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Abstract

Human immunity influences the evolution and impact of novel influenza strains. Because

individuals are infected with multiple influenza strains during their lifetime and each virus

can generate a cross-reactive antibody response, it is challenging to quantify the processes

that shape observed immune responses, or to reliably ascertain infection from serologi-

cal samples. Using a Bayesian model of antibody dynamics at multiple timescales, we

explain complex cross-reactive antibody landscapes by inferring participants’ histories of

infection with serological data from cross-sectional and longitudinal studies of influenza

A/H3N2 in southern China and Vietnam. We show an individual’s influenza antibody pro-

file can be explained by a short-lived, broadly cross-reactive response that decays within a

year to leave a smaller long-term response acting against a narrower range of strains. We

also demonstrate that accounting for dynamic immune responses can provide a more ac-

curate alternative to traditional definitions seroconversion for the estimation of infection

attack rates. Our work provides a general model for explaining mechanisms of influenza

immunity acting at multiple timescales based on contemporary serological data, and sug-

gests a two-armed immune response to influenza infection consistent with competitive

dynamics between B cell populations. This approach to analysing multiple timescales for

antigenic responses could also be applied to other multi-strain pathogens such as dengue

and related flaviviruses.
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Introduction

Immunity against influenza A can influence the severity of disease [1, 2], the effectiveness

of vaccination strategies [3], and the emergence of novel strains [4, 5]. Understanding the

accumulation of immunity and infection has proven challenging because observed human

antibody responses – typically measured by haemagglutination inhibition (HI) assays or

microneutralisation titres – reflect a combination of past infections to specific strains and

the potentially cross-reactive responses generated by these infections [6]. It has been

shown that measurement error in HI assays can lead to uncertainty in the estimation of

serological status [7] and cross-reactive antibody dynamics can make it difficult to esti-

mate the true extent of influenza infection during an epidemic [2]. Accurate estimation of

attack rates is crucial for estimating influenza burden, and hence the design and evaluation

of vaccination campaigns [8].

Although there are established techniques for the analysis of single strain immunising

pathogens such as measles [9], potential cross-reactivity between different influenza A

strains means serological analysis must account for the dynamics of antibody responses

across multiple infections [10]. The concept of an antibody landscape has been put for-

ward as one way to represent the immune response developed as a result of a sequence of

processes such as infection, antibody boosting, antibody waning and cross reactivity [11].

Previous work has also used cross-sectional data to explore the life course of immunity by

explicitly modelling both the processes of infection and immunity [12]. However, such

analysis could not examine antibody mechanisms operating at multiple time-scales. In

particular, there have been suggestions that influenza infection leads to ‘back-boosting’,

generating a broadly cross-reactive response against historical strains [11, 13, 14]. It

has also been suggested that influenza responses are influenced by antigenic seniority,

with strains seen earlier in life shaping subsequent antibody responses [15]. This is a

refinement on the earlier concept of ‘original antigenic sin’, whereby the largest antibody

response is maintained against the first infection of a lifetime [16].

To quantify antibody kinetics over time and estimate historical infections with in-

fluenza A/H3N2, we used a dynamic model of immune responses that generated expected

titres against specific strains [12] by combining infection history – which was specific for

each individual – with an antibody response process that was universal across individu-

als. We assumed that the response included both a short-term and long-term component.

The short-term component consisted of a boost in log-titre following infection, which
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decayed over time, as well as a rise in log-titre as a result of cross-reaction with anti-

genically variable strains. The long-term response featured a boost in log-titre, which did

not decay, and a separate cross-reaction process that led to increased titres against other

strains. Titres were also influenced by antigenic seniority, with later infections generat-

ing lower levels of homologous boosting than that generated against strains encountered

earlier in life (see Materials and Methods). Historical strains were assumed to follow a

smooth path through a two-dimensional antigenic space over time [17] (Fig. S1). We fit-

ted this model to two publicly available serological datasets in which participants were

tested against a panel of A/H3N2 strains. The first contained cross-sectional data for in-

dividuals living in Guangdong province in southern China, collected in 2009 [15, 18];

the second included longitudinal data from Ha Nam in Vietnam [19], with sera collected

between 2007–2012 [11, 20].

