chr22 as well as X and Y

chromosomes. We have excluded the mitochondrial and unlocalized sequences

because of its exceptionally small size. We further fragmented each chromosome

into sentences of 2000 characters. Each sentence was broken into overlapping

3-mers representing words. We trained word2vec model with the complete se-

quence of 3-mers. The word2vec model produced an n-dimensional vector rep-

resentation for each unique 3-mer in the corpus. We next computed the vector

representation of a splice junction by taking the average of summation of the

vector representation of each word in the splice junction sequence. We used

gensim [29] library of python to generate the word vectors.

2.3.2. Splicing-context based SpliceVec

This variation of feature representation is based on doc2vec model. For

doc2vec model, our corpus is the complete set of true and false splice junc-

tions. Each splice junction, considered as a document, was broken down into

overlapping 3-mers to form words and fed into doc2vec model as training data.

The model generated a vector representation for each unique word and each

splice junction sequence in an n-dimensional hyperspace. We used the C-

implementation of doc2vec model by Le and Mikolov [27] for generating the

vectors.

Both the CBOW and skip-gram architecture for word2vec model, as well as

the DBOW and DM architecture for doc2vec model are illustrated in Figure 2

considering an arbitrary biological sequence ATTGGCA. The sequence is broken

down into 3-mers sequence ATT, TTG, TGG, GGC, and GCA where TGG is

the current word and remaining four words are context. ID refers to the splice

junction which contains the given sequence of 3-mers.
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Figure 2: Architecture of word2vec and doc2vec models. (a) CBOW for word2vec (b)

skip-gram for word2vec (c) DM for doc2vec and (d) DBOW for doc2vec.

2.3.3. SpliceVec feature space construction

We generated both SpliceVec-g and SpliceVec-sp for each of 587,778 splice

junctions, consisting of 50% true and 50% decoy splice junctions. There are

several hyper-parameters for both the word2vec and doc2vec models based on

which SpliceVec was generated and each of these hyper-parameters needs to be

tuned as per the underlying task to be accomplished. We generated several sets

of SpliceVec by variations and different combinations of the hyper-parameters

mentioned in Table 1. We evaluated the embeddings on the classification task

of splice junctions. We partitioned 30% of our dataset as test data. Out of the

remaining 70%, 20% was used as validation set for tuning the hyper-parameters

of MLP for classification. We trained the MLP with the training data in a

Tensorflow [30] implementation. Based on the performance of our classifier, we

have fixed the hyper-parameters as given in Table 1. Default values of respective

models were considered for other hyper-parameters not mentioned in the table.
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Hyper-parameters word2vec doc2vec

Training method CBOW DM

Vector Size 100 100

Window Length 5 5

Min Count 5 1

Negative Sampling 5 5

Iterations 15 15

Table 1: Optimal hyper-parameters for word2vec and doc2vec training models.

2.4. Classification of SpliceVec by MLP

We used an MLP with one hidden layer as the classifier for splice junction

classification. We take each n-dimensional SpliceVec representing one splice

junction as the input data and send the weighted input to each node of the

hidden layer. Each node j of the hidden layer receives the signal (xi) from each

node i in input layer multiplied with a weight (wji). The effective signal Sj of

a node j is:

Sj =
n∑

i=0

wjixi

where n is the number of nodes in input layer and x0 is the bias. The signal, in

hidden layer, undergoes the activation function. We used rectified linear units

(ReLU) as the activation function. ReLU sets any negative input signal (x ) to

zero by the following function:

f(x) = max(0, x)

In the output layer, weighted sum of outputs from hidden layer undergoes the

softmax activation function that gives the class probabilities of the input. There

are two nodes in the output layer corresponding to true and false splice junctions.

The predicted output is compared to the expected output using cross entropy
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as the loss function. The cross entropy loss can be defined as follows:

Hy′ (y) = −
∑
i

y′ilog(yi)

where y is the predicted output and y′ is the expected output. We used Adam

Optimizer [31] to minimize the loss by updating weights at each layer.