Results

Using our serological model, we jointly estimated influenza infection history for each

study participant, as well as subsequent antibody response processes and assay measure-

ment variability. Although the contributions of short- and long-term processes to antibody

responses cannot be robustly estimated from cross-sectional data [12], simulation studies

showed that both time scales were identifiable using a simulated dataset similar to that of

the Vietnam samples (Figs. S2–3). We therefore included the short-term dynamic anti-

body processes in the model when fitting longitudinal data, but not when fitting to cross-

sectional data. The fitted model could reproduce both cross-sectional and longitudinal

observed titres for each participant (Fig. 1), and it was possible to identify specific years

with a high probability of infection and the corresponding antibody profile this infection

history had generated (Table S1, Figs. S4–5). Using the longitudinal Vietnam data, we

could identify specific years in which individual’s had a high probability of infection,

particularly during the period of testing (Fig. 1A–I). There was more variability in esti-

mates from the cross-sectional China data, although time periods with a high probability

of infection could still be identified (Fig. 1J–L).

The model fits to longitudinal data described an antibody response to influenza that

is initially dominated by a broadly cross-reactive response, which rapidly decays, leaving

a long-term response that cross-reacts only with antigenically similar viruses (Table 1,

Figs. S6–7). We estimated that primary infection generated a short-lived boost of an
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average of 2.69 (95% CrI: 2.50–2.89) units of log-titre against the infecting virus (a four-

fold rise would be equivalent to a 2 unit rise in log-titre), and a long-term boost of 1.80 log-

titre units (95% CrI: 1.74–1.88). The short-term response decayed quickly: we estimated

that the response had reached its final equilibrium level after one year. As the samples

were collected at one year intervals, it was not possible to estimate beyond this level of

precision, but it suggests that the short-term response contributes to titres on a timescale

of less than one year. The timescale of this short-term response is consistent with previous

qualitative estimates based on laboratory confirmed infections, which suggested there was

a negligible change in titre more than one year post-infection [11, 13, 21].

For the long-term response inferred from longitudinal data, we estimated that cross-

reactivity between infecting strain and tested strain dropped off at a rate of 0.241 units

of log-titre (95% CrI: 0.228–0.261) per unit of antigenic distance between them. The

estimated drop was not significantly different from that inferred with the cross-sectional

China data: log-titres decreased by 0.182 (0.116-0.237) with each antigenic unit. The

broader credible interval for China was largely the result of the coverage of strains tested:

9 strains were tested in the China data, compared with up to 57 in the Vietnam data. For

the broader short-term response, the model fitted to longitudinal data suggested cross-

reactive titres only decreased by 0.088 (95% CrI: 0.074–0.101) with each antigenic unit.

This result suggests that short-term titres are influenced by antigenic distance, albeit

weakly, and hence provides quantitative support for previous suggestions that the ob-

served broad short-lived boost is part of a memory B cell response [11].

To illustrate the inferred short and long term antibody dynamics against A/H3N2, we

used our infection history model to simulate antibody responses following two sequential

infections, the first in 1968 and in 1988 (Fig. 2). Following primary infection, individuals

would be expected to have raised titres to strains in nearby regions of antigenic space, but

these titres would quickly decay to leave a more localised long-term response. Upon sec-

ondary infection, a similar boost in titres would be observed, which would not be present

in tests conducted in subsequent years. This highlights the importance of accounting for

multiple-time scales when analysing immune assay data: in simulations, serology taken

in 1988 indicated a rise in titre to the first infecting strain compared to serology between

1969–1987, and showed detectable titres against all strains in the region of antigenic

space between the two infecting strains (Fig. 2F). However, serology taken one year later

only displayed localised responses against the infecting strains (Fig. 2H). Depending on
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time of sampling, our results suggest it would be possible to observe either longitudinal

increases or decreases in log-titres against previously seen strains or stable log-titres [6].

As well as examining antibody dynamics, we reconstructed historical annual attack

rates. In simulation studies, the model could accurately recover attack rates from Vietnam-

like serological data, particularly for recent years (Fig. 3A). Estimates of attack rates

based on the traditional gold-standard of a four-fold rise in titre underestimated the actual

simulated values (Fig. 3B), and an overestimate was obtained if a two-fold rise in titre

was considered instead [7]. This suggests that commonly used metrics could substan-

tially bias estimates of population-level attack rates, and hence conclusions about the po-

tential extent of herd immunity and required vaccination coverage. In contrast, estimates

from our joint inference framework consistently recovered the true simulated infection

dynamics during the period of sampling (Fig. 3B, inset). Applying our inference frame-

work to real data from Vietnam to estimate annual attack rates (Fig. 3C), we found that

estimates were consistent with observed epidemiological dynamics in Vietnam between

2008–2012, as measured by the number of influenza A/H3N2 isolates during the test-

ing period (Fig. 3D). The correlation between model estimates and observed values was

ρ=0.996 (p<0.001), with a weaker association when a two-fold rise (ρ=0.862, p=0.14) or

four-fold rise (ρ=0.799, p=0.20) was used to estimate attack rates. Most of the uncertainty

in attack rate estimates resulted from individuals with multiple estimated infections; there

was little variation in estimated number of infections when individuals had fewer than

around eight median infections (Fig. S8).

Discussion

Our analysis shows that detailed mechanistic insights can be gained from longitudinal

data by jointly considering individual infection histories and antibody dynamics acting at

multiple timescales. Building on previous analyses [22, 12, 15, 23], we estimated that

non-primary influenza exposures generate a short-lived broad humoural response and a

persistent narrow response, with each accumulating and degrading to different degrees

over the course of a human lifetime. As well as quantifying processes that shape the

antibody response against different influenza strains, our results suggest that accounting

for such dynamics leads to improved estimation of population attack rates.

The short-lived broad response, which we estimated makes the largest contribution to

titres following infection, is likely to influence selection pressure imposed on the virus
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as a result of population immunity; it has been suggested that such short-term nonspe-

cific immunity could explain the constrained genetic diversity of circulating influenza

viruses [4]. Our results would therefore have implications for use of serology to investi-

gate the evolutionary dynamics of influenza, and hence identify potential vaccine strain

candidates [22, 24, 25]. If a large proportion of a population had recently experienced

infection, it is likely that the short term antibody response would protect these individuals

against strains occupying a large region of antigenic space. However, these strains may

become more transmissible as the short-term response wanes.

Additional insight into such antibody dynamics could be generated directly using

modern methods of sorting and sequencing individual B cells [26]. During non-primary

infections, existing memory B cells that are genetically diverged from germline B cells

generated during prior infections are rapidly stimulated. These B cells may reach high pe-

ripheral frequencies rapidly but, on average, have lower avidity against the current strain

than they would have had against that host’s previous infections [27]. However, there will

be competing demands on these cell lines to produce antibodies and possibly to differen-

tiate further to increase their avidity. In addition to these memory cells, there is also the

potential for the stimulation of germline B cells which may take longer to achieve func-

tional peripheral frequencies but have higher avidity [28]. When observed during early

infection, these new lineages would be much more similar to germline B cells, and would

form fewer phylogenetic clades per sorted cell than the rapid response. Later during infec-

tion, cells making up the persistent response would be at higher frequencies and be more

differentiated, but still form only few clades. Antigenic seniority [15] may arise because

novel lineages during later life infections have to compete with existing lineages for anti-

genic stimulation [29, 30]. After infection, the memory frequency of the B cells making

up the broad response likely returns to their pre-infection levels and the new B cells es-

tablish new subordinate memory populations. The aggregate effect of these mechanisms

over a lifetime is consistent conceptually with the results we have presented (Fig. S9).

The modelling approaches described here also could be employed in evaluating the

effectiveness of different vaccination strategies, which depends on an ability to reliably

infer population attack rates. Moreover, the broader concept of multiple timescales of

antibody response would have potential implications for the design of innovative vac-

cines, such as highly-valent vaccines [11]. If broad responses have shorter durations than

narrow responses, then the tradeoff between current vaccines and other proposed candi-
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dates may be time dependent. Participants in trials of novel influenza vaccines should

therefore be followed up over multiple seasons so that the dynamics of their immune re-

ponse to both vaccination and natural infection can be assessed. At best, such vaccination

against influenza A/H3N2 may stimulate a similar response to natural infection. How-

ever, there is evidence that vaccine-mediated immunity wanes quickly [31], that vaccine

effectiveness declines after multiple immunisations [32], and that broad response against

a novel subtype fades after repeated vaccination [33]. With appropriate data on serology

and vaccination history, the differences in dynamics between the two processes could be

elucidated using the model structure we have presented.