We compared classification performance of SpliceVec-MLP with existing

state-of-the-art approaches for splice site prediction, named SpliceMachine [11]

and DeepSplice. SpliceMachine is based on linear support vector machines

(LSVM) whereas DeepSplice is based on CNN. We tuned hyper-parameters for

DeepSplice, SpliceMachine and SpliceVec-MLP by partitioning training data

into train, test and validation set as explained in the previous subsection. The

optimal hyper-parameters are given in Table 2. All the experiments were carried

out on a 3.20 GHz Quad-Core Intel Core i5 with 8GB memory. We evaluated

the performance of the classifier based on precision, recall, accuracy, and F1

score.

DeepSplice

Batch size 160

Dropout keep prob 0.8

Learning rate 0.001

SpliceMachine

Context size (donor) 20, 60

Context size (acceptor) 20, 20

C parameter for LSVM 0.015625

SpliceVec-MLP

Batch size 128

Hidden nodes 1024

Learning rate 0.001

Table 2: Optimal hyper-parameters of the classifiers.
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3. Results

3.1. Qualitative analysis of SpliceVec

To analyze the quality of embeddings, we plotted both SpliceVec-g and

SpliceVec-sp by projecting it from a 100-dimensional feature space to a 2D

space using t-SNE. As a comparison, we plotted an equal number of randomly

generated 100-dimensional vectors that are randomly assigned as true or false

splice junctions. The 2D embeddings clearly show that both SpliceVec-g and

SpliceVec-sp form clusters which suggest that they capture the features specific

to true and false splice junctions (Figure 3).

We see that SpliceVec-sp displays better partitioning of true and false junc-

tions compared to SpliceVec-g. This is because SpliceVec-sp, based on doc2vec

model, captures the order in which words appear in the sequence, thus gener-

ating more meaningful feature vector. In Figure 3, points in red represent false

splice junctions whereas points in blue represent true splice junctions.

Figure 3: t-SNE plots for different embeddings. (a) Random embedding (b) SpliceVec-g

(c) SpliceVec-sp. Each point represents a splice junction. Points in red represent false splice

junctions whereas points in blue represent true splice junctions.
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3.2. Optimal sequence length for SpliceVec

We varied the length of flanking region at the donor and acceptor splice

sites to find the optimal length of sequence that produces the best results in

classification. These flanking regions were considered in order to capture the

splicing signals present in vicinity of the intron boundary. For each splice junc-

tion, we first extracted only 10 nt from upstream and downstream sequence of

both donor and acceptor splice sites, thus yielding a sequence length of 40 nt.

We increased the length of flanking regions upto 40 nt, in an interval of 10 nt.

We also extracted entire intron sequence along with 10 nt upstream and 10 nt

downstream of donor and acceptor splice sites respectively. We have taken the

entire intron sequence as part of the input because there are evidences of in-

tronic sequences, more than 150 bp long, being conserved around the alternative

exons [32, 33], thus making intronic elements more important in regulating AS.

In this case also, we increased the length of flanking region from 10 nt upto 40

nt in an interval of 10 nt.

Table 3 demonstrates the results obtained on varying the sequence length.

We indeed observe that the improvement in performance of classifier is signifi-

cantly more when we consider the entire intronic sequence with 10 nt flanking

region compared to increasing the length of flanking upstream and downstream

regions at both the donor and acceptor splice sites. On further increasing the

length of flanking region, in the case where full intron was considered, we ob-

serve that performance degrades for SpliceVec-g. This indicates that irrelevant

features are being captured as the length of flanking region is increased. On

the other hand, SpliceVec-sp is consistent even with increased flanking region.