As well as examining differences in vaccination-mediated immunity and antibody re-

sponse following natural infection, future empirical studies could refine our estimate for

waning of the short-term response by collecting serological samples at intervals of less

than one year. Alternatively, or additionally, having information on timing of confirmed

influenza infection between sample collections would make it possible to constrain possi-

ble infection events, and hence improve estimates of short-term dynamics. In our model,

we also accounted for individual-level heterogeneity in titres by including normally dis-

tributed error in our observation model. Our results suggest that this error parameter is

well-identified (Table S2), but it would be challenging to examine other potential hetero-

geneity in antibody responses – such as age-specific biases – in more detail with the data

available without making strong assumptions about the nature of such heterogeneity.

Our inference approach could be used in future to guide the design of studies to infer

key aspects of antibody dynamics or to estimate historical attack rates. Joint analysis of

infection history and antibody dynamics could provide more accurate information about

infection rates, particularly in the years preceding sample collection, and inform studies

that rely on robust attack rate estimates. As a result, such methods could help ensure

that serological studies to examine influenza immunity profiles have adequate statistical

power to test hypotheses and identify key mechanistic processes. Our approach is also

likely to be applicable to other cross-reactive pathogens, such as dengue fever and Zika

viruses [34].
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Methods

Serological data

We used two publicly available datasets in our analysis. In the southern China data, cross-

sectional serology was taken in 2009 from 151 participants in Guangdong province in

southern China and tested using microneutralization assays against a panel of nine strains:

six vaccine strains (A/Hong Kong/1/1968, A/Victoria/3/1975, A/Bangkok/1/1979, A/ Bei-

jing/353/1989, A/Wuhan/359/1995, and A/Fujian/411/2002) and three strains that circu-

lated in southern China in recent years preceding the study (A/Shantou/90/2003,

A/Shantou/806/2005, and A/Shantou/904/2008) [18, 15]. The Vietnam data included lon-

gitudinal serology collected between 2007–2012 from 69 participants in Ha Nam [19],

with sera tested using haemagglutination inhibition (HI) assays against a panel of up to 57

A/H3N2 strains isolated between 1968–2008 [11]. All of the Vietnam participants were

unvaccinated against influenza, and 19% of the southern China participants reported prior

influenza vaccination. In analysis of both datasets, we represented antibody responses by

log-titre. For a titre dilution of 10 ≤ D ≤ 1280, log-titre was defined as log2
(
D
10

)
+1. The

minimum detectable titre in both datasets was 10, so a dilution <10 was defined to have

a log-titre of 0. The maximum observable titre in both datasets was 1280, which corre-

sponded to a log-titre of 8. There were nine possible observable log-titres in our analysis,

ranging from 0 to 8. The antigenic summary path used to represent strains in our analysis

was generated by fitting a two-dimensional smoothing spline through 81 points represent-

ing the published estimated locations of strains in ‘antigenic space’ [11] (Fig. S1).The

positions of strains in such a space depends on the distance between influenza antigens

and reference antisera as measured by titre in an HI assay [17]. In the model, we as-

sumed that strains circulating between 1968 and 2012 were uniformly distributed along

this summary path.

Model of expected titre given infection history

We expanded a previous modelling framework designed for cross-sectional data [12] to

include short- and long-term dynamics. For an individual who had previously been in-

fected with strains in the set X , the expected log-titre against strain j depended on five

specific antibody processes:

1. Long-term boosting from infection with homologous strain. If an individual had
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been infected with only one strain, they would exhibit a fixed log-titre against that

strain, controlled by a single parameter, µ1.

2. Antigenic seniority acting via suppression of subsequent responses as a result of

prior immunity. The titre against a particular strain was scaled by a factor s(X, j) =

max{0, 1−τ(Nj−1)}, whereNj is the number of the strain in the infection history

(i.e. the first strain is 1, the second is 2 etc.) and |X| is the total number of infections,

and τ was a parameter to be fitted.

3. Cross-reactivity from antigenically similar strains. As titres were on a log scale, we

assumed the level of cross-reaction between a test strain j and infecting strain m ∈

X decreased linearly with antigenic distance. This was controlled by d1(j,m) =

max{0, 1 − σ1δmt}, where δmt was the two-dimensional Euclidean antigenic dis-

tance between strains j and m (Fig. S1), and σ1 was a parameter to be fitted.

4. Short-term boosting, which waned over time. For an infecting strain m, this pro-

cess was controlled by µ2w(m) = µ2max{0, 1 − ωtm}, where µ2 was a boosting

parameter and ω was a waning parameter to be fitted, and tm was the number of

years since infection with strain m. We constrained ω ≤ 1 when fitting the model

to ensure identifiability, as ω = 1 or ω > 1 implies that w(m) = 0 for all tm > 0.

5. Cross-reactivity for the short-term response. The level of cross-reaction between

a test strain j and infecting strain m was given by d2(j,m) = max{0, 1−σ2δmt},

where δmt was the antigenic distance between strains j and m, and σ2 was a param-

eter to be fitted.

To combine the five processes in the model, we assumed that the expected log-titre indi-

vidual i had against a strain j was a linear combination of the responses from each prior

infection:

λij =
∑
m∈X

s(X,m) [µ1d1(j,m) + µ2w(m) d2(j,m)] (1)

Depending on parameter values, our model could incorporate several specific mechanistic

features, including: long-term response only (µ2 = 0); waning response only (µ1 =

0); or long-term/short-term boosting independent of a cross-reactive memory response

(σ1, σ2 = 0).
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Observation model and likelihood function

For an individual i who was infected with strains in the set X , we assumed their true

titre against strain j titre followed a normal distribution with mean λij , standard deviation

ε, and cumulative distribution function f(x). The observed distribution of titres was cen-

sored to account for integer valued cutoffs. The likelihood of observing titre k ∈ {0, ..., 8}

given history X and parameter set θ was therefore as follows:

L(k | θ,X) =


f(x < 1) if k = 0;

f(k ≤ x < k + 1) if 1 ≤ k < 8.

f(x ≥ 8) if k ≥ 8;

(2)

Parameter estimation

We fitted the model to serological data using Markov chain Monte Carlo (MCMC). Using

the likelihood function in Equation 2, we jointly estimated θ across all individuals and

estimated X for each individual via a Metropolis-Hastings algorithm. If individual sera

were collected in more than one year, parameters were jointly estimated across all test

years. We used a data augmentation approach to estimate individual infection histories.

Every second iteration, we resampled model parameters, which were shared across all in-

dividuals, and performed a single Metropolis-Hastings acceptance step. On the other iter-

ations we resampled infection histories for a randomly selected 50% of individuals. These

histories were independent across individuals, so we performed a Metropolis-Hastings

acceptance step for each individual separately. Correlation plots indicated that all pa-

rameters in the full model were identifiable (Fig. S10). To ensure the Markov chain was

irreducible, resampling at each step involved one of the following: addition of infection

in some year; removal of infection in some year; moving an infection from some year

to another [35]. We also used adaptive MCMC to improve the efficiency of mixing: at

each iteration, we adjusted the magnitude of the covariance matrix used to resample θ

to obtain an acceptance rate of 0.234 [36]. As we had data on participants individual

ages in the southern China data, we constrained potential infections in the model to years

in which participants would have been alive. The model was implemented in R version

3.3.1 and C, and used the Rcpp and doMC packages. Source code and data are available

at: https://github.com/adamkucharski/flu-model/
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Simulation study

In our simulation study, we first generated simulated influenza attack rates between 1969–

2012 using a lognormal distribution with mean 0.15 and standard deviation 0.5. For 1968,

we used a lognormal distribution with mean 0.5, to reflect higher incidence in the pan-

demic year [37]. Using these simulated attack rates, we generated individual infection

histories for 69 participants using a binomial distribution, then generated observed indi-

vidual level titres against the same strains as in the Vietnam dataset using our titre model.

As in the real data, simulated samples were tested each year between 2007–2012. We

assumed µ1 = µ2 = 2, τ = 0.05, ω = 1, σ1 = 0.3, σ2 = 0.1 and ε = 1 in simulations.

For Fig. 3B inset, we simulated 10 independent sets of observed titres, then inferred the

proportion of the population infected in the four years between 2008–2011 inclusive. The

resulting distribution of model residuals (i.e. estimated minus actual simulated value) for

these 40 data points were plotted as kernel density plots.

Epidemiological data

Reported influenza A/H3N2 activity in Vietnam was obtained from the WHO FluNet

database [38] (Fig. S11). We aggregated reports into temporal windows based on dates

of serological sample collection [11], and used the cumulative number of isolates in each

period to compare observed activity with model estimates. To calculate attack rates from

the model outputs, we scaled the posterior distribution of total number of infections across

all participants for each year between 1968–2012 by the proportion of participants who

were alive in that year, which we calculated based on the age distribution of participants.