This is because SpliceVec-sp, based on doc2vec model, provides more robust

embeddings especially with longer documents and are therefore less sensitive to

irrelevant features. We therefore performed our classification task on SpliceVec

generated from full intron with 10 nt flanking regions for further analysis. The

problem of having very long and variable length introns as input is solved by the

fact that each splice junction will be reduced to a 100 dimensional SpliceVec,

which is much less than the actual length of intron.
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Sequence length SpliceVec-g SpliceVec-sp

Ac, Pr,Re, F1(%) Ac, Pr,Re, F1(%)

10nt flanking 82.26, 80.61, 85.02, 82.73 99.77, 99.80, 99.73, 99.77

20nt flanking 81.09, 78.85, 85.01, 81.79 99.55, 99.50, 99.61, 99.55

30nt flanking 82.68, 80.67, 85.98, 83.22 99.52, 99.45, 99.58, 99.52

40nt flanking 84.81, 82.87, 87.80, 85.24 99.37, 99.33, 99.41, 99.37

10nt flanking + intron 98.15, 98.40, 97.89, 98.14 99.88, 99.81, 99.95, 99.88

20nt flanking + intron 97.73, 97.97, 97.48, 97.72 99.94, 99.92, 99.96, 99.94

30nt flanking + intron 97.35, 97.86, 96.82, 97.34 99.93, 99.92, 99.93, 99.93

40nt flanking + intron 97.04, 97.30, 96.77, 97.03 99.97, 99.97, 99.97, 99.97

Table 3: Performance of splice junction classification using SpliceVec-g and SpliceVec-sp by

varying length of junction sequences. We have computed accuracy (Ac), precision (Pr), recall

(Re) and F1 score (F1) in percentage as performance measures. The values are average of five

simulations.

3.3. Improved classification of splice junctions

We have used SpliceVec as feature in MLP classifier having one hidden layer.

Table 4 shows the performance of SpliceVec-g and SpliceVec-sp obtained from

the optimal sequence length (10nt flanking + intron) reported in previous sub-

section. For SpliceVec-g, our classifier gives an accuracy 2.42-17.13% more than

that of the alternative approaches whereas for SpliceVec-sp, our classifier out-

performs the counterparts by 4.15-18.86%. SpliceMachine predicts a splice site

(either donor or acceptor) given a sequence. Since our approach predicts a junc-

tion pair (both acceptor and donor), we therefore calculated the performance

of SpliceMachine for junction pair by considering a junction pair as true if both

the donor and acceptor sites were predicted as true.
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Model Performance measures

Ac, Pr,Re, F1(%)

SpliceMachine (junction pair) 81.02, 51.59, 85.41, 64.33

DeepSplice 95.73, 95.87, 95.60, 95.74

SpliceVec-g - MLP 98.15, 98.40, 97.89, 98.14

SpliceVec-sp - MLP 99.88, 99.81, 99.95, 99.88

Table 4: Performance comparison of different models for splice junction prediction. Perfor-

mance of SpliceVec is obtained by considering optimal sequence length of 10nt flanking region

including complete intronic sequence.

We were also curious to access the performance of SpliceVec for prediction of

only donor or acceptor sites. For this, we generated SpliceVec for the consensus

dimer (GT for donor and AG for acceptor respectively) along with 10 nt up-

stream and downstream sequence. It was then classified with SpliceVec-MLP.

The results obtained for both SpliceVec-g and SpliceVec-sp for classification of

donor and acceptor sites and its comparison with SpliceMachine is shown in

Table 5.