This produced the estimates in Figs. 3C–D.
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Table 1: Parameter estimates for models fitted to data from southern China and Vietnam.

Median estimate shown, with 95% credible intervals in parentheses.

Parameter China (2009) Vietnam (2007–2012)

Long-term boost (µ1) 1.42 (1.12-1.67) 1.80 (1.74-1.88)

Short-term boost (µ2) – 2.69 (2.50-2.89)

Long-term cross-reaction (σ1) 0.128 (0.102-0.145) 0.134 (0.131-0.140)

Short-term cross-reaction (σ2) – 0.0327 (0.0287-0.036)

Observation error (ε) 1.69 (1.55-1.83) 1.29 (1.27-1.31)

Antigenic seniority (τ ) 0.029 (0.021-0.037) 0.044 (0.039-0.048)

Waning (ω) – 0.995 (0.973-1.00)
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Figure 1: Representative individual-level responses against influenza in Vietnam (A–I)

and southern China (J–L). (A–C) Strong evidence of infection in 2009, leading to rise in

titres and back boost from broad short-term cross-reaction, then decay in following year.

Red points show observed titre. Blue lines show median titre in fitted model, with blue

regions showing 50% and 95% MCMC credibility intervals. Black lines show samples

from the posterior distribution of individual infection histories, with opacity indicating the

probability of infection (i.e. proportion of MCMC samples that estimated infection in that

year). (D–F) No estimated infections between 2008–2010, so titres are at equilibrium.

(G–I) Infection in 2009 leading to broad boost, with titres generally highest against re-

cent strains (H) then decline to equilibrium, with lower mean titres against recent strains

as a result of antigenic seniority (I). (J–L) Cross-sectional results from southern China,

indicating: (J) evidence of multiple recent infections; (K) decline in titres as a result of

antigenic seniority; (L) evidence of infections early and late in life.
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Figure 2: Expected titres against strains at different points in antigenic space for a given

infection sequence. (A) Simulated log-titres against different strains in antigenic space

following a single infection in 1968, with test conducted in 1968. Parameters are drawn

from the maximum a posteriori model estimate. Red vertical dashed line shows antigenic

location of infecting strain. Black points at the base show location of strains isolated

up to this year; grey points show location of strain isolates in subsequent years; black

dashed line shows antigenic summary path used to fit model (Figure S1). (B) Estimated

titres along the antigenic summary path (dashed black line in (A)). Red line shows year

of infection. (C) Simulated log-titres following on single infection in 1968, with test

conducted in 1969. (D) Estimated titres along antigenic summary path in 1969. (E) Sim-

ulated log-titres following infections in 1968 and 1988, with test conducted in 1988. (F)

Estimated titres along antigenic summary path in 1988. (G) Simulated log-titres follow-

ing infections in 1968 and 1988, with test conducted in 1989. (H) Estimated titres along

antigenic summary path in 1989.
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Figure 3: Estimation of influenza A/H3N2 attack rates. (A) Inference of attack rates using

simulated data for 69 participants, with same strains as tested in HaNam data. Main plot:

Blue lines show estimated attack rate with binomial confidence interval; red lines show at-

tack rates in years when samples were taken; black circles show true attack rate in original

simulation. Inset: year of circulation for the 57 test strains used, which included repeats

in some years. (B) Main: accuracy of attack rate estimates in (A) was high for years in

which serological samples were collected (shown as red dots). Hollow black points show

attack rate based on two-fold rise in titre against strain in that year (points shown for years

2008–11, which had sufficient test strains or samples to perform this calculation); solid

points show attack rate based on four-fold rise. Inset: distribution of differences between

estimated and actual attack rates in same years across ten simulation studies. Red line

indicates estimates from model; dashed black line shows estimates based on two-fold rise

in titre; solid black line shows estimates based on four-fold rise. (C) Proportion of Viet-

nam study population estimated to have been infected in each year based on real data.

Blue lines show estimated attack rate with binomial confidence interval; red lines show

attack rates in years when samples were taken. (D) Accuracy of attack rates estimates

using different methods. Main plot shows model estimates of attack rates in 2008–2012

(red points in (A)) and number of positive H3 isolates reported in Vietnam during the

same intervals as the samples were taken. Hollow black points show attack rate based on

two-fold rise in titre against strain in that year (point not shown for 2012 as no test strains

for this year were available, so a rise could not be calculated); solid points show attack

rate based on four-fold rise.
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