Model Performance measures

Ac, Pr,Re, F1(%)

SpliceMachine (donor) 92.65, 91.36, 94.20, 92.75

SpliceVec-g - MLP (donor) 84.53, 82.92, 87.02, 84.90

SpliceVec-sp - MLP (donor) 99.86, 99.82, 99.90, 99.86

SpliceMachine (acceptor) 87.01, 85.57, 89.04, 87.27

SpliceVec-g - MLP (acceptor) 80.16, 78.61, 82.89, 80.69

SpliceVec-sp - MLP (acceptor) 99.84, 99.79, 99.89, 99.84

Table 5: Performance comparison of SpliceVec-MLP with SpliceMachine for prediction of

donor and acceptor sites individually.
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We observe that SpliceVec-sp performs better than SpliceVec-g. This is be-

cause SpliceVec-g was generated by computing average of vector representations

of all the 3-mers in the sequence. Information regarding the order of the 3-mers

was not captured in that case. Whereas, SpliceVec-sp captures the ordering in-

formation better because it generates the vector representation of a 3-mer based

on its neighboring 3-mers in the sequence.

3.4. Robust classification of SpliceVec-MLP

We tested the robustness of SpliceVec-MLP by analyzing its performance

with reduced training examples as well as imbalanced training examples. We

have varied the number of input samples for training the classifier and observed

that SpliceVec-MLP maintained an accuracy more than 98% upto 50% reduction

of training samples for SpliceVec-g, whereas for SpliceVec-sp, 99% accuracy

was maintained upto 60% reduction of the training samples. On the other

hand, the accuracy of DeepSplice reduced by about 6% (Table 6). Observing

the accuracy of SpliceVec models with reduced dataset, we can conclude that

SpliceVec captured more meaningful features compared to DeepSplice.

Train data (%) DeepSplice SpliceVec-g SpliceVec-sp

Ac, Pr,Re, F1(%) Ac, Pr,Re, F1(%) Ac, Pr,Re, F1(%)

100 95.73, 95.87, 95.60, 95.74 98.15, 98.40, 97.89, 98.04 99.88, 99.81, 99.95, 99.88

70 93.90, 94.80, 92.90, 93.84 98.05, 97.77, 98.28, 98.05 99.94, 99.91, 99.98, 99.94

60 93.40, 93.65, 93.11, 93.38 98.02, 98.28, 97.74, 98.02 99.67, 99.96, 99.38, 99.67

50 90.26, 90.24, 90.27, 90.26 98.05, 98.43, 97.65, 98.04 99.62, 99.28, 99.97, 99.63

40 89.79, 88.95, 90.87, 89.90 97.98, 97.42, 98.57, 97.99 99.88, 99.93, 99.83, 99.88

Table 6: Classification by reducing training dataset: Performance comparison of DeepSplice

and SpliceVec.

To analyze the performance of SpliceVec on imbalanced classes, we varied

the ratio of negative to positive samples from 5 to 17 in an interval of 3. This

analysis is particularly important because in real scenario the number of negative

samples is much more than that of positive samples in a genome. Figure 4 shows
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that the performance of both SpliceVec-g and SpliceVec-sp is significantly more

consistent with increasing ratio of negative samples as compared to DeepSplice.

Figure 4: Performance of SpliceVec with increasing ratio of negative samples to

positive samples. (a) Precision (b) Recall (c) F1-score of SpliceVec-sp, SpliceVec-g and

DeepSplice on varying ratio of negative samples from 5 to 17. Data here is positive and

negative samples from chromosome 20 of GENCODE dataset.

3.5. Prediction performance

The proposed models performed better than state-of-the-art model in de-

tecting non-canonical true splice junctions. SpliceVec-g identified upto 192

(84.95%) out of 226 non-canonical true splice junctions present in our test

dataset. SpliceVec-sp identified all the 226 (100%) non-canonical splice junc-

tions. The capability of the classifier to detect non-canonical splice junctions

significantly improved on including complete intron sequence for generating

SpliceVec.

Observing 100% accuracy in detecting non-canonical splice junctions, we

further modified our decoy splice junction samples by including non-consensus

donor and acceptor dimers (dimers other than GT-AG pair) in it. In order

to include non-consensus dimer-pairs, we considered two common classes of

exceptions to consensus splice site sequences reported in [34]. We considered

0.5% AT-AC dimer-pairs and 0.5% GC-AG dimer-pairs based on their reported

frequency of occurrence. In this scenario, SpliceVec-g identified 188 (83.18%)

out of 226 non-canonical true splice junctions whereas SpliceVec-sp identified all

the 226 (100%) junctions in the worst case out of 5 simulations (considering 10

nt flanking region + intron). Performance of SpliceVec-MLP indicates that the
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feature representation by SpliceVec is invariant to canonical and non-canonical

splice junctions.

Model SpliceVec-g SpliceVec-sp

Predcan Prednon−can Predcan Prednon−can

10nt flanking 72,446 51 87,635 222

20nt flanking 74,172 84 87,375 223

30nt flanking 75,222 127 87,367 222

40nt flanking 77,794 141 87,098 223

10nt flanking + intron 86,037 190 87,854 226

20nt flanking + intron 85,656 192 87,884 226

30nt flanking + intron 84,814 191 87,888 226

40nt flanking + intron 84,190 186 87,899 225

Table 7: Correctly predicted canonical (Predcan) and non-canonical (Prednon−can) positive

splice junctions, out of 87,927 canonical and 226 non-canonical junctions, using MLP and

both SpliceVec-g and SpliceVec-sp by varying the length of junction sequence.

We also observed that the most common correctly identified dinucleotide

sequence at the donor site of non-canonical splice junction was AT whereas that

at the acceptor site was AC, constituting about 43% of the non-canonical splice

junctions. This is in consistency with experimentally studied annotation which

identifies AT-AC introns as one of the most important classes of exception to

splice site consensus [34]. Table 7 shows the prediction of true splice junctions

in the worst case out of 5 simulations on varying the sequence length for both

SpliceVec-g and SpliceVec-sp. Out of the 87,927 canonical and 226 non-canonical

true splice junctions, DeepSplice identified 84,170 (95.73%) canonical and 97

(42.92%) non-canonical splice junctions. Thus, SpliceVec-MLP showed 2.12%

(4.23%) higher performance than DeepSplice in terms of identification of canon-

ical splice junctions using SpliceVec-g (SpliceVec-sp). In terms of identification

of non-canonical splice junctions, there was a 42.03% (57.08%) improvement in

18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/183087doi: bioRxiv preprint 

https://doi.org/10.1101/183087
http://creativecommons.org/licenses/by-nd/4.0/


performance by SpliceVec-g (SpliceVec-sp) compared to DeepSplice.

We compared the time taken for classifying the test samples. SpliceVec-

MLP classified 72,268 test samples per second of CPU time in the worst case

out of 5 simulations. DeepSplice, on the other hand, classified 5,585 test samples

per second. SpliceVec-MLP was therefore 12.94 times faster than DeepSplice.

With SpliceVec-sp, the classifier could identify all the splice junctions belonging

to some of the important genes like TSLP and BATF2 that are known to

be involved in several diseases. TSLP causes diseases like atopic dermatitis,

eosinophilic esophagitis, and allergic rhinitis [35]. BATF2 has been known to

be associated with cancer and some allergic diseases [36].

4. Conclusions

We proposed a novel approach of feature representation for splice junc-

tions, named SpliceVec, which is a vector embedding of the junction in an

n-dimensional feature space that captures the splicing signals residing in vicin-

ity of the splice junctions. We classified SpliceVec with an MLP having single

hidden layer and showed that it outperforms the current state-of-the-art splice

junction prediction model even with a significantly reduced training dataset.

The model performs consistently even with imbalance in training samples. This

representation also performs outstanding for prediction of non-canonical true

splice junctions. We have also seen that this classification is computationally

12.94 times faster than the state-of-the-art model thus making this model scal-

able to the availability of annotated genome sequences. Although SpliceVec

has been trained for human genome, it can easily be trained with user-defined

training data or data belonging to any other species.

Abbreviations

AS: alternative splicing; CNN: convolutional neural network; t-SNE: stochas-
